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Preface

Preface to the First Edition

Combinatorial mathematics has been pursued since time immemorial, and
at a reasonable scientific level at least since Leonhard Euler (1707-1783). It
rendered many services to both pure and applied mathematics. Then along
came the prince of computer science with its many mathematical problems
and needs — and it was combinatorics that best fitted the glass slipper held out.
Moreover, it has been gradually more and more realized that combinatorics
has all sorts of deep connections with “mainstream areas” of mathematics,
such as algebra, geometry and probability. This is why combinatorics is now
a part of the standard mathematics and computer science curriculum.

This book is as an introduction to extremal combinatorics — a field of com-
binatorial mathematics which has undergone a period of spectacular growth
in recent decades. The word “extremal” comes from the nature of problems
this field deals with: if a collection of finite objects (numbers, graphs, vectors,
sets, etc.) satisfies certain restrictions, how large or how small can it be?

For example, how many people can we invite to a party where among each
three people there are two who know each other and two who don’t know
each other? An easy Ramsey-type argument shows that at most five persons
can attend such a party. Or, suppose we are given a finite set of nonzero
integers, and are asked to mark an as large as possible subset of them under
the restriction that the sum of any two marked integers cannot be marked.
It turns out that (independent of what the given integers actually are!) we
can always mark at least one-third of them.

Besides classical tools, like the pigeonhole principle, the inclusion-exclusion
principle, the double counting argument, induction, Ramsey argument, etc.,
some recent weapons — the probabilistic method and the linear algebra
method — have shown their surprising power in solving such problems. With
a mere knowledge of the concepts of linear independence and discrete prob-
ability, completely unexpected connections can be made between algebra,
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probability, and combinatorics. These techniques have also found striking ap-
plications in other areas of discrete mathematics and, in particular, in the
theory of computing.

Nowadays we have comprehensive monographs covering different parts of
extremal combinatorics. These books provide an invaluable source for stu-
dents and researchers in combinatorics. Still, I feel that, despite its great po-
tential and surprising applications, this fascinating field is not so well known
for students and researchers in computer science. One reason could be that,
being comprehensive and in-depth, these monographs are somewhat too dif-
ficult to start with for the beginner. I have therefore tried to write a “guide
tour” to this field — an introductory text which should

- be self-contained,

- be more or less up-to-date,

- present a wide spectrum of basic ideas of extremal combinatorics,

- show how these ideas work in the theory of computing, and

- be accessible to graduate and motivated undergraduate students in
mathematics and computer science.

Even if not all of these goals were achieved, I hope that the book will at
least give a first impression about the power of extremal combinatorics, the
type of problems this field deals with, and what its methods could be good
for. This should help students in computer science to become more familiar
with combinatorial reasoning and so be encouraged to open one of these
monographs for more advanced study.

Intended for use as an introductory course, the text is, therefore, far from
being all-inclusive. Emphasis has been given to theorems with elegant and
beautiful proofs: those which may be called the gems of the theory and may
be relatively easy to grasp by non-specialists. Some of the selected arguments
are possible candidates for The Book, in which, according to Paul Erd6s, God
collects the perfect mathematical proofs.” I hope that the reader will enjoy
them despite the imperfections of the presentation.

A possible feature and main departure from traditional books in combina-
torics is the choice of topics and results, influenced by the author’s twenty
years of research experience in the theory of computing. Another departure
is the inclusion of combinatorial results that originally appeared in computer
science literature. To some extent, this feature may also be interesting for
students and researchers in combinatorics. In particular, some impressive
applications of combinatorial methods in the theory of computing are dis-
cussed.

Teaching. The text is self-contained. It assumes a certain mathematical
maturity but no special knowledge in combinatorics, linear algebra, prob-

“You don’t have to believe in God but, as a mathematician, you should believe in The
Book.” (Paul Erdds)
For the first approximation see M. Aigner and G.M. Ziegler, Proofs from THE BOOK.
Second Edition, Springer, 2000.
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ability theory, or in the theory of computing — a standard mathematical
background at undergraduate level should be enough to enjoy the proofs. All
necessary concepts are introduced and, with very few exceptions, all results
are proved before they are used, even if they are indeed “well-known.” For-
tunately, the problems and results of combinatorics are usually quite easy to
state and explain, even for the layman. Its accessibility is one of its many
appealing aspects.

The book contains much more material than is necessary for getting ac-
quainted with the field. I have split it into relatively short chapters, each
devoted to a particular proof technique. I have tried to make the chapters
almost independent, so that the reader can choose his/her own order to fol-
low the book. The (linear) order, in which the chapters appear, is just an
extension of a (partial) order, “core facts first, applications and recent devel-
opments later.” Combinatorics is broad rather than deep, it appears in dif-
ferent (often unrelated) corners of mathematics and computer science, and it
is about techniques rather than results — this is where the independence of
chapters comes from.

Each chapter starts with results demonstrating the particular technique in
the simplest (or most illustrative) way. The relative importance of the topics
discussed in separate chapters is not reflected in their length — only the topics
which appear for the first time in the book are dealt with in greater detail.
To facilitate the understanding of the material, over 300 exercises of varying
difficulty, together with hints to their solution, are included. This is a vital
part of the book — many of the examples were chosen to complement the
main narrative of the text. Some of the hints are quite detailed so that they
actually sketch the entire solution; in these cases the reader should try to fill
out all missing details.

Acknowledgments. I would like to thank everybody who was directly
or indirectly involved in the process of writing this book. First of all, I am
grateful to Alessandra Capretti, Anna Gal, Thomas Hofmeister, Daniel Kral,
G. Murali Krishnan, Martin Mundhenk, Gurumurthi V. Ramanan, Martin
Sauerhoff and P.R. Subramania for comments and corrections.

Although not always directly reflected in the text, numerous earlier discus-
sions with Anna Ga&l, Pavel Pudlak, and Sasha Razborov on various combina-
torial problems in computational complexity, as well as short communications
with Noga Alon, Aart Blokhuis, Armin Haken, Johan Hastad, Zoltan Firedi,
Hanno Lefmann, Ran Raz, Mike Sipser, Mario Szegedy, and Avi Wigder-
son, have broadened my understanding of things. I especially benefited from
the comments of Aleksandar Pekec and Jaikumar Radhakrishnan after they
tested parts of the draft version in their courses in the BRICS International
Ph.D. school (University of Aarhus, Denmark) and Tata Institute (Bombay,
India), and from valuable comments of Laszlé Babai on the part devoted to
the linear algebra method.

I would like to thank the Alexander von Humboldt Foundation and the
German Research Foundation (Deutsche Forschungsgemeinschaft) for sup-
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porting my research in Germany since 1992. Last but not least, I would like
to acknowledge the hospitality of the University of Dortmund, the University
of Trier and the University of Frankfurt; many thanks, in particular, to Ingo
Wegener, Christoph Meinel and Georg Schnitger, respectively, for their help
during my stay in Germany. This was the time when the idea of this book
was born and realized. I am indebted to Hans Wéssner and Ingeborg Mayer
of Springer-Verlag for their editorial help, comments and suggestions which
essentially contributed to the quality of the presentation in the book.

My deepest thanks to my wife, Daiva, and my daughter, Indré, for being
there.

Frankfurt/Vilnius March 2001 Stasys Jukna

Preface to the Second Edition

This second edition has been extended with substantial new material, and
has been revised and updated throughout. In particular, it offers three new
chapters about expander graphs and eigenvalues, the polynomial method and
error-correcting codes. Most of the remaining chapters also include new ma-
terial such as the Kruskal-Katona theorem about shadows, the Lovisz—Stein
theorem about coverings, large cliques in dense graphs without induced 4-
cycles, a new lower bounds argument for monotone formulas, Dvir’s solution
of finite field Kakeya’s conjecture, Moser’s algorithmic version of the Lovész
Local Lemma, Schoning’s algorithm for 3-SAT, the Szemerédi—Trotter the-
orem about the number of point-line incidences, applications of expander
graphs in extremal number theory, and some other results. Also, some proofs
are made shorter and new exercises are added. And, of course, all errors and
typos observed by the readers in the first edition are corrected.

I received a lot of letters from many readers pointing to omissions, errors
or typos as well as suggestions for alternative proofs — such an enthusiastic
reception of the first edition came as a great surprise. The second edition
gives me an opportunity to incorporate all the suggestions and corrections in
a new version. I am therefore thankful to all who wrote me, and in particular
to: S. Akbari, S. Bova, E. Dekel, T. van Erven, D. Gavinsky, Qi Ge, D. Gun-
derson, S. Hada, H. Hennings, T. Hofmeister, Chien-Chung Huang, J. Hiin-
ten, H. Klauck, W. Koolen-Wijkstra, D. Kramer, U. Leck, Ben Pak Ching
Li, D. McLaury, T. Mielikdinen, G. Mota, G. Nyul, V. Petrovic, H. Proth-
mann, P. Rastas, A. Razen, C. J. Renteria, M. Scheel, N. Schmitt, D. Sieling,
T. Tassa, A. Utturwar, J. Volec, F. Voloch, E. Weinreb, A. Windsor, R. de
Wolf, Qiqi Yan, A. Zilberstein, and P. Zumstein.

I thank everyone whose input has made a difference for this new edition.
I am especially thankful to Thomas Hofmeister, Detlef Sieling and Ronald
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de Wolf who supplied me with the reaction of their students. The “error-
probability” in the 2nd edition was reduced by Ronald de Wolf and Philipp
Zumstein who gave me a lot of corrections for the new stuff included in
this edition. I am especially thankful to Ronald for many discussions—his
help was extremely useful during the whole preparation of this edition. All
remaining errors are entirely my fault.

Finally, I would like to acknowledge the German Research Foundation
(Deutsche Forschungsgemeinschaft) for giving an opportunity to finish the
2nd edition while working within the grant SCHN 503/5-1.

Frankfurt/Vilnius August 2011 S.J.



Notation

In this section we give the notation that shall be standard throughout the
book.

Sets

We deal exclusively with finite objects. We use the standard set-theoretical
notation:

| X'| denotes the size (the cardinality) of a set X.

A k-set or k-element set is a set of k elements.

[n] ={1,2,...,n} is often used as a “standard” n-element set.
A\B={z: z€ Aand z ¢ B}.

A = X\A is the complement of A.

A®B=(A\B)U(B\ A) (symmetric difference).

Ax B={(a,b) : a€ A, be B} (Cartesian product).

A C B if B contains all the elements of A.

ACBifACBand A#B.

2% is the set of all subsets of the set X. If | X| = n then [2%| = 2".

A permutation of X is a one-to-one mapping (a bijection) f: X — X.
{0,1}" = {(v1,...,vs) = v; € {0,1}} is the (binary) n-cube.

0-1 vector (matrix) is a vector (matrix) with entries 0 and 1.

A unit vector e; is a 0-1 vector with exactly one 1 in the i-th position.
An m x n matrix is a matrix with m rows and n columns.

The incidence vector of a set A C {x1,...,z,} is a 0-1 vector v =
(v1,...,vp), where v; =1 if x; € A, and v; =0 if z; € A.

e The characteristic function of a subset A C X is the function f : X —
{0,1} such that f(z) =1 if and only if z € A.

Arithmetic

Some of the results are asymptotic, and we use the standard asymptotic
notation: for two functions f and g, we write f = O(g) if f < ¢19 + ¢ for
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all possible values of the two functions, where ¢y, co are absolute constants.
We write f = 2(g) if g = O(f), and f = O(g) if f = O(g) and g = O(f).
If the limit of the ratio f/g tends to 0 as the variables of the functions tend
to infinity, we write f = o(g). Finally, f < g means that f < (1 + o(1))g,
and f ~ g denotes that f = (14 o(1))g, i.e., that f/g tends to 1 when the
variables tend to infinity. If 2 is a real number, then [z] denotes the smallest
integer not less than x, and |2 denotes the greatest integer not exceeding
x. As customary, Z denotes the set of integers, R the set of reals, Z, an
additive group of integers modulo n, and GF(q) (or F,) a finite Galois field
with ¢ elements. Such a field exists as long as ¢ is a prime power. If ¢ = p is
a prime then F,, can be viewed as the set {0,1,...,p — 1} with addition and
multiplication performed modulo p. The sum in Fy is often denoted by &,
that is, x @y stands for = +y mod 2. We will often use the so-called Cauchy—
Schwarz inequality (see Proposition 13.4 for a proof): if a1,...,a, and by, .. .,
b,, are real numbers then

<§;aibi)2 < <Za2><;b2>

i=1

If not stated otherwise, e = 2.718... will always denote the base of the
natural logarithm.

Graphs

A graph is a pair G = (V, E) consisting of a set V, whose members are
called wvertices (or nodes), and a family E of 2-element subsets of V', whose
members are called edges. A vertex v is incident with an edge e if v € e. The
two vertices incident with an edge are its endvertices or endpoints, and the
edge joins its ends. Two vertices u, v of G are adjacent, or neighbors, if {u, v}
is an edge of G. The number d(u) of neighbors of a vertex w is its degree. A
walk of length k in G is a sequence v, €1, ..., eg, v of vertices and edges
such that e; = {v;—1,v;}. A walk without repeated vertices is a path. A walk
without repeated edges is a trail. A cycle of length k is a path vy, . .., vy with
vo = vg. A (connected) component in a graph is a set of its vertices such that
there is a path between any two of them. A graph is connected if it consists
of one component. A tree is a connected graph without cycles. A subgraph
is obtained by deleting edges and vertices. A spanning subgraph is obtained
by deleting edges only. An induced subgraph is obtained by deleting vertices
(together with all the edges incident to them).

A complete graph or clique is a graph in which every pair is adjacent. An
independent set in a graph is a set of vertices with no edges between them.
The greatest integer r such that G contains an independent set of size r is
the independence number of G, and is denoted by a(G). A graph is bipartite
if its vertex set can be partitioned into two independent sets.
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A legal coloring of G = (V, E) is an assignment of colors to each vertex
so that adjacent vertices receive different colors. In other words, this is a
partition of the vertex set V into independent sets. The minimum number of
colors required for that is the chromatic number x(G) of G.

Set systems

A set system or family of sets F is a collection of sets. Because of their intimate
conceptual relation to graphs, a set system is often called a hypergraph. A
family is k-uniform if all its members are k-element sets. Thus, graphs are
k-uniform families with k& = 2.

In order to prove something about families of sets (as well as to interpret
the results) it is often useful to keep in mind that any family can be looked
at either as a 0-1 matrix or as a bipartite graph.

Let F = {Ay,..., A} be a family of subsets of a set X = {z1,...,2,}.
The incidence matriz of F is an n x m 0-1 matrix M = (m; ;) such that
m;,; = 1 if and only if x; € A;. Hence, the j-th column of M is the incidence
vector of the set A;. The incidence graph of F is a bipartite graph with parts
X and F, where x; and A; are joined by an edge if and only if z; € A;.

wm AW N =

oo Rr P B |

o r O R O |

P O 0o o o0

[0, ONUCIE S RN
>}

Fig. 0.1 Three representations of the family F = {A, B,C} over the set of points
X ={1,2,3,4,5} with A ={1,2,3}, B = {2,4} and C = {5}.

For small n, the system of all subsets of an n-element set, ordered by set-
inclusion, can be represented by a so-called Hasse diagram. The k-th level

here contains all k-element subsets, £k =0,1,...,n.
{a,b,c} 111
(bel \‘/ o o \‘/ e
{a) <‘\ {c} 100 <‘\ 001
(0] 000

Fig. 0.2 A Hasse diagram of the family of all subsets of {a,b,c} ordered by set-inclusion,
and the set of all binary strings of length three; there is an edge between two strings if
and only if they differ in exactly one position.
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Part 1
The Classics






1. Counting

We start with the oldest combinatorial tool — counting.

1.1 The binomial theorem

Given a set of n elements, how many of its subsets have exactly k elements?
This number (of k-element subsets of an n-element set) is usually denoted by
() and is called the binomial coefficient. Put otherwise, () is the number
of possibilities to choose k distinct objects from a collection on n distinct

objects.
The following identity was proved by Sir Isaac Newton in about 1666, and
is known as the Binomial theorem.

Binomial Theorem. Let n be a positive integer. Then for all x and vy,

(x+y)" = Z (Z) akynk,
Proof. If we multiply the terms

(z+y)" =@ty (@+y) ... (z+y),

n—times

then, for every k = 0,1,...,n, there are exactly (%) possibilities to obtain
the term zFy"~%. Why? We obtain the term z*y"~* precisely if from n pos-
sibilities (terms z + y) we choose the first number x exactly k times. O

Note that this theorem just generalizes the known equality:

2 2 2
(x+y)? = <O> x%y% + <1>x1y1 + (2> 22y0 = 2% + 2wy + 97

S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. 3
An EATCS Series, DOI 10.1007/978-3-642-17364-6_1,
© Springer-Verlag Berlin Heidelberg 2011
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Be it so simple, the binomial theorem has many applications.

Ezample 1.1 (Parity of powers). To give a typical example, let us show the
following property of integers: If n, k are natural numbers, then n* is odd iff
n is odd.

One direction (=) is trivial: If n = 2m is even, then n* = 2¥(m*) must
be also even. To show the other direction (<), assume that n is odd, that
is, has the form n = 2m + 1 for a natural number m. The binomial theorem
with z = 2m and y = 1 yields:

n*=0@m+1)f =1+ (2m)1(lf> + (2m)? (g) 4ot (2m)k<Z) .

That is, the number n* has the form “1 plus an even number”, and must be
odd.

The factorial of n is the product n! :=n(n —1)---2- 1. This is extended
to all non-negative integers by letting 0! = 1. The k-th factorial of n is the
product of the first k terms:

n!
Note that () =1 (the empty set) and (') = 1 (the whole set). In general,
binomial coefficients can be written as quotients of factorials:

(Z) - (Tli)!k - k!(nni k)

Proof. Observe that (n)y is the number of (ordered!) strings (z1, 2, ..., xk)
consisting of k different elements of a fixed n-element set: there are n possibil-
ities to choose the first element x1; after that there are still n — 1 possibilities
to choose the next element x5, etc. Another way to produce such strings is
to choose a k-element set and then arrange its elements in an arbitrary order.
Since each of (Z) k-element subsets produces exactly (k) = k! such strings,
we conclude that (n), = (})k!. O

Proposition 1.2.

There are a lot of useful equalities concerning binomial coefficients. In
most situations, using their combinatorial nature (instead of algebraic, as
given by the previous proposition) we obtain the desired result fairly easily.
For example, if we observe that each subset is uniquely determined by its
complement, then we immediately obtain the equality

(2= () o

By this equality, for every fixed n, the value of the binomial coefficient
(Z) increases till the middle and then decreases. By the binomial theorem,



1.1 The binomial theorem 5

the sum of all these n 4+ 1 coefficients is equal to the total number 2™ of all
subsets of an n-element set:

kz: <Z> - kzn:_o (Z)mn—k = (1+1)"=2".

In a similar (combinatorial) way other useful identities can be established
(see Exercises for more examples).

Proposition 1.3 (Pascal Triangle). For every integers n >k > 1, we have

(-G

Proof. The first term ("_1) is the number of k-sets containing a fixed element,

k—1
and the second term (";1) is the number of k-sets avoiding this element; their
sum is the whole number (Z) of k-sets. O

For growing n and k, exact values of binomial coefficients (Z) are hard
to compute. In applications, however, we are often interested only in their
rate of growth, so that (even rough) estimates suffice. Such estimates can be
obtained, using the Taylor series of the exponential and logarithmic functions:

2 3
et:1+t+§+§+-~- for allt € R (1.2)
and
A R
1n(1+t)=t—§+§—z+"' for -1 <t <1. (1.3)

This, in particular, implies some useful estimates:

l+t<et for all t # 0, (1.4)
1—t>et=1/2 for all 0 < t < 1. (1.5)

Proposition 1.4.

n\* n k. /n en\*
(E) < <k) and E (z) < (y) . (1.6)
Proof. Lower bound:

(ﬁ)k_ﬁ.ﬁ...ﬁ<E.”_1...”_’“+1_ n
k Tk ok kE— k k-1 1 T \k/)

Upper bound: for 0 < ¢ < 1 the inequality
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S (1) =3 (1) = 0

i=0 =0
follows from the binomial theorem. Now substitute t = k/n and use (1.4). O

Tighter (asymptotic) estimates can be obtained using the famous Stirling
formula for the factorial:

n! = (E> 2mn e | (1.7)
e

where 1/(12n + 1) < o, < 1/12n. This leads, for example, to the following
elementary but very useful asymptotic formula for the k-th factorial:

2 3
(n)k = nkei%ifilib_Z+o(l) valid for k = 0(713/4)7 (18)

and hence, for binomial coefficients:

(Z) - @(1 +o(1)). (1.9)

1.2 Selection with repetitions

In the previous section we considered the number of ways to choose r distinct
elements from an n-element set. It is natural to ask what happens if we can
choose the same element repeatedly. In other words, we may ask how many
integer solutions does the equation xy +- - -+, = r have under the condition
that x; > 0 for all i = 1,...,n. (Look at x; as the number of times the -
th element was chosen.) The following more entertaining formulation of this
problem was suggested by Lovész, Pelikdn, and Vesztergombi (1977).

Suppose we have r sweets (of the same sort), which we want to distribute
to m children. In how many ways can we do this? Letting z; denote the
number of sweets we give to the i-th child, this question is equivalent to that
stated above.

The answer depends on how many sweets we have and how fair we are.
If we are fair but have only r < n sweets, then it is natural to allow no
repetitions and give each child no more than one sweet (each x; is 0 or 1). In
this case the answer is easy: we just choose those r (out of n) children who
will get a sweet, and we already know that this can be done in (Z) ways.

Suppose now that we have enough sweets, i.e., that r > n. Let us first be
fair, that is, we want every child gets at least one sweet. We lay out the sweets
in a single row of length r (it does not matter in which order, they all are
alike), and let the first child pick them up from the left to right. After a while
we stop him/her and let the second child pick up sweets, etc. The distribution



1.3 Partitions 7

of sweets is determined by specifying the place (between consecutive sweets)
of where to start with a new child. There are r— 1 such places, and we have to
select n — 1 of them (the first child always starts at the beginning, so we have
no choice here). For example, if we have r = 9 sweets and n = 6 children, a
typical situation looks like this:

OA000x000x0xDO
2 3 4 5 6

Thus, we have to select an (n — 1)-element subset from an (r — 1)-element
set. The number of possibilities to do so is (;j) If we are unfair, we have
more possibilities:

Proposition 1.5. The number of integer solutions to the equation

T+ -+x, =1

n+r71) ]

under the condition that x; > 0 for alli=1,...,n, is ( .

Proof. In this situation we are unfair and allow that some of the children may
be left without a sweet. With the following trick we can reduce the problem
of counting the number of such distributions to the problem we just solved:
we borrow one sweet from each child, and then distribute the whole amount
of n+r sweets to the children so that each child gets at least one sweet. This
way every child gets back the sweet we borrowed from him /her, and the lucky
ones get some more. This “more” is exactly r sweets distributed to n children.
We already know that the number of ways to distribute n + r sweets to n

children in a fair way is (”:ﬁ]l), which by (1.1) equals (n+:71). 0

1.3 Partitions

A partition of n objects is a collection of its mutually disjoint subsets, called
blocks, whose union gives the whole set. Let S(n; ki, ko,...,k,) denote the
number of all partitions of n objects with k; i-element blocks (i = 1,...,n;
k1 + 2ko + ...+ nk, = n). That is,

k; = the number of i-element blocks in a partition.

Proposition 1.6.

n!
leyl ek (10)F1 - (nl)kn

S(n;klykZa"'akn) =

Proof. If we consider any arrangement (i.e., a permutation) of the n objects
we can get such a partition by taking the first k1 elements as 1-element blocks,
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the next 2ky elements as 2-element blocks, etc. Since we have n! possible
arrangements, it remains to show that we get any given partition exactly

Eple- -kl (1DF oo (n))kn

times. Indeed, we can construct an arrangement of the objects by putting the
1-element blocks first, then the 2-element blocks, etc. However, there are k;!
possible ways to order the i-element blocks and (i!)* possible ways to order
the elements in the i-element blocks. O

1.4 Double counting

The double counting principle states the following “obvious” fact: if the ele-
ments of a set are counted in two different ways, the answers are the same.

In terms of matrices the principle is as follows. Let M be an n x m matrix
with entries 0 and 1. Let 7; be the number of 1s in the i-th row, and c; be
the number of 1s in the j-th column. Then

n m
Zri = Z c¢; = the total number of 1s in M .
i=1 j=1

The next example is a standard demonstration of double counting. Suppose
a finite number of people meet at a party and some shake hands. Assume that
no person shakes his or her own hand and furthermore no two people shake
hands more than once.

Handshaking Lemma. At a party, the number of guests who shake hands
an odd number of times is even.

Proof. Let Py,..., P, be the persons. We apply double counting to the set
of ordered pairs (P;, P;) for which P; and P; shake hands with each other at
the party. Let x; be the number of times that P; shakes hands, and y the
total number of handshakes that occur. On one hand, the number of pairs
is Z?:l x;, since for each P; the number of choices of P; is equal to z;. On
the other hand, each handshake gives rise to two pairs (P;, P;) and (P;, F;);
so the total is 2y. Thus Y. ; z; = 2y. But, if the sum of n numbers is even,
then evenly many of the numbers are odd. (Because if we add an odd number
of odd numbers and any number of even numbers, the sum will be always
odd). O

This lemma is also a direct consequence of the following general identity,
whose special version for graphs was already proved by Euler. For a point z,
its degree or replication number d(x) in a family F is the number of members
of F containing x.
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Proposition 1.7. Let F be a family of subsets of some set X. Then

D d(@) =) Al (1.10)

reX AeF

Proof. Consider the incidence matric M = (my 4) of F. That is, M is a 0-1
matrix with |X| rows labeled by points € X and with |F| columns labeled
by sets A € F such that mg 4 =1 if and only if z € A. Observe that d(z) is
exactly the number of 1s in the a-th row, and | A| is the number of 1s in the
A-th column. O

Graphs are families of 2-element sets, and the degree of a vertex z is the
number of edges incident to x, i.e., the number of vertices in its neighborhood.
Proposition 1.7 immediately implies

Theorem 1.8 (Euler 1736). In every graph the sum of degrees of its vertices
is two times the number of its edges, and hence, is even.

The following identities can be proved in a similar manner (we leave their
proofs as exercises):

Zd(x) = Z YN Al forany Y C X. (1.11)
z€Y AeF

dd)?=> > dx) =Y > |AnB. (1.12)
zeX AeF z€A A€F BeF

Turdn’s number T'(n,k,1) (I <k <n) is the smallest number of I-element
subsets of an n-element set X such that every k-element subset of X contains
at least one of these sets.

Proposition 1.9. For all positive integers | < k < n,

T(n, k1) > (7)/(?) .

Proof. Let F be a smallest [-uniform family over X such that every k-subset
of X contains at least one member of F. Take a 0-1 matrix M = (ma p)
whose rows are labeled by sets A in F, columns by k-element subsets B of
X,and my p=1if and only if A C B.

Let r4 be the number of 1s in the A-th row and ¢ be the number of 1s
in the B-th column. Then, cg > 1 for every B, since B must contain at least
one member of F. On the other hand, r 4 is precisely the number of k-element
subsets B containing a fixed [-element set A; so rq = (Z:f) for every A € F.
By the double counting principle,

]’|-(Z:§>: S ra=Ses > (Z)

AeF B
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rsa=m (/) (/)

where the last equality is another property of binomial coefficients (see Exer-
cise 1.12). O

which yields

Our next application of double counting is from number theory: How many
numbers divide at least one of the first » numbers 1,2,...,n? If t(n) is the
number of divisors of n, then the behavior of this function is rather non-
uniform: ¢(p) = 2 for every prime number, whereas ¢(2™) = m + 1. It is
therefore interesting that the average number
_ t(1)+¢(2)+ - +t(n)

7(n) =

n

of divisors is quite stable: It is about Inn.
Proposition 1.10. |7(n) —Inn| < 1.

Proof. To apply the double counting principle, consider the 0-1 n X n matrix
M = (my;) with m;; = 1 iff j is divisible by i:

123456789101112
1111111111 11
11 1 1 1 1

1
1

1
2
3
4
5 1 1
6
7
8

The number of 1s in the j-th column is exactly the number #(j) of divisors
of j. So, summing over columns we see that the total number of 1s in the
matrix is T, = t(1) + - - - + ¢(n).

On the other hand, the number of 1s in the i-th row is the number of
multipliers ¢, 2¢, 3, . .., ri of ¢ such that ri < n. Hence, we have exactly |n/i]
ones in the -th row. Summing over rows, we obtain that 7,, = > I, |n/i].
Since z — 1 < |z| < x for every real number x, we obtain that

1
H,—-1<7(n)=-T,<H,,
n
where
1
Hn=1+§+§+"'+—:1n”+’7na 0<vy, <1 (1.13)
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is the n-th harmonic number. O

1.5 The averaging principle

Suppose we have a set of m objects, the i-th of which has “size” [;, and we
would like to know if at least one of the objects is large, i.e., has size [; > t
for some given t. In this situation we can try to consider the average size
| = > 1;/m and try to prove that 1 > t. This would immediately yield the
result, because we have the following

Averaging Principle. Every set of numbers must contain a number at least
as large (>) as the average and a number at least as small (<) as the average.

This principle is a prototype of a very powerful technique — the probabilis-
tic method — which we will study in Part 4. The concept is very simple, but
the applications can be surprisingly subtle. We will use this principle quite
often.

To demonstrate the principle, let us prove the following sufficient condition
that a graph is disconnected.

A (connected) component in a graph is a set of its vertices such that there
is a path between any two of them. A graph is connected if it consists of one
component; otherwise it is disconnected.

Proposition 1.11. FEvery graph on n vertices with fewer than n — 1 edges is
disconnected.

Proof. Induction by n. When n = 1, the claim is vacuously satisfied, since
no graph has a negative number of edges.
When n = 2, a graph with less than 1 edge is evidently disconnected.
Suppose now that the result has been established for graphs on n vertices,
and take a graph G = (V, E) on |V| = n+ 1 vertices such that |E| <n — 1.
By Euler’s theorem (Theorem 1.8), the average degree of its vertices is

1 9\E| _ 2n—1)
— dlz) = — < —— < 2.
|V\m€zv @ =97 = i1

By the averaging principle, some vertex z has degree 0 or 1. If d(x) = 0, =
is a component disjoint from the rest of G, so G is disconnected. If d(z) = 1,
suppose the unique neighbor of z is y. Then, the graph H obtained from G
by deleting = and its incident edge has |V| — 1 = n vertices and |E| — 1 <
(n—1) =1 =n — 2 edges; by the induction hypothesis, H is disconnected.
The restoration of an edge joining a vertex y in one component to a vertex x
which is outside of a second component cannot reconnect the graph. Hence,
G is also disconnected. O
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a ra+(1-0b b

Fig. 1.1 A convex function.

‘We mention one important inequality, which is especially useful when deal-
ing with averages.
A real-valued function f(x) is convex if

fa+(1=Mb) < Af(a) + (1= AN)f(b),

for any 0 < X\ < 1. From a geometrical point of view, the convexity of f means
that if we draw a line [ through points (a, f(a)) and (b, f(b)), then the graph
of the curve f(z) must lie below that of I(z) for z € [a,b]. Thus, for a function
f to be convex it is sufficient that its second derivative is nonnegative.

Proposition 1.12 (Jensen’s Inequality). If 0 < A\; <1, >" A\, =1 and f
is convex, then
i=1 i=1

Proof. Easy induction on the number of summands n. For n = 2 this is true,
so assume the inequality holds for the number of summands up to n, and
prove it for n 4 1. For this it is enough to replace the sum of the first two
terms in A\yxy + A2xs + ... + App1Zn41 by the term

A1 A2
A A
(M + 2)<>\1+)\2$1+)\1+>\2$2),

and apply the induction hypothesis. a

If ay,...,a, are non-negative then, taking f(z) = 22 and \; = 1/n, we
obtain a useful inequality (which is also an easy consequence of the Cauchy—

Schwarz inequality):
n n 2
1
2> 2 ) 1.15
BEES (o) (115)

i=1
Jensen’s inequality (1.14) yields the following useful inequality between the
arithmetic and geometric means: for any be non-negative numbers a1, ..., ay,
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n n 1/n
%Z“i - (Hai) , (1.16)
=1 i=1

To show this, apply Jensen’s inequality with f(z) =2%, Ay =...= )\, =1/n
and z; = logy a;, for all: = 1,...,n. Then

n n n n 1/n
1 " ox)/n
- ;ai = ;)\zf(%) > f (; Aixi> = ooy m)in o (}:[1 ai) .

1.6 The inclusion-exclusion principle

The principle of inclusion and exclusion (sieve of Eratosthenes) is a powerful
tool in the theory of enumeration as well as in number theory. This principle
relates the cardinality of the union of certain sets to the cardinalities of
intersections of some of them, these latter cardinalities often being easier to
handle.

For any two sets A and B we have

|AUB| =|A|+|B| - |ANB|.

In general, given n subsets Aq,..., A, of a set X, we want to calculate the
number |4; U --- U A,| of points in their union. As the first approximation
of this number we can take the sum

|Ay] + -+ |An). (1.17)

However, in general, this number is too large since if, say, A; N A; # () then
each point of A; N A; is counted two times in (1.17): once in |A4;| and once in
|A;]. We can try to correct the situation by subtracting from (1.17) the sum

> lAin A4yl (1.18)

1<i<j<n

But then we get a number which is too small since each of the points in
A;NA;N A # 0 is counted three times in (1.18): once in |A; N A;|, once in
|A; N Agl, and once in |4; N Ag|. We can therefore try to correct the situation
by adding the sum
> AN AN Ay,
1<i<j<k<n
but again we will get a too large number, etc. Nevertheless, it turns out

that after n steps we will get the correct result. This result is known as the
inclusion-exclusion principle. The following notation will be handy: if [ is a
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subset of the index set {1,...,n}, we set
A=) 4,
icl

with the convention that Ay = X.

Proposition 1.13 (Inclusion-Exclusion Principle). Let A4, ..., A, be subsets
of X. Then the number of elements of X which lie in none of the subsets A;

) > =nMA. (1.19)

IC{1L,0m}

Proof. The sum is a linear combination of cardinalities of sets A; with coef-
ficients +1 and —1. We can re-write this sum as

SEDNA = S =3 3 (i

1 I z€A; z L:x€Ag

We calculate, for each point of X, its contribution to the sum, that is, the
sum of the coefficients of the sets Ay which contain it.

First suppose that z € X lies in none of the sets A;. Then the only term
in the sum to which x contributes is that with I = @; and this contribution
is 1.

Otherwise, the set J := {i : « € A;} is non-empty; and x € A; precisely
when I C J. Thus, the contribution of z is

I

D (=3 (lﬂ)(—l)i =(1-n"=0

IcJ i=0

by the binomial theorem.

Thus, points lying in no set A; contribute 1 to the sum, while points in
some A; contribute 0; so the overall sum is the number of points lying in
none of the sets, as claimed. a

For some applications the following form of the inclusion-exclusion princi-
ple is more convenient.

Proposition 1.14. Let Ay,..., A, be a sequence of (not necessarily distinct)
sets. Then
AU UA = Y (=) A (1.20)
PAIC{L,...,n}

Proof. The left-hand of (1.20) is |Ag| minus the number of elements of X =
Ay which lie in none of the subsets A;. By Proposition 1.13 this number is

Aol = > =0MA = Y ()AL,

IC{1,....n} 0#IC{1,...,n}
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as desired. O

Suppose we would like to know, given a set of indices I, how many elements
belong to all the sets A; with ¢ € I and do not belong to any of the remaining
sets. Proposition 1.13 (which corresponds to the case when I = ) can be
generalized for this situation.

Proposition 1.15. Let Ay, ..., A, be sets, and I a subset of the index set
{1,...,n}. Then the number of elements which belong to A; for alli € I and
for no other values is
S (=14, (1.21)
J2I
Proof. Consider the set X := ﬂiel A; and its subsets By := X N Ay, for
all k € N\ I, where N := {1,...,n}. The proposition asks us to calculate
the number of elements of X lying in none of By. By Proposition 1.13, this
number is

S )R OBl = S o0 a4

KCN\I kEK KCN\I ieKUl
=Y (-n"Mlla,). o
J2I

What is the probability that if n people randomly search a dark closet to
retrieve their hats, no person will pick his own hat? Using the principle of
inclusion and exclusion it can be shown that this probability is very close to
e ! =0.3678....

This question can be formalized as follows. A permutation is a bijective
mapping f of the set {1,...,n} into itself. We say that f fizes a point i if
f(i) =1i. A derangement is a permutation which fixes none of the points. We
have exactly n! permutations. How many of them are derangements?

Proposition 1.16. The number of derangements of {1,...,n} is equal to
—1)¢ — )\ =n! ~ 1.22
> (-1 () =it=n > (1:22)

The sum Y ., (_i})z is the initial part of the Taylor expansion of e™'; so
about an e~! fraction of all permutations are derangements.

Proof. We are going to apply the inclusion-exclusion formula (1.19). Let X
be the set of all permutations, and A; the set of permutations fixing the point
i; s0 |A;| = (n—1)!, and more generally, |A;| = (n — |I|)!, since permutations
in Ay fix every point in I and permute the remaining points arbitrarily. A
permutation is a derangement if and only if it lies in none of the sets A;; so
by (1.19), the number of derangements is
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S Enfm -y = (=) (?) (n —)!

IC{1,...,n} i=0

putting i = |I|. O

Exercises

1.1. In how many ways can we distribute k balls to n boxes so that each box
has at most one ball?

1.2. Show that for every k the product of any k consecutive natural numbers
is divisible by k!. Hint: Consider ("Zk)

1.3. Show that the number of pairs (4, B) of distinct subsets of {1,...,n}
with A C B is 3" —2". Hint: Use the binomial theorem to evaluate »,'_, (:) (2F-1).

1.4. Show that
ny _n n—1
k) k\k—-1)"

Hint: Count in two ways the number of pairs (x, M), where M is a k-element subset
of {1,...,n} and z € M.

1.5. Prove that .
Son(y) =t
k=1

Hint: Count in two ways the number of pairs (z, M) with z € M C {1,...,n}.

1.6. There is a set of 2n people: n male and n female. A good party is a set
with the same number of male and female. How many possibilities are there
to build such a good party?

1.7. Use Proposition 1.3 to show that
XT: (n—i—i—l) _ (n—l—r)
: i o r '
1=0
1.8. Let 0 < a < m < n be integers. Use Proposition 1.3 to show that

> (-0 - ()

i=m

1.9. Prove the Cauchy—Vandermonde identity:

(e)-20)6")
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Hint: Take a set of p + ¢ people (p male and ¢ female) and make a set of k people (with
¢ male and k — ¢ female).

1.10. Show that

Hint: Exercise 1.9 and Eq. (1.1).

1.11. Prove the following analogy of the binomial theorem for factorials:

(+y)n = i (Z) @)k (Y)n—k -

k=0
Hint: Divide both sides by n!, and use the Cauchy—Vandermonde identity.

1.12. Let 0 <[ < k < n. Show that

n\ (k\ _(n\(n-I
EJ\1) \i)J\k-1)"
Hint: Count in two ways the number of all pairs (L, K) of subsets of {1,...,n} such that

LCK,|Ll=1and |[K|= k.

1.13. Use combinatorics (not algebra) to prove that, for 0 < k < n,

(g) - (§>+k(n—k)+(n;k>.

Hint: (g) is the number of edges in a complete graph on n vertices.

1.14. One of Euclid’s theorems says that, if a prime number divides a product
a - b of two integers, then p must divide at least one of these integers. Use
this to show that:

(i) If 1 < k < p, then (i) = 0 mod p.

(ii) If 1 < k < n < p, then (Z) % 0 mod p.

Hint: (i) Let z =n(n—1)---(n — k + 1). Note that z = a- b with a = (:) and b=kl

1.15. Prove Fermat’s Little theorem: if p is a prime and if ¢ is a natural
number, then a? = a mod p. In particular, if p does not divide a, then a?~! =

1 mod p. Hint: Apply the induction on a. For the induction step, use the binomial
theorem to show that (a + 1) = a? + 1 mod p.

1.16. Let 0 < a < 1 be a real number, and an be an integer. Using Stirling’s
formula show that

)

<n> _lhol) em

an 2na(l — a)n
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where H(a) = —alogy o — (1 — ) logy(1 — @) is the binary entropy function.
Hint: H(a) = log, h(a), where h(a) = o~ (1 — a) A7),

1.17. Prove that, for s < n/2,

o 2= () (=)

DS (7) <zmmem.

k=0

Hint: To (1): observe that (kﬁl)/(:) = k/(n—k+1) does not exceed o := s/(n—s+1),
and use the identity Z;o at=1/(1-a).
To (2): set p = s/n and apply the binomial theorem to show that

PA-p)" Y (Z) <1.

k=0

See also Corollary 22.9 for another proof.

1.18. Prove the following estimates: If k < k+ z <n and y < k < n, then

() =< ()0 = () e
E)=Goni <)

1.19. Prove that if 1 < k <n/2, then

n ne\ 1 2
>~ (1€ h - —k*/n—1/(6k) 1.24
(k)_v <k>  Where y = —2=c (1.24)

and

Hint: Use Stirling’s formula to show that

e " 1/2
(1) 2 o (1) G20 (wm)

and apply the estimate In(1 4 t) > t — t2/2 valid for all t > 0.

1.20. In how many ways can we choose a subset S C {1,2,...,n} such that
|S| = k and no two elements of S precede each other, i.e., z # y + 1 for all
x,y € S? Hint: If S = {a1,...,ax} is such a subset with a1 < az < ... < ay, then
a1 <ax—1<...<ap—(k—1).

1.21. Let k£ > 2n. In how many ways can we distribute k sweets to n children,
if each child is supposed to get at least 2 of them?
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1.22. Let F = {A;,..., A} be a family of subsets of a finite set X. For
x € X, let d(z) be the number of members of F containing z. Show that

S AN Ayl =3 o x d(@)?.

1.23. Bell’s number B, is the number of all possible partitions of an n-
element set X (we assume that By = 1). Prove that B,11 = Y ., (?) B;.
Hint: For every subset A C X there are precisely Bjx\4| partitions of X containing A
as one of its blocks.

1.24. Let |N| = n and | X| = 2. Show that there are 2™ mappings from N to
X, and that S(n, k)x(x —1) - (x — k+ 1) of these mappings have a range of
cardinality k; here S(n,k) is the Stirling number (the number of partitions
of an n-element set into exactly k blocks). Hint: We have z(z — 1) --- (z — k + 1)
possibilities to choose a sequence of k elements in X, and we can specify S(n, k) ways
in which elements of N are mapped onto these chosen elements.

1.25. Let F be a family of subsets of an n-element set X with the property
that any two members of F meet, i.e., AN B # () for all A, B € F. Suppose
also that no other subset of X meets all of the members of F. Prove that
|F| = 27~!. Hint: Consider sets and their complements.

1.26. Let F be a family of k-element subsets of an n-element set X such that
every [-element subset of X is contained in at least one member of F. Show
that |F| > (7)/(’;) Hint: Argue as in the proof of Proposition 1.9.

1.27. (Sperner 1928). Let F be a family of k-element subsets of {1,...,n}. Its
shadow is the family of all those (k—1)-element subsets which lie entirely in at
least one member of F. Show that the shadow contains at least k|F|/(n—k+1)
sets. Hint: Argue as in the proof of Proposition 1.9.

1.28. (Counting in bipartite graphs). Let G = (A U B, E) be a bipartite
graph, d be a minimum degree of a vertex in A and D the maximum degree
of a vertex in B. Assume that |A|d > |B|D. Show that then, for every subset
Ay C A of density a := |Ap|/|A], there is a subset By C B such that: (i)
|Bo| > «|B|/2, (ii) every vertex of By has at least aD/2 neighbors in Ay,
and (iii) at least half of the edges leaving Ag go to By. Hint: Let Bo consist of
all vertices in B having > aD/2 neighbors in Ap.

1.29. Let ag,...,a, be nonnegative numbers. Define

Use Jensen’s inequality to show that s < ¢ implies f(s) < f(t).

1.30. (Quine 1988). The famous Fermat’s Last Theorem states that if n > 2,
then 2" 4+ y™ = 2™ has no solutions in nonzero integers x,y and z. This
theorem can be stated in terms of sorting objects into a row of bins, some of
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which are red, some blue, and the rest unpainted. The theorem amounts to
saying that when there are more than two objects, the following statement
is never true: The number of ways of sorting them that shun both colors is
equal to the number of ways that shun neither. Show that this statement is
equivalent to Fermat’s equation z™ + y™ = 2". Hint: Let n be the number of
objects, z the number of bins,  the number of bins that are not red and y the number
of bins that are not blue. There are 2™ ways of sorting the objects into bins; ™ of these
ways shun red and y" of them shun blue.

1.31. Use the principle of inclusion and exclusion to determine the number
of ways in which three women and their three spouses may be seated around
a round table under each of the following two restrictions:

(i) no woman sits beside her spouse (on either side);
(ii) no two women may sit opposite one another at the table (i.e., with two
people between them on either side).

Hint: To (i): two seatings are equivalent if one can be rotated into the other; so the
underlying set consists of all circular permutations, 5! in number. Let A; (i = 1,2, 3)
be the subset of permutations in which the members of the i-th couple sit side by side.
Show that |A;] = 2-4!, |A; N Aj| = 223!, |A1 N A2 N Ag| = 22 - 2! and apply the
inclusion-exclusion formula. To (ii): distinguish two cases, according to whether there
exist two women sitting side by side or not.

1.32. Let m > n. A function f: [m] — [n] is a surjection (or a mapping of
[m] onto [n]) if f maps at least one element of [m] to each element of [n].
Prove that the number of such functions is 37— (—1)* (%) (n — k)™. Hint: Let
A; ={f : f(j) # i for all j} and apply the inclusion-exclusion formula.

1.33. Let n and k£ > [ be positive integers. How many different integer solu-
tions are there to the equation x1 + o + -+ + z, = k, with all 0 < x; < I?
Hint: Consider the universum X = X, ; of all solutions with all z; > 0, let A; be the set
of all solutions with x; > [, and apply the inclusion-exclusion formula (1.19). Observe
that |A;| = | Xy, k—i1], where the size of X, , is given by Proposition 1.5.

1.34. Let » > 5. How many ways are there to color the vertices with r colors
in the following graphs such that adjacent vertices get different colors?

N T

Hint: For the first graph, the universe X is the set of all r* ways to color the vertices.
Associate with each edge e the set A, of all colorings, which assign the same color to its
ends, and apply the inclusion-exclusion formula (1.19).

1.35. Say that a permutation 7 on [2n] has property P if for some i € [2n],
|7(i) — (i + 1)| = n, where i 4+ 1 is taken modulo 2. Show that, for each n,
there are more permutations with property P than without it. Hint: Consider
thesets A; = {m : |7(¢)—7(i+1)] = n}. Show that |A;| = 2n(2n—2)! and A;NA;+1 = 0.
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1.36. Prove that for any two sets I C J,

>, D —{o, i1

ICKCJ
1.37. Prove the following Bonferroni inequalities for each even k > 2:

k k+1

SN A <Al <D (=D YA
=1 v=1

v=1 [I|=v | I|=v
where A7 :=(),c; Ai. What about an odd k?

1.38. Let M be an n x n boolean matrix (with entries 0 and 1). A covering
of M is a set Ry,..., R; of rank-1 boolean matrices such that every 1-entry
of M is a l-entry in at least one of these matrices, and every 0O-entry of
M is a O-entry in all these matrices. That is, M must be an entry-wise Or
M = \/::1 R; of the R;’s. Let t(A) be the smallest number of the R;’s in
such a covering of M. For a boolean matrix B < M (again, inequality is
entry-wise), let wys(B) denote the largest possible number of 1-entries in B
that can be covered by some all-1 submatrix R of M. (Note that R need not
be a submatriz of B.) Set

_ |B|
p(M) = max v (D)

where |B| is the number of 1s in B. Prove that
p(M) < t(M) < p(M) -In|M|+1.

Hint: For the upper bound, consider a greedy covering Ri, ..., Rt of M by all-1 subma-
trices: in the i-th step choose an all-1 submatrix R; < M covering the largest number of
all yet uncovered 1s in M. Let B; < M be the submatrix containing all 1-entries of M
that are left uncovered after the i-th step. Observe that |B;|/wa(B;) < u(A) for all 4.

1.39. For a boolean matrix M and an integer k > 1, let t;(M) denote the
smallest number ¢ of rank-1 boolean matrices Ry, ..., R; in a covering of M
with a restriction that 22:1 R; < kJ, where J is an all-1 matrix. That is, we
now require that no l-entry of M is covered more than k times. Prove that

then .
> C) > rk(M).

i=1

Hint: For a subset I C {1,...,t}, let Ry be a (0, 1) matrix with R;[z,y] = 1 iff Ri[z,y] =
1 for all « € I. Use the inclusion-exclusion principle to write M as

M= Z(—l)”'*lRI.
I=
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1.40. The determinant det(A) of an n x n matrix A = (a;;) is a sum of n!
signed products tai4, a2, - - - ani, , where (i1,42,...,4,) is a permutation of
(1,2,...,n), the sign being +1 or —1, according to whether the number of
inversions of (i1,142,...,1,) is even or odd. An inversion occurs when i, > i
but r < s. Prove the following: let A be a matrix of even order n with Os on
the diagonal and arbitrary entries from {+1, —1} elsewhere. Then det(A) # 0.
Hint: Observe that for such matrices, det(A) is congruent modulo 2 to the number of
derangements on n points, and show that for even n, the sum (1.22) is odd.



2. Advanced Counting

When properly applied, the (double) counting argument can lead to more
subtle results than those discussed in the previous chapter.

2.1 Bounds on intersection size

How many r-element subsets of an n-element set can we choose under the
restriction that no two of them share more than k elements? Intuitively, the
smaller k is, the fewer sets we can choose. This intuition can be made precise
as follows. (We address the optimality of this bound in Exercise 2.5.)

Lemma 2.1 (Corradi 1969). Let Ay, ..., An be r-element sets and X be their
union. If |A; N A;| <k for all i # j, then

2
X|>—— N
.

m. (2.1)

Proof. Just count. By (1.11), we have for each i =1,..., N,
N
D d@) =) JAin A=A+ ) JAnA<r+(N-1Dk.  (22)
TEA; j=1 B
Summing over all sets A; and using Jensen’s inequality (1.15) we get

Y ) = Y > %(Z d@))Q _ %(;M)Q _ @y

i=1 x€A; rzeX zeX

Using (2.2) we obtain (N7)? < N-|X| (r 4+ (N — 1)k), which gives the desired
lower bound on | X|. O

S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. 23
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Given a family of sets A1, ..., Ay, their average size is

1 N
LYl
=1

The following lemma says that, if the average size of sets is large, then some
two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let Ay, ..., Ay be subsets of
X of average size at least njw. If N > 2w?, then there exist i # j such that

n

Proof. Again, let us just count. On the one hand, using Jensen’s inequality
(1.15) and equality (1.10), we obtain that

S dwpz (S aw) - %(ifu) >

zeX reX i=1

On the other hand, assuming that (2.3) is false and using (1.11) and (1.12)
we would obtain

N N
Zd(l‘)z :ZZ‘AZHA” :Z‘Al|+Z‘AlﬂA]‘

zeX i=1 j=1 i i#j
nN(N —1) nN? < 20?1 ) nN?

N = _ =
< it 2uw? 2?2

)

‘N N w2

a contradiction. O

Lemma 2.2 is a very special (but still illustrative) case of the following
more general result.

Lemma 2.3 (Erdds 1964b). Let X be a set of n elements x1,...,x,, and let
Ay,...,Ax be N subsets of X of average size at least n/w. If N > 2kw*,
then there exist A;,, ..., A;, such that |A;, N---N A, | > n/(2wF).

The proof is a generalization of the one above and we leave it as an exercise
(see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a
subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.)
A typical question in graph theory is the following one:
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How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n, H) of edges in a
H-free graph on n vertices. The graph H itself is then called a “forbidden

subgraph.”
Let us consider the case when forbidden subgraphs are cycles. Recall that
a cycle Cy of length k (or a k-cycle) is a sequence vg,v1,...,vr such that

vk = vo and each subsequent pair v; and v;41 is joined by an edge.

If H = C3, a triangle, then ex(n,C3) > n?/4 for every even n > 2: a
complete bipartite » x r graph K, , with » = n/2 has no triangles but has
r? = n?/4 edges. We will show later that this is already optimal: any n-vertex
graph with more than n?/4 edges must contain a triangle (see Theorem 4.7).

Interestingly, ex(n, Cy) is much smaller, smaller than n3/2.

Theorem 2.4 (Reiman 1958). If G = (V, E) on n vertices has no 4-cycles,
then n
|E| < Z(l +V4n —3).

Proof. Let G = (V, E) be a Cy-free graph with vertex-set V.= {1,...,n}, and
dy,da,...,d, be the degrees of its vertices. We now count in two ways the
number of elements in the following set S. The set S consists of all (ordered)
pairs (u, {v,w}) such that v # w and w is adjacent to both v and w in G.
That is, we count all occurrences of “cherries”

v
> u

w
in G. For each vertex u, we have (d2“) possibilities to choose a 2-element
subset of its d, neighbors. Thus, summing over u, we find |S| = >_" (d“).

u=1\2
On the other hand, the Cy-freeness of G implies that no pair of vertices v # w

can have more than one common neighbor. Thus, summing over all pairs we
obtain that |S| < (3). Altogether this gives

> (%)= (5)

idfgn(n—l)ﬁ-idi. (2.4)
i=1 i=1

or

Now, we use the Cauchy—Schwarz inequality
n 2 n n
(Tra) < (X)(X#)
i=1 i=1 i=1

with z; = d; and y; = 1, and obtain
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n 2 n
(Zdi) <n) d;
i=1 i=1
and hence by (2.4)
(idl) < n? (n—1) —|—nZd.
=1

Euler’s theorem gives Y. | d; = 2|E|. Invoking this fact, we obtain

4|E)? <n*(n—1) + 2n|E|

or 2 )
n n“(n—1
E?-Z|E| - ———= <0.
B2 - 215 - T <
Solving the corresponding quadratic equation yields the desired upper bound
on |E|. O

Ezample 2.5 (Construction of dense Cy-free graphs). The following construc-
tion shows that the bound of Theorem 2.4 is optimal up to a constant factor.

Let p be a prime number and take V = (Z, \ {0}) X Z,, that is, vertices
are pairs (a,b) of elements of a finite field with a # 0. We define a graph G
on these vertices, where (a,b) and (c,d) are joined by an edge iff ac = b+ d
(all operations modulo p). For each vertex (a,b), there are p — 1 solutions of
the equation ax = b+y: pick any x € Z, \ {0}, and y is uniquely determined.
Thus, G is a (p — 1)-regular graph on n = p(p — 1) vertices (some edges are
loops). The number of edges in it is n(p — 1)/2 = 2(n>/?).

To verify that the graph is Cy-free, take any two its vertices (a,b) and
(¢,d). The unique solution (z,y) of the system

ar=b+y
cc=d+y

- r=(b—d)(a—c)!
is given by 2 —a(a+c)—b—d
which is only defined when a # ¢, and has x # 0 only when b # d. Hence, if
a # c and b # d, then the vertices (a, b) and (¢, d) have precisely one common
neighbor, and have no common neighbors at all, if a = c or b = d.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with
all the edges incident to them (see Fig. 2.1).

Theorem 2.4 says that a graph cannot have many edges, unless it contains
C4 as a (not necessarily induced) subgraph. But what about graphs that
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- ISR

G

Fig. 2.1 Graph G contains several copies of C4 as a subgraph, but none of them as an
induced subgraph.

do not contain Cy as an induced subgraph? Let us call such graphs weakly
Cy-free.

Note that such graphs can already have many more edges. In particular,
the complete graph K, is weakly Cy-free: in any 4-cycle there are edges in K,,
between non-neighboring vertices of Cy. Interestingly, any(!) dense enough
weakly Cy-free graph must contain large complete subgraphs.

Let w(G) denote the maximum number of vertices in a complete subgraph
of G. In particular, w(G) < 3 for every Cy-free graph. In contrast, for weakly
Cy-free graphs we have the following result, due to Gyarfas, Hubenko and
Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V, E) is weakly Cy-free, then

|E[”

The proof of Theorem 2.6 is based on a simple fact, relating the average
degree with the minimum degree, as well as on two facts concerning indepen-
dent sets in weakly Cy-free graphs.

For a graph G = (V, E), let e(G) = |E| denote the number of its edges,
dmin(G) the smallest degree of its vertices, and dave(G) = 2e(G)/|V]| the
average degree. Note that, by Euler’s theorem, day.(G) is indeed the sum of
all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

dave (H) Z dave (G) and dmin(H) Z dave(G) .

1
2
Proof. We remove vertices one-by-one. To avoid the danger of ending up with
the empty graph, let us remove a vertex v € V if this does not decrease the
average degree d,yve(G). Thus, we should have

2(e(G) — d(v)) _
|V|—_1 > dave(G) =

2e(@G)
Vi

dave (G —v) =

which is equivalent to d(v) < dave(G)/2. So, when we stick, each vertex in
the resulting graph H has minimum degree at least day.(G)/2. O
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(0)
Fig. 2.2 (a) If v and v were non-adjacent, we would have an induced 4-cycle

{zi,2;,u,v}. (b) If y and z were non-adjacent, then (S \ {z:}) U {y, 2} would be a
larger independent set.

Recall that a set of vertices in a graph is independent if no two of its
vertices are adjacent. Let a(G) denote the largest number of vertices in such
a set.

Proposition 2.8. For every weakly Cy-free graph G on n vertices, we have

n
w(G) = (a(G)+1)'

2
Proof. Fix an independent set S = {z1,...,2} with a = a(G). Let A; be
the set of neighbors of z; in G, and B; the set of vertices whose only neighbor
in S is x;. Consider the family F consisting of all o sets {;} U B; and ($)
sets A; N A;. We claim that:

(i)  each member of F forms a clique in G, and
(ii)  the members of F cover all vertices of G.

The sets A; N A; are cliques because G is weakly Cy-free: Any two vertices
u# v € A;NA; must be joined by an edge, for otherwise {x;, ;, u, v} would
form a copy of Cy as an induced subgraph. The sets {z;} U B; are cliques
because S is a maximal independent set: Otherwise we could replace z; in
S by any two vertices from B;. By the same reason (S being a mazimal
independent set), the members of F must cover all vertices of G: If some
vertex v were not covered, then S U {v} would be a larger independent set.
Claims (i) and (ii), together with the averaging principle, imply that
n n n

e e AN GOk -

Proposition 2.9. Let G be a weakly Cy-free graph on n wvertices, and d =
dmin(G). Then, for every t < a(G),
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Proof. Take an independent set S = {x1,..., 2} of size t and let A; be the
set of neighbors of x; in G. Let m be the maximum of |4; N A;| over all
1 <i < j <t We already know that each A; N A; must form a clique; hence,
w(G@) > m. On the other hand, by the Bonferroni inequality (Exercise 1.37)
we have that

t

t
TLZ UAZ th—Z‘AlmAJ‘ ztd— <2>m,
=1 1<J
from which the desired lower bound on w(G) follows. O

Now we are able to prove Theorem 2.6.

Proof of Theorem 2.6. Let a be the average degree of G; hence, a = 2|E|/n.
By Proposition 2.7, we know that G has an induced subgraph of average
degree > a and minimum degree > a/2. So, we may assume w.l.o.g. that the
graph G itself has these two properties. We now consider the two possible
cases.

If «(G) > 4n/a, then we apply Proposition 2.9 with* ¢ = 4n/a and obtain

(a/2)-t—n n
w(G) > =T
(2) ("5
If o(G) < 4n/a, then we apply Proposition 2.8 and obtain

n n
() (T

w(G) >

In both cases we obtain

2 2

% >o1t 0
(natl)y T 8n+2a T T n

w(G) >

2.4 Zarankiewicz’s problem

At most how many 1s can an n x n 0-1 matrix contain if it has no a x b
submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem
of the estimation of this number for a = b = 3 and n = 4,5, 6 and the general
problem became known as Zarankiewicz’s problem.

It is worth reformulating this problem in terms of bipartite graphs. A bi-
partite graph with parts of size n is a triple G = (V4,Va, E), where V7 and
V5 are disjoint n-element sets of vertices (or nodes), and E C Vi x V, is the
set of edges. We say that the graph contains an a x b clique if there exist an

For simplicity, we ignore ceilings and floors.
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a-element subset A C Vi and a b-element subset B C V5 such that Ax B C E.
(Note that an a x b clique is not the same as a b X a clique, unless a = b.)
Let kq(n) be the minimal integer k such that any bipartite graph with
parts of size n and more than k& edges contains at least one a X a clique.
Using the probabilistic argument, it can be shown (see Exercise 20.6) that

ka(n) > ¢-n?72/9,

where ¢ > 0 is a constant, depending only on a. It turns out that this bound
is not very far from the best possible, and this can be proved using the double
counting argument. The result is essentially due to Kévari, Sés and Turan
(1954). For a = 2, a lower bound k2(n) < 3n%/? was proved by Erdés (1938).
He used this to prove that, if a set A C [n] is such that the products of any
two of its different members are different, then |A| < 7(n) + O(n3/*), where
m(n) is the number of primes not exceeding n.

Theorem 2.10. For all natural numbers n > a > 2 we have
ka(n) < (a—1)Y*n271% 4 (a — 1)n.

Proof. The proof is a direct generalization of a double counting argument
we used in the proof of Theorem 2.4. Our goal is to prove the following: let
G = (V1, Vo, E) be a bipartite graph with parts of size n, and suppose that
G does not contain an a x a clique; then |E| < (a — 1)/%n>=1/% 4 (a — 1)n.

By a star in the graph G we will mean a set of any a of its edges incident
with one vertex = € Vi, i.e., a set of the form

S(z,B) :=={(z,y) € E : y € B},

where B C V;, |B| = a. Let A be the total number of such stars in G. We
may count the stars S(z, B) in two ways, by fixing either the vertex x or the
subset B.

For a fixed subset B C V,, with |B| = a, we can have at most a — 1 stars
of the form S(x, B), because otherwise we would have an a x a clique in G.
Thus,

A<(a—1)- (”) (2.5)

a

On the other hand, for a fixed vertex z € V7, we can form (d(az)) stars S(z, B),
where d(z) is the degree of vertex x in G (i.e., the number of vertices adjacent

to ). Therefore,
> (") <@-v-(2). (2.

zeVy
We are going to estimate the left-hand side from below using Jensen’s inequal-
ity. Unfortunately, the function (£) = a(z — 1)+ (z — a + 1)/a! is convex
only for z > a — 1. But we can set f(z) := (¢) if # > a—1, and f(z) :=0
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otherwise. Then Jensen’s inequality (1.14) (with A, = 1/n for all z € V;)
yields

> (") 2 S std@) = w1 dwyn) =n-siE ).

zeWV; zeWV; zeVy

If |E|/n < a —1, there is nothing to prove. So, we can suppose that |E|/n >
a — 1. Then we have that

n.CEyf):n,ﬂmvm<:§:(%?)<(a—UCD.

zeVy

Expressing the binomial coefficients as quotients of factorials, this inequality

implies
n(lE|/n—(a—1))" < (a—1)n"

and therefore |E|/n < (a —1)Y*n'=/ 4 g — 1, from which the desired upper
bound on |E| follows. O

The theorem above says that any bipartite graph with many edges has
large cliques. In order to destroy such cliques we can try to remove some of
their vertices. We would like to remove as few vertices as possible. Just how
few says the following result.

Theorem 2.11 (Ossowski 1993). Let G = (V1,Va2, E) be a bipartite graph
with no isolated vertices, |E| < (k + 1)r edges and d(y) < r for all y € V.
Then we can delete at most k vertices from V1 so that the resulting graph has
no (r—a+1) x a clique fora=1,2,...,r.

For a vertex z, let N(x) denote the set of its neighbors in G, that is, the
set of all vertices adjacent to x; hence, |N(z)| is the degree d(z) of x. We will
use the following lemma relating the degree to the total number of vertices.

Lemma 2.12. Let (X,Y, E) be a bipartite graph with no isolated vertices,
and f 1Y — [0,00) be a function. If the inequality d(y) < d(z) - f(y) holds
for each edge (z,y) € E, then | X[ <3 oy f(y).

Proof. By double counting,

SEDID I EDD d(—%’

z€EX yeN () z€X yeN (z) y
Iy Yy
PP RO TRUUEP WU
L () d(y)
= ) yey yey

Proof of Theorem 2.11. (Due to F. Galvin 1997). For a set of vertices Y C V3,
let N(Y) :=(1,cy IN(y) denote the set of all its common neighbors in G, that
is, the set of all those vertices in Vi which are joined to each vertex of Y
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hence |[N(Y)| < r for all Y C V5. Let X C V; be a minimal set with the
property that |[N(Y)\ X| < r — |Y| whenever Y C V5 and 1 < |Y| < r. Put
otherwise, X is a minimal set of vertices in V7, the removal of which leads to
a graph without (r —a 4+ 1) x a cliques, for alla =1,...,7.

Our goal is to show that | X| < k.

Note that, for each x € X we can choose Y, C V5 so that 1 < |Y,| < r,
x € N(Y;) and

IN(Y)\ X| =7 — Y, :

otherwise X could be replaced by X \ {«}, contradicting the minimality of
X. We will apply Lemma 2.12 to the bipartite graph G’ = (X, Va, F'), where

F={(z,y) : yeY,}.

All we have to do is to show that the hypothesis of the lemma is satisfied by
the function (here N(y) is the set of neighbors of y in the original graph G):

= Y0

)

because then

X < Zf(y)Z%Z Nl = E i

o
yeVz yeVs
Consider an edge (z,y) € F; we have to show that d(y) < d(z) - f(y), where
d(z) =Yz andd(y) ={z € X : ye Yy}

are the degrees of z and y in the graph G’ = (X, Va4, F). Now, y € Y, implies
N(Y.) C N(y), which in its turn implies

INW\ X| = [N(Ya) \ X| =7 —[Yal;

hence
d(y) < [N(y) N X[ = [N(y)| - [N(y) \ X|
<IN =7+ Yol =7 f(y) —r +d(2),
and so
d(z) - f(y) —d(y) = d(z) - f(y) —r fly) +r—d(x)
=(r—d(=)-(1-f(y)=0. D
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2.5 Density of 0-1 matrices

Let H be an m x n 0-1 matrix. We say that H is a-dense if at least an a-
fraction of all its mn entries are 1s. Similarly, a row (or column) is a-dense
if at least an a-fraction of all its entries are 1s.

The next result says that any dense 0-1 matrix must either have one “very
dense” row or there must be many rows which are still “dense enough.”

Lemma 2.13 (Grigni and Sipser 1995). If H is 2a-dense then either
(a) there exists a row which is \/a-dense, or
(b) at least \/a.- m of the rows are a-dense.

Note that /« is larger than o when « < 1.

Proof. Suppose that the two cases do not hold. We calculate the density of
the entire matrix. Since (b) does not hold, less than \/a - m of the rows are
a-dense. Since (a) does not hold, each of these rows has less than /o - n 1s;
hence, the fraction of 1s in a-dense rows is strictly less than (v/&)(v/a) = a.
We have at most m rows which are not a-dense, and each of them has less
than an ones. Hence, the fraction of 1s in these rows is also less than a.
Thus, the total fraction of 1s in the matrix is less than 2a, contradicting the
2a-density of H. O

Now consider a slightly different question: if H is a-dense, how many of its
rows or columns are “dense enough”? The answer is given by the following
general estimate due to Johan Hastad. This result appeared in the paper
of Karchmer and Wigderson (1990) and was used to prove that the graph
connectivity problem cannot be solved by monotone circuits of logarithmic
depth.

Suppose that our universe is a Cartesian product A = A; x --- x Ay of
some finite sets A1, ..., Ag. Hence, elements of A are strings a = (a1, ..., ax)
with a; € A;. Fix now a subset of strings H C A and a point b € A;. The
degree of b in H is the number dy(b) = [{a € H : a; = b}| of strings in H
whose i-th coordinate is b.

Say that a point b € A; from the i-th set is popular in H if its degree dy (b)
is at least a 1/2k fraction of the average degree of an element in A;, that is,
if

1 |H|
dp(b) > 2% | A
Let P; C A; be the set of all popular points in the i-th set A;, and consider
the Cartesian product of these sets:

P=P  xPyx---xP.

Lemma 2.14 (Hastad). [P| > $|H].
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Proof. 1t is enough to show that |H \ P| < 1|H|. For every non-popular point
b € A;, we have that

1 |H|

2k |A;|

Ha€e H : a;=b}| < =

Since the number of non-popular points in each set A; does not exceed the
total number of points |A;|, we obtain

1

k
[H\P| <) > HacH: az—b}|<zz k

i=1 bg P i=1 bgP;

P 1
i=1

Corollary 2.15. In any 2a-dense 0-1 matriz H either a \/a-fraction of its
rows or a v/a-fraction of its columns (or both) are (a/2)-dense.

Proof. Let H be an m xn matrix. We can view H as a subset of the Cartesian
product [m] x [n], where (i,7) € H iff the entry in the i-th row and j-th
column is 1. We are going to apply Lemma 2.14 with £ = 2. We know that
|H| > 2amn. So, if Py is the set of all rows with at least 1|H|/|Ai| = an/2
ones, and P, is the set of all columns with at least 1|H|/|A2| = am/2 ones,
then Lemma 2.14 implies that

[P || 1\H| 1 2amn
m n 2m *2 mn

Hence, either |Pi|/m or |Ps|/n must be at least v/, as claimed. O

2.6 The Lovasz—Stein theorem

This theorem was used by Stein (1974) and Lovasz (1975) in studying some
combinatorial covering problems. The advantage of this result is that it can
be used to get existence results for some combinatorial problems using con-
structive methods rather than probabilistic methods.

Given a family F of subsets of some finite set X, its cover number of F,
Cov (F), is the minimum number of members of F whose union covers all
points (elements) of X.

Theorem 2.16. If each member of F has at most a elements, and each point
x € X belongs to at least v of the sets in F, then

Cov (F) < ?(1 +1na).
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Proof. Let N = |X|, M = |F| and consider the N x M 0-1 matrix A = (az),
where a, ; = 1 iff x € X belongs to the i-th member of 7. By our assumption,
each row of A has at least v ones and each column at most a ones. By double
counting, we have that Nv > Ma, or equivalently,

M N
— < —. (2.7)
v a

Our goal is to show that then A must contain an N x K submatrix C with

no all-0 rows and such that
K <N/a+ (M/v)lna < (M/v)(1+1Ina).

We describe a constructive procedure for producing the desired submatrix C'.
Let A, = A and define A/, to be any maximal set of columns from A, whose
supports’ are pairwise disjoint and whose columns each have a ones. Let
K, = |AL|. Discard from A, the columns of A/, and any row with a one in A/,.
We are left with a k, x (M — K,) matrix A,_1, where k, = N —aK,. Clearly,
the columns of A,_; have at most a— 1 ones (indeed, otherwise such a column
could be added to the previously discarded set, contradicting its maximality).
We continue by doing to A,—1 what we did to A,. That is we define A/, _; to be
any maximal set of columns from A,_; whose supports are pairwise disjoint
and whose columns each have a — 1 ones. Let K,_1 = |A/,_;|. Then discard
from A,_1 the columns of A/ _; and any row with a one in A/, _; getting a
ko1 X (M —K,— K,_1) matrix A,_o, where ka1 = N—aK,—(a—1)K,_1.

The process will terminate after at most a steps (when we have a matrix
containing only zeros). The union of the columns of the discarded sets form
the desired submatrix C' with K = Y% | K;. The first step of the algorithm
gives k, = N — aK,, which we rewrite, setting k11 = N , as

kaJrl - ka
—a .

K, =

Analogously,
kiv1 — ki
i

K, = fori=1,...,a.

Now we derive an upper bound for k; by counting the number of ones in A;_1
in two ways: every row of A; 1 contains at least v ones, and every column at
most ¢ — 1 ones, thus

1)]{7,‘ S (i—l)(M—Ka—-“—KiJrl) S (i—l)M,
or equivalently,

(i—1)M

ki <

T The support of a vector is the set of its nonzero coordinates.
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So,

K:ifg:i@

i=1

ka+1 k'a ka—l k2
— e 2k
¢« Tala—1  (a—Da—2 "ty M
N M/1 1 1 N
<—+—-4+—+4+=-] < —+ —Ina.
a v \a a-—1 2 a v

The last inequality here follows because 1 4+1/2+1/3+---+1/n is the n-th
harmonic number which is known to lie between Inn and Inn 4 1. Together
with (2.7), this yields K < (M/v)(1 + Ina), as desired. O

The advantage of this proof is that it can be turned into a simple greedy
algorithm which constructs the desired N x K submatrix A’ with column-set
C,|C|=K:

1. Set C := 0 and A’ := A.
2. While A’ has at least one row do:

- find a column ¢ in A’ having a maximum number of ones;
- delete all rows of A’ that contain a 1 in column c;
delete column ¢ from A’;

set C':= C U{c}.

2.6.1 Covering designs

An (n,k,l) covering design is a family F of k-subsets of an n-element set
(called blocks) such that every l-subset is contained in at least one of these
blocks. Let M (n,k,l) denote the minimal cardinality of such a design. A
simple counting argument (Exercise 1.26) shows that M (n, k1) > (7)/(’;)

In 1985, Rodl proved a long-standing conjecture of Erdds and Hanani
that for fixed k and [, coverings of size (7)/(’;)(1 + 0(1)) exist. Rodl used
non-constructive probabilistic arguments. We will now use the Lovasz—Stein
theorem to show how to construct an (n, k,l) covering design with only In (];)
times more blocks. This is not as sharp as Rédl’s celebrated result, but it is
constructive. A polynomial-time covering algorithm, achieving R6dl’s bound,
was found by Kuzjurin (2000).

Theorem 2.17. M(n, k1) < (7)/(’;) [1+1n (’;)] .

Proof. Let X = (zg,r) be an N x M 0-1 matrix with N = (}) and M = (}).
Rows of X are labeled by l-element subsets S C [n], columns by k-element
subsets T' C [n], and xgr = 1iff S CT. Note that each row contains exactly
v= (Z:Il) ones, and each column contains exactly a = (’f) ones.

By the Lovasz—Stein theorem, there is an N x K submatrix X’ such that
X’ does not contain an all-0 row and
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K < (M/v)(1+1Ina) = (Z)/(Z_j) [Hln (m
=)/ Q)G

as (1) (3= ) = (Z)( ) (see Exercise 1.12). By the definition of X and the
property of X' (no all-0 row), the k-subsets that correspond to the columns
of X’ form an (n, k,l) covering design. O

Exercises

2.1. Let A4,..., A, be subsets of an n-element set such that |4; N A;| <t
for all i # j. Prove that ;" | [A;| <n+t- (7).

2.2. Let A = (a;;) be an n x n matrix (n > 4 even). The matrix is filled
with integers and each integer appears exactly twice. Show that there exists
a permutation 7 of {1,...,n} such that all the numbers a; r¢;y, i = 1,...,n
are distinct. (Such a permutation 7 is also called a Latin transversal of A.)
Hint: Look at how many pairs of entries are “bad,” i.e., contain the same number, and
show that strictly less than n! of all permutations can go through such pairs.

2.3. Let F be a family of m subsets of a finite set X. For x € X, let p(x)
be the number of pairs (A4, B) of sets A, B € F such that either z € AN B
or z ¢ AU B. Prove that p(z) > m?/2 for every z € X. Hint: Let d(z) be the
degree of = in F, and observe that p(z) = d(z)? + (m — d(z)).

2.4. Let F be a family of nonempty subsets of a finite set X that is closed
under union (i.e., A, B € F implies AU B € F). Prove or give a counterex-
ample: there exists € X such that d(x) > |F|/2. (Open conjecture, due to
Peter Frankl.)

2.5. A projective plane of order r — 1 is a family of n = r2 — 7 + 1 r-element

subsets (called lines) of an n-element set of points such that each two lines
intersect at precisely one point and each point belongs to precisely r lines
(cf. Sect. 12.4). Use this family to show that the bound given by Corradi’s
lemma (Lemma 2.1) is optimal.

2.6. Theorem 2.10 gives a sufficient condition for a bipartite graph with parts
of the same size n to contain an a X a clique. Extend this result to not
necessarily balanced graphs. Let kg, (m,n) be the minimal integer k& such
that any bipartite graph with parts of size m and n and more than k edges
contains at least one a x b clique. Prove that forany 0 < a < mand 0 <b <mn,

kap(m,n) < (a — 1)YPnm =Y 4 (b — 1)m.
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2.7. (Paturi—Zane 1998). Extend Theorem 2.10 to r-partite graphs as follows.
An r-partite m-clique is a Cartesian product V3 x Vo X - -+ x V. of m-element
sets V1,..., V.. An r-partite graph with parts of size m is a subset E of an
r-partite m-clique. Let ex(m,r,2) denote the maximum size |E| of such a
graph E which does not contain an r-partite 2-clique. Erdés (1959, 1964b)
proved that

r—r/2" 1 r—1/2"1

cm <ex(m,r,2) <m ,

where ¢ = ¢(r) > 0 is a constant depending only on r. A slightly weaker upper
bound ex(m,r,2) < 2m"~1/2""" can be derived from Lemma 2.2. Show how to
do this. Hint: Argue by induction on r. For the induction step take X = V3 x -+ X V,—1
and consider m subsets A, = {z € X : (x,v) € E} with v € V.. Apply Lemma 2.2 with
n=m""Y N=mand w= %ml/zrﬂ, to obtain a pair of points u # v € Vj for which
the graph £ = A, N A, is large enough, and use the induction hypothesis.

2.8. Let F = {A1,...,An} be a family of subsets of some set X. Use (1.11)
to prove that for every 1 < s < N,

dd@)yr= Y A, NA,N- N4

zeX (41,8250 +505)

where the last sum is over all s-tuples (i1,142,...,is) of (not necessarily dis-
tinct) indices.

2.9. Use the previous exercise and the argument of Lemma 2.2 to prove
Lemma 2.3.

2.10. Let Aq,..., Ax be subsets of some n-element set X, and suppose that
these sets have average size at least an. Show that for every s < (1 — €)aN
with 0 < € < 1, there are indices i1, 72, ...,%s such that

|[Ai; N A, NN AL > (ea)’n.

Hint: Consider the bipartite graph G = (X, V, E) where V ={1,..., N}, and (z,i) € E
if and only if z € A;. Observe that |E| > anN and argue as in the proof of Theorem 2.10.

2.11. Prove the following very useful averaging principle for partitions. Let
X =AUAU---UA, be a partition of a finite set X into m mutually
disjoint sets (blocks), and a = .. |A;|/m be the average size of a block in
this partition. Show that for every 1 < b < a, at least (1 — 1/b)|X| elements
of X belong to blocks of size at least a/b. How many elements of X belong
to blocks of size at most ab? Hint: m - (a/b) < |X|/b.

2.12. Let A4, ..., A, be a sequence of (not necessarily distinct) subsets of an
n-element set X such that each set has size n/s and each element x € X
belongs to least one and to at most k of them; hence r < ks. Let K :=
Zf:o (Z) and assume that s > 2k. Prove that there exist two disjoint subsets

X1 and X5 of X such that | X;| > n/(2K) for both ¢ = 1,2, and none of the
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sets Ay, ..., A, contains points from both sets X; and Xs. Hint: Associate with
each © € X its trace T(z) = {i : x € A;} and partition the elements of X according
to their traces. Use the previous exercise to show that at least n/2 elements belong to
blocks of size at least n/(2K). Show that some two of these elements = and y must have
disjoint traces, T'(z) N T(y) = 0.

2.13.Let X = Ay UAs U ---U A, be a partition of a finite set X into
mutually disjoint blocks. Given a subset Y C X, we obtain its partition
Y =B UByU---U B, into blocks B; = A; NY. Say that a block B; is \-
large if |B;|/|Ai]l > A-]Y|/|X|. Show that, for every A > 0, at least (1—\)-|Y|
elements of Y belong to A-large blocks.

2.14. Given a family S, ...,S, of subsets of V = {1,...,n}, its intersection
graph G = (V, E) is defined by: {i,j} € E if and only if S; N'S; # 0. Suppose
that: (i) the sets have average size at least r, and (ii) the average size of
their pairwise intersections does not exceed k. Show that |E| > % - (g) Hint:
Consider the sum Zi<]’ |Si NSy

2.15. Let H be a 2a-dense 0-1 matrix. Prove that at least an «/(1 — )
fraction of its rows must be a-dense.

2.16. (Alon 1986). Let S be a set of strings of length n over some alphabet.
Suppose that every two strings of S differ in at least d coordinates. Let k be
such that d > n(1 — 1/(§)) Show that any k distinct strings vq,...,v; of S
attain k distinct values in at least one coordinate. Hint: Assume the opposite
and count the sum of distances between the (’;) pairs of v;’s.






3. Probabilistic Counting

Roughly speaking, the probabilistic method works as follows: trying to prove
that an object with certain properties exists, one defines an appropriate prob-
ability space of objects and shows that a randomly chosen element of this
space has the desired properties with a positive probability. A prototype of
this method is the following averaging (counting) argument:

If x1,...,2, € R and
T1+ -+ Ty

n

>a (3.1)

then for some j
zj > a. (3.2)

The usefulness of the method lies in the fact that the average (3.1) is often
easier to compute than to exhibit a specific «; for which (3.2) can be proved
to hold.

The goal of this chapter is to demonstrate the probabilistic method on sim-
ple examples (more impressive applications will be given in Part IV devoted
to this method). In its simplest applications, probabilistic argument can be
replaced by a straightforward counting, “counting with weights.” However, as
soon as one gets away from the simplest examples, the heart and soul of the
method is the probabilistic point of view rather than the act of counting.

3.1 Probabilistic preliminaries

We briefly recall some basic definitions of (discrete) probability.

A finite probability space consists of a finite set 2 and a function (called
also probability distribution) Pr : 2 — [0,1], such that >° _,Prlz] = 1.
A probability space is a representation of a random experiment, where we
choose a member of 2 at random and Pr[z] is the probability that z is
chosen. Subsets A C (2 are called events. The probability of an event is
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defined by Pr[4] :=>"
chosen.

We call 2 the domain (or a sample space) and we call Pr a probability
distribution. The most common probability distribution is the uniform distri-
bution, which is defined as Pr[z] = 1/|£2| for each x € (2; the corresponding
sample space is then called symmetric.

Some elementary properties follow directly from the definitions. In parti-
cular, for any two events* A and B we have that

zca Pr[z], i.e., the probability that a member of A is

Pr(02] =1, Pr[@]—OandPr[A]ZOforallAQQ;
Pr[AUB]=Pr[A] +Pr[B] - Pr[AnB] < Pr[4] + Pr[B];
Pr[AUB] =Pr[A] + Pr[B] if A and B are disjoint;
Pr@]:l— Pr[A];

Pr[A\ B] =Pr[4] — Pr[AN BJ;
Pr[An B] > Pr[A] - Pr [B];
If By,..., By, is a partition of £2 then Pr[A] = > Pr[AN B,].

N e e

For two events A and B, the conditional probability of A given B, denoted
Pr[A|B], is the probability that one would assign to A if one knew that B
occurs. Formally,

Pr[AN B]

Pr(B] ~’

when Pr[B] # 0. For example, if we are choosing a uniform integer from
{1,...,6}, A is the event that the number is 2 and B is the event that the
number is even, then Pr[A|B] = 1/3, whereas Pr[B|A] = 1.

Two events A and B are independent if Pr[AN B] = Pr[A] - Pr[B]. If
B # (), this is equivalent to Pr[A | B] = Pr[A]. It is very important to note
that the “independence” has nothing to do with the “disjointness” of the
events: if, say, 0 < Pr[A] < 1, then the events A and A are dependent!

Let I" be finite set, and 0 < p < 1. A random subset S of I' is obtained
by flipping a coin, with probability p of success, for each element of I" to
determine whether the element is to be included in S; the distribution of S is
the probability distribution on 2 = 27" given by Pr[S] = p®I(1 —p)IT1=15] for
S C I'. We will mainly consider the case when S is uniformly distributed, that
is, when p = 1/2. In this case each subset S C I" receives the same probability
Pr[S] = 2711, If F is a family of subsets, then its random member S is a
uniformly distributed member; in this case, {2 = F and S has the probability
distribution Pr[S] = 1/|F|. Note that, for p = 1/2, a random subset of I" is
just a random member of 2.

A random variable is a variable defined as a function X : 2 — R of the
domain of a probability space. For example, if X is a uniform integer chosen
from {1,...,n}, then Y := 2X and Z := “the number of prime divisors of
X7 are both random variables, and so is X itself. In what follows, Pr[X = s]
denotes the probability of the event X ~!(s) = {z € 2 : X(z) = s}. One

Pr[A|B] :=

Here and throughout A = 2\ A stands for the complement of A.
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says in this case that X takes value s € R with probability Pr[X = s]. It
is clear that events are a special type of random variables taking only two
values 0 and 1. Namely, one can identify an event A C (2 with its indicator
random variable X 4 such that X 4(z) =1 if and only if z € A.

One of the most basic probabilistic notions is the expected value of a
random variable. This is defined for any real-valued random variable X, and
intuitively, it is the value that we would expect to obtain if we repeated a
random experiment several times and took the average of the outcomes of X.
Namely, if X takes values si,..., S, then the mean or expectation of X is
defined as the weighted average of these values:

E [X] ::Zsi-Pr[X:si]:ZX(x)-Pr[x].

€S2

For example, if X is the number of spots on the top face when we roll a fair
die, then the expected number of spots is E [X] = Z?:l i(1/6) = 3.5. In this
book we will only consider random variables with finite ranges S, so that we
will not be faced with the convergence issue of the corresponding series.

Note that the probability distribution Pr : 2 — [0,1] itself is a random
variable, and its expectation is

E[Pr] = Z Pr[z)?.

e

In particular, if Pr is a uniform distribution of a set with n elements, then its
expectation is 1/n, as it should be. The expectation of the indicator random
variable X4 of an event A is just its probability:

E[XA]ZO-PI'[XAZO]—I-l-Pr[XA21}=PY[XA:1}=PI'[A] .

The probabilistic method is most striking when it is applied to prove the-
orems whose statement does not seem to suggest the need for probability at
all. It is therefore surprising what results may be obtained from such simple
principles like the union bound: The probability of a union of events is at
most the sum of the probabilities of the events,

Pr[AjUAsU---UA,] <Pr[A;]+Pr[ds]+---+Pr[4,]. (3.3)

Thus, if A;’s are some “bad” events and Y Pr[A;] < 1 then we know that
Pr [ﬂizi] =Pr M] =1-Pr[U;4;] > 0, that is, with positive probability,
none of these bad events happens. Already this simple fact often allows to
show that some object with desired “good” properties exists.

A next useful property is the linearity of expectation: If Xq,..., X, are
random variables and ay, ..., a, real numbers, then

E[a1X1 —|——|—aan} :alE[Xl} —|——|—anE[Xn] .



44 3 Probabilistic Counting

The equality follows directly from the definition E [X]. The power of this
principle comes from there being no restrictions on the Xj;’s.

A general framework for the probabilistic method is the following. Many
extremal problems can be defined by a pair (M, f), where M is some finite
set of objects and f : M — R some function assigning each object z € M its
“value”. For example, M could be a set of graphs, satisfying some conditions,
and f(z) could be the maximum size of a clique in z. Given a threshold value
t, the goal is to show that an object © € M with f(x) >t exists. That is, we
want to show that max,ens f(z) > t.

To solve this task, one defines an appropriate probability distribution Pr :
M — [0,1] and considers the resulting probability space. In this space the
target function f becomes a random variable. One tries then to show that
either E[f] >t or Pr[f(z) > t] > 0 holds. If at least one of these inequalities
holds, then the existence of x € M with f(x) > t is already shown. Indeed,
would f(z) <t hold for all x € M, then we would have

Pr{f(z) >t]=Pr[0] =0

and

E[f]=) i-Prif=i<> t-Pr[f=i]=t.
The property
E[f] > t implies f(x) >t for at least one x € M

is sometimes called the pigeonhole principle of expectation: a random variable
cannot always be smaller (or always greater) than its expectation.

In the next sections we give some simplest applications of the probabilistic
method (more applications are given in Part IV).

3.2 Tournaments

A tournament is an oriented graph T = (V| E) such that (z,2) ¢ E for
all z € V, and for any two vertices z # y exactly one of (x,y) and (y, )
belongs to E. That is, each tournament is obtained from a complete graph
by orienting its edges. The name tournament is natural, since one can think
of the set V' as a set of players in which each pair participates in a single
match, where (z,y) € E iff x beats y.

Say that a tournament has the property Py if for every set of k players
there is one who beats them all, i.e., if for any subset S C V of k players
there exists a player y ¢ S such that (y,z) € E for all x € S.

Theorem 3.1 (Erdés 1963a). If n > k22FT1 then there is a tournament of
n players that has the property Py.
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Proof. Consider a random tournament of n players, i.e., the outcome of every
game is determined by the flip of fair coin. For a set S of k players, let Ag
be the event that no y & S beats all of S. Each y & S has probability 2% of
beating all of S and there are n — k such possible y, all of whose chances are
mutually independent. Hence Pr[Ag] = (1 —27%)"* and

k '
Pr {UAS} < < ) 1-2" ) -k < %e*("*k)/zk < nke=/2"

If n > k22F+1 this probability is strictly smaller than 1. Thus, for such an
n, with positive probability no event Ag occurs. This means that there is a
point in the probability space for which none of the events Ag happens. This
point is a tournament 7" and this tournament has the property Pj. a

3.3 Universal sets

A set of 0-1 strings of length n is (n, k)-universal if, for any subset of k
coordinates S = {i1,...,i}, the projection

Alg :==A{(ai,...,a;,) : (a1,...,a,) € A}

of A onto the coordinates in S contains all possible 2* configurations.

In Sects. 10.5 and 17.4 we will present two explicit constructions of such
sets of size about n, when k < (logn)/3, and of size n®*), for arbitrary k. On
the other hand, a simple probabilistic argument shows that (n, k)-universal
sets of size k2¥ log, n exist (note that 2% is a trivial lower bound).

Theorem 3.2 (Kleitman—Spencer 1973). If (})2%(1 — 27%)" < 1, then there
is an (n, k)-universal set of size r.

Proof. Let A be a set of r random 0-1 strings of length n, each entry of which
takes values 0 or 1 independently and with equal probability 1/2. For every
fixed set S of k coordinates and for every fixed vector v € {0, 1}*,

Priv¢g Alg] HPrv#a H<1—2*‘S‘>:(1—2*k)r.

acA a€A

Since there are only (2)2’C possibilities to choose a pair (S,v), the set A is
not (n, k)-universal with probability at most (})2%(1—27%)", which is strictly
smaller than 1. Thus, at least one set A of r vectors must be (n, k)-universal,
as claimed. a
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3.4 Covering by bipartite cliques

A biclique covering of a graph G is a set Hy, ..., H; of its complete bipartite
subgraphs such that each edge of G belongs to at least one of these subgraphs.
The weight of such a covering is the sum 22:1 |V(H;)| of the number of
vertices in these subgraphs. Let be(G) be the smallest weight of a biclique
covering of G. Let K,, be a complete graph on n vertices.

Theorem 3.3. If n is a power of two, then be(K,) = nlogyn.

Proof. Let n = 2™. We can construct a covering of K, as follows. Assign
to each vertex v its own vector x, € {0,1}™, and consider m = log,n
bipartite cliques Hi, ..., H,,, where two vertices u and v are adjacent in H;
iff z,(7) = 0 and =z, (i) = 1. Since every two distinct vectors must differ in
at least one coordinate, each edge of K, belongs to at least one of these
bipartite cliques. Moreover, each of the cliques has weight (n/2) 4+ (n/2) = n,
since exactly 2™~ = n/2 of the vectors in {0,1}™ have the same value in
the i-th coordinate. So, the total weight of this covering is mn = nlog, n.
To prove the lower bound we use a probabilistic argument. Let A; x
By,...,A; X B; be a covering of K,, by bipartite cliques. For a vertex v,
let m, be the number of these cliques containing v. By the double-counting

principle,
t

n
D (Al +[Bil) = > ma
i=1 v=1

is the weight of the covering. So, it is enough to show that the right-hand
sum is at least nlogyn.

To do this, we throw a fair 0-1 coin for each of the cliques A; x B; and
remove all vertices in A; from the graph if the outcome is 0; if the outcome
is 1, then we remove B;. Let X = X1 + --- + X,,, where X, is the indicator
variable for the event “the vertex v survives.”

Since any two vertices of K, are joined by an edge, and since this edge
is covered by at least one of the cliques, at most one vertex can survive at
the end. This implies that E [X] < 1. On the other hand, each vertex v will
survive with probability 27"v: there are m, steps that are “dangerous” for
v, and in each of these steps the vertex v will survive with probability 1/2.
By the linearity of expectation,

ZQ—mv = ZPr [v survives| = ZE [(Xo] =E[X] <1.
v=1 v=1 v=t

We already know that the arithmetic mean of numbers a,...,a, is at least
their geometric mean (1.16):

n n

%Zav > (Hav>1/n.
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When applied with a, = 27™+, this yields

1 1 My Moy n_ 7% w1 v
pzax ez ([fm) et

|

from which 27 2™ > n, and hence, also Y'_; m, > nlogyn follows. O

3.5 2-colorable families

Let F be a family of subsets of some finite set. Can we color the elements of
the underlying set in red and blue so that no member of F will be monochro-
matic? Such families are called 2-colorable.

Recall that a family is k-uniform if each member has exactly k£ elements.

Theorem 3.4 (Erdds 1963b). Every k-uniform family with fewer than 2F~!
members is 2-colorable.

Proof. Let F be an arbitrary k-uniform family of subsets of some finite set X.
Consider a random 2-coloring obtained by coloring each point independently
either red or blue, where each color is equally likely. Informally, we have
an experiment in which a fair coin is flipped to determine the color of each
point. For a member A € F, let X4 be the indicator random variable for the
event that A is monochromatic. So, X = 37, X4 is the total number of
monochromatic members.

For a member A to be monochromatic, all its |A| = k points must receive
the same color. Since the colors are assigned at random and independently,
this implies that each member of F will be monochromatic with probability
at most 2 - 27% = 21=% (factor 2 comes since we have two colors). Hence,

X]= Y E[Xa]=) 2'F=|F-2"7"

AeF AeF

Since points in our probability space are 2-colorings, the pigeonhole property
of expectation implies that a coloring, leaving at most |F| - 2'~F members of
JF monochromatic, must exist.

In particular, if |F| < 2¥~! then no member of F will be left monochro-
matic. O

The proof was quite easy. So one could ask whether we can replace 281 by,
say, 4*? By turning the probabilistic argument “on its head” it can be shown
that this is not possible. The sets now become random and each coloring
defines an event.

Theorem 3.5 (Erdds 1964a). If k is sufficiently large, then there exists a
k-uniform family F such that | F| < k?2F and F is not 2-colorable.
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Proof. Set r = |k?/2]. Let Ay, As, ... be independent random members of
(), that is, A; ranges over the set of all A C {1,...,r} with |A| = k, and
Pr[A; = 4] = (,:)71. Consider the family F = {A1,...,Ap}, where b is a
parameter to be specified later. Let x be a coloring of {1,...,7} in red and
blue, with a red points and r — a blue points. Using Jensen’s inequality (see
Proposition 1.12), for any such coloring and any ¢, we have

Pr[A; is monochromatic] = Pr[A; is red] 4+ Pr[A; is blue]

B ()

where, by the asymptotic formula (1.9) for the binomial coefficients, p is
about e~ 1217F, Since the members A; of F are independent, the probability
that a given coloring x is legal for F equals

(1 — Pr[A; is monochromatic]) < (1 — p)°.

b
=1

K2

Hence, the probability that at least one of all 2" possible colorings will be
legal for F does not exceed 2"(1 — p)® < e"m2=PP which is less than 1 for
b= (rin2)/p = (1+ 0(1))k?2*~2eIn2. But this means that there must be
at least one realization of the (random) family F, which has only b sets and
which cannot be colored legally. O

Let B(k) be the minimum possible number of sets in a k-uniform family
which is not 2-colorable. We have already shown that

2k=1 < B(k) < k2%,

As for exact values of B(k), only the first two B(2) = 3 and B(3) = 7 are
known. The value B(2) = 3 is realized by the graph K3. We address the
inequality B(3) < 7 in Exercise 3.9.

There is yet another class of 2-colorable families, without any uniformity
restriction.

Theorem 3.6. Let F be an arbitrary family of subsets of a finite set, each
of which has at least two elements. If every two non-disjoint members of F
share at least two common elements, then F is 2-colorable.

Proof. Let X = {x1,...,z,} be the underlying set. We will color the points
Z1,...,T, one-by-one so that we do not color all points of any set in F with
the same color. Color the first point x; arbitrarily. Suppose that z1,...,z;
are already colored. If we cannot color the next element z;, in red then this
means that there is a set A € F such that A C {z1,...,%i41}, ;41 € A and
all the points in A \ {x;+1} are red. Similarly, if we cannot color the next
element z;11 in blue, then there is a set B € F such that B C {x1,...,2;41},
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Zi+1 € B and all the points in B\ {x;11} are blue. But then ANB = {z;41}, a
contradiction. Thus, we can color the point x;; either red or blue. Proceeding
in this way we will finally color all the points and no set of F becomes
monochromatic. O

3.6 The choice number of graphs

The choice number (or list-coloring number) of a graph G, denoted by ch(G),
is the minimum integer k such that for every assignment of a set S(v) of k
colors to every vertex v of GG, there is a legal coloring of G that assigns to
each vertex v a color from S(v). Recall that a coloring is legal if adjacent ver-
tices receive different colors. Obviously, this number is at least the chromatic
number x(G) of G.

Theorem 3.7 (Alon 1992). For every bipartite n X n graph G with n > 3,
we have that ch(G) < 2logs n.

Proof. Let G = (Vo U V4, E) be a bipartite graph with |Vp| = |V4] = n.
Suppose that each vertex v is assigned a set S(v) of at least 2log, n colors,
and let S = U, S(v) be the set of all colors. Since the graph is bipartite, it is
enough to show that there is a partition S = Sy U S1 of S such that

S;NS(v) # 0 for both i =0,1 and all v € V. (3.4)

Then, for every two (even not necessarily adjacent) vertices u € V, and
v € V1, we can choose arbitrary colors ¢, € Sy N S(v) and ¢, € S1 N S(v);
since Sy N S1 = (), these colors are clearly distinct.

To define such a partition S = Sy U S just flip, for each color ¢ € S, a
fair 0-1 coin to decide whether to include this color in the set Sp; let also
S1 =5\ Sp. For a fixed i € {0,1} and v € V; we have that

1 1

Pr(S;nS(v) =0 =27 150 < g=2losan — —  _
£[5:15() = 0 < L <

The number of pairs (i,v) with ¢ € {0,1} and v € V; is 2n. Hence, by the
union bound, the probability that our random partition S = Sy U S7 does
not satisfy (3.4) is strictly smaller than 1, implying that a desired partition
exists. O

Note that the proof says a bit more. If A,..., A, and By, ..., B, are any
two sequences of not necessarily distinct 2 log, n-element subsets of some set
of vertices, then it is possible to color the vertices in red and blue so that
each of the A; receives at least one red color and each of the B; receives at
least one blue color.
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Exercises

3.1. Let 2 = B; U By be a partition of a sample space, and A C {2 be an
event. Prove that then Pr[A] does not exceed the maximum of Pr[A | B;] and
Pr[A| Bg]. Hint: Show that Pr[A] = Pr[B1] - Pr[A| B1] + Pr [Bz] - Pr[4 | Ba).

3.2. Prove the following Bonferroni inequality:
Pr[A1N---NA,] > Pr[A]+---+Pr[4,)] —n+1.

3.3.Let X,Y : 2 — R be random variables. The variance of a random
variable X is defined as Var [X] := E [(X — E [X])?]. Prove that

1.E[a- X+4+b-Y]=a-E[X]+b-E[Y] for any constants a and b.

2.If X and Y are independent then E[X - Y] =E [X]-E[Y] and
Var [X + Y] = Var [X] + Var [Y].

3. Var[X] = E[X? — E[X]?. Hint: E[X-E[X]] = E[X]%.

3.4. Let X be a non-negative integer-valued random variable. Show that
EXY>E[X],Pr[X=0]>1-E[X]and E[X] =7 Pr[X > .
3.5. Use the Cauchy—Schwarz inequality (Y ., a;b;)? < (3, a?) (X, b3)

to show that, for any random variable X, E [X]* < E[X?].

3.6. Let Xi,...,X,, be n independent 0-1 random variables such that
Pr(X;=1] = p; and Pr(X; =0] = 1 — p;. Let X = >, X; mod 2. Prove
that Pr(X =1] = %[1 —[L;(1 —2p;)]. Hint: Consider the random variable
Y =Yi---Y,, where ¥; =1 — 2X;, and observe that E[Y]=1—-2-Pr[Y = —1].

3.7. For a graph G let, as before, bc(G) denote the smallest weight of a
biclique covering of GG. Show that if an n-vertex graph G has no independent
set of size larger than « then be(G) > nlog,(n/a). Hint: Argue as in the proof
of the lower bound in Theorem 3.3, and show that E [X] < a.

3.8. For a graph G = (V, E), let pg be the minimum of (a + b)/ab over all
pairs of integers a,b > 1 such that G contains a copy of a complete bipartite
a x b graph K, . Show that be(G) > ug - |E|.

3.9. Prove that B(3) < 7. That is, exhibit a family of seven 3-element sets
which is not 2-colorable. Hint: Consider the Fano configuration (Fig. 12.1).

3.10. (Razborov 1990). Consider the family of all pairs (4, B) of disjoint k-
element subsets of {1,...,n}. A set Y separates the pair (A,B) if A CY
and BNY = . Prove that there exist £ = 2k4*Inn sets such that every
pair (A, B) is separated by at least one of them. Hint: Pick subsets Y1,...,Y,
of {1,...,n} randomly and independently, each with probability 27 ". Show that the
probability that none of them separates a given pair (A4, B) is at most (1 — 2_2’“)[ and
use the counting sieve.
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3.11. Let X be a set of n = kr points and consider their colorings c: X —
{1,...,k} by k colors. Say that such a coloring ¢ is balanced if each color
is used for the same number of points, i.e., if |¢c71(i)| = r for every color
1=1,...,k. Given a k-element set of points, say that it is differently colored if
no two of its points get the same color. Prove that there exist £ = O(ke” logn)
balanced colorings cy, ..., c; such that every k-element subset of X is differ-
ently colored by at least one of them. Hint: Consider independent copies ca, ..., ce
of a balanced coloring ¢ selected at random from the set of all n!/(r)¥ such color-
ings. Show that for every k-element subset S of X, ¢ colors S differently with proba-
bility p = r* - (Z) _l. Use the counting sieve to show that, with probability at least
1-— (Z) (1 — p)¥, every k-element subset S will be colored differently by at least one of
c1,...,co. Recall that 7 = n/k and use Proposition 1.4 to show that this probability is
nonzero for some £ = O(ke* logn)

3.12. (Khasin 1969). Consider the k-threshold function I{}(x1, ..., zy,) which
outputs 1 if and only if z; 4+ - -+, > k. In Sect. 6.3.2 we will show that any
depth-3 Or-And-Or formula for T} must have size exponential in k. What
about the upper bounds? Use the previous exercise to show that 7} can be
computed by a monotone Or-And-Or formula of size O(ke*nlogn). Hint: Each
balanced k-coloring ¢ of {1,...,n} gives us an And-Or formula F. = /\f:l \/C(j):i x;.
Use the previous exercise to combine them into an Or-And-Or formula for 7j.

3.13. Let F be a family, each member of which has > 3 points and any two
members share exactly one point in common. Suppose also that F is not
2-colorable. Prove that: (i) every point  belongs to at least two members of
F, and (ii) any two points z,y belong to at least one member of F. Hint: (i)
Take x € A € F, color A\ {z} red and the rest blue. (ii) Select sets A, B such that
x€ A\ Band y € B\ A4; color (AU B) \ {z,y} red and everything else blue.

3.14. (Lovasz 1973). Let F be 3-uniform family on n > 5 points, in which
each pair of points occurs in the same number of sets. Prove that F is not 2-
colorable. Hint: Suppose there is a 2-coloring, count the members of F in two ways: by
the monochromatic pairs contained in them and also by the bichromatic pairs contained
in them. Let n1 and n2 denote the number of red and blue points, respectively, and
let a be the number of members of F containing a given pair of points. We have a("zl)
sets in F containing a pair {z,y} of red points, and a("zz) sets containing a blue pair of
points. Hence, |F| is the sum of these two numbers. On the other hand, each set of F
contains exactly two pairs {x, y} where x is blue and y is red; so 2|F| = aninz. Compare
these numbers, and use the arithmetic-geometric mean inequality (1.16) to show that
the equality can hold only if n < 4.






4. The Pigeonhole Principle

The pigeonhole principle (also known as Dirichlet’s principle) states the “ob-
vious” fact that n + 1 pigeons cannot sit in n holes so that every pigeon is
alone in its hole. More generally, the pigeonhole principle states the following:

If a set consisting of at least rs + 1 objects is partitioned into r classes,
then some class receives at least s + 1 objects.

Its truth is easy to verify: if every class receives at most s objects, then a
total of at most rs objects have been distributed. To see that the result is
best possible, observe that a set with at most rs points can be divided into r
groups with at most s points in each group; hence none of the groups contains
s + 1 points.

This is one of the oldest “non-constructive” principles: it states only the
existence of a pigeonhole with more than k items and says nothing about how
to find such a pigeonhole. Today we have powerful and far reaching gener-
alizations of this principle (Ramsey-like theorems, the probabilistic method,
etc.). We will talk about them later.

As trivial as the pigeonhole principle itself may sound, it has numerous
nontrivial applications. The hard part in applying this principle is to decide
what to take as pigeons and what as pigeonholes. Let us illustrate this by
several examples.

4.1 Some quickies

To “warm-up,” let us start with the simplest applications. The degree of a
vertex x in a graph G is the number d(z) of edges of G adjacent to x.
Proposition 4.1. In any graph there exist two vertices of the same degree.

Proof. Given a graph G on n vertices, make n pigeonholes labeled from 0 up
to n — 1 and put a vertex z into the k-th pigeonhole iff d(z) = k. If some
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Fig. 4.1 There are only n — 2 vertices and at least n — 1 edges going to them.

pigeonhole contains more than one vertex, we are done. So, assume that no
pigeonhole has more than one vertex. There are n vertices going into the n
pigeonholes; hence each pigeonhole has exactly one vertex. Let x and y be the
vertices lying in the pigeonholes labeled 0 and n — 1, respectively. The vertex
x has degree 0 and so has no connection with other vertices, including y. But
y has degree n — 1 and hence, is connected with all the remaining vertices,
including x, a contradiction. O

If G is a finite graph, the independence number a(G) is the maximum
number of pairwise nonadjacent vertices of G. The chromatic number x(G)
of G is the minimum number of colors in a coloring of the vertices of G with
the property that no two adjacent vertices have the same color.

Proposition 4.2. In any graph G with n vertices, n < a(Q) - x(G).

Proof. Consider the vertices of G partitioned into x(G) color classes (sets
of vertices with the same color). By the pigeonhole principle, one of the
classes must contain at least n/x(G) vertices, and these vertices are pairwise
nonadjacent. Thus a(G) > n/x(G), as desired. O

A graph is connected if there is a path between any two of its vertices.

Proposition 4.3. Let G be an n-vertex graph. If every vertex has a degree
of at least (n — 1)/2 then G is connected.

Proof. Take any two vertices  and y. If these vertices are not adjacent, then
at least n — 1 edges join them to the remaining vertices, because both z and
y have a degree of at least (n —1)/2.

Since there are only n — 2 other vertices, the pigeonhole principle implies
that one of them must be adjacent to both z and y (see Fig. 4.1). We have
proved that every pair of vertices is adjacent or has a common neighbor, so
G is connected. O

Remark 4.4. A result is best possible if the conclusion no longer holds when
we weaken one of the conditions. Such is, for example, the result above: let
n be even and G be a union of two vertex disjoint complete graphs on n/2
vertices; then every vertex has degree (n—2)/2, but the graph is disconnected.

Note that, in fact, we have proved more: if every vertex of an n-vertex
graph has degree at least (n — 1)/2 then the graph has diameter at most
two. The diameter of a graph is the smallest number k such that every two
vertices are connected by a path with at most k edges.
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4.2 The Erd6s—Szekeres theorem

Let A = (a1,as,...,a,) be a sequence of n different numbers. A subsequence
of k terms of A is a sequence B of k distinct terms of A appearing in the same
order in which they appear in A. In symbols, we have B = (a;,, @iy, - . ., a4, ),
where 47 < iy < .-+ < ip. A subsequence B is said to be increasing if
ai, < aj, <---<a;,,and decreasing if a;, > ai, > - > a;, .

We will be interested in the length of the longest increasing and decreasing
subsequences of A. It is intuitively plausible that there should be some kind
of tradeoff between these lengths. If the longest increasing subsequence is
short, say has length s, then any subsequence of A of length s + 1 must
contain a pair of decreasing elements, so there are lots of pairs of decreasing
elements. Hence, we would expect the longest decreasing sequence to be large.
An extreme case occurs when s = 1. Then the whole sequence A is decreasing.

How can we quantify the feeling that the length of both, longest increasing
and longest decreasing subsequences, cannot be small? A famous result of
Erdds and Szekeres (1935) gives an answer to this question and was one of
the first results in extremal combinatorics.

Theorem 4.5 (Erdés—Szekeres 1935). Let A = (a1,...,a,) be a sequence
of n different real numbers. If n > sr + 1 then either A has an increasing
subsequence of s + 1 terms or a decreasing subsequence of v + 1 terms (or
both).

Proof (due to Seidenberg 1959). Associate to each term a; of A a pair of
“scores” (zi,y;) where z; is the number of terms in the longest increasing
subsequence ending at a;, and y; is the number of terms in the longest de-
creasing subsequence starting at a;. Observe that no two terms have the
same score, i.e., that (z;,y;) # (x;,y;) whenever ¢ # j. Indeed, if we have

“-a;---aj;---, then either a; < a; and the longest increasing subsequence
ending at a; can be extended by adding on a; (so that x; < z;), or a; > a;
and the longest decreasing subsequence starting at a; can be preceded by a;
(so that y; > y;).

Now make a grid of n? pigeonholes:

1 r n

Place each term a; in the pigeonhole with coordinates (x;, y;). Each term of
A can be placed in some pigeonhole, since 1 < z;,y; <n foralli=1,...,n.
Moreover, no pigeonhole can have more than one term because (z;,y;) #
(x,y;) whenever i # j. Since |A| = n > sr+ 1, we have more items than the
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pigeonholes shaded in the above picture. So some term a; will lie outside this
shaded region. But this means that either z; > s+ 1 or y; > r + 1 (or both),
exactly what we need. O

The set of real numbers is totally ordered. That is, for any two distinct
numbers z and y, either x < y or y < x. The following lemma, due to Dil-
worth, generalizes the Erdés—Szekeres theorem to sets in which two elements
may or may not be comparable.

A partial order on a set P is a binary relation < between its elements
which is transitive and irreflexive: if x < y and y < z then x < z, but z < y
and y < x cannot both hold. We write x < y if x < y or x = y. Elements x
and y are comparable if either x < y or y < a (or both) hold. A chain in a
poset P is a subset C' C P such that any two of its points are comparable.
Dually, an antichain is a subset A C P such that no two of its points are
comparable.

Lemma 4.6 (Dilworth 1950). In any partial order on a set P of n > sr+1
elements, there exists a chain of length s + 1 or an antichain of size r + 1.

Proof. A chain is mazimal if it cannot be prolonged by adding a new element.
Let C4,...,C,, be all maximal chains in P, and suppose there is no chain of
length s+ 1. Since the chains C; must cover all n points of P, the pigeonhole
principle implies that we must have m > r + 1 such chains. Let x; € C; be
the greatest element of C;. Then no two elements x; and z; with ¢ # j can be
comparable: if z; < z; then C; U {z;} would also be a chain, a contradiction
with the maximality of C;. Thus, the elements z1, ..., z,, form an antichain
of size m >r + 1. O

This lemma implies the Erdés—Szekeres theorem (we address this question
in Exercise 4.10).

4.3 Mantel’s theorem

Here we discuss one typical extremal property of graphs. How many edges are
possible in a triangle-free graph G on n vertices? A triangle is a set of three
vertices, each two of which are connected by an edge. Certainly, G' can have
n?/4 edges without containing a triangle: just let G be the bipartite complete
graph consisting of two sets of n/2 vertices each and all the edges between
the two sets. Indeed, n?/4 turns out to be the maximum possible number of
edges: if we take one more edge then the graph will have a triangle.

We give four proofs of this beautiful result: the first (original) proof is
based on double counting, the second uses the inequality vab < (a + b)/2 of
the arithmetic and geometric mean, the third uses the pigeonhole principle,
and the fourth employs the so-called “shifting argument” (we will give this
last proof in the Sect. 4.7 devoted to this argument).
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Theorem 4.7 (Mantel 1907). If a graph G on n vertices contains more than
n?/4 edges, then G contains a triangle.

First proof. Let G be a graph on a set V of n vertices containing m >
n?/4 edges. Assume that G has no triangles. Then adjacent vertices have no
common neighbors, so d(x) + d(y) < n for each edge {z,y} € E. Summing
over all edges of G, we have (cf. Equation (1.12))

Sda)?= Y (dw)+d(y) < mn.

eV {z,y}€E

On the other hand, using Cauchy—Schwarz inequality (see Notation or Propo-
sition 13.4) and Euler’s equality > _i d(x) = 2m (see Theorem 1.8), we
obtain

zeV

Vi ~on

2o (Crevd@)®  4m?
E d(x)* > .
eV

These two inequalities imply that m < n?/4, contradicting the hypothesis.
O

Second proof. Let G = (V, E) be a graph on a set V' of n vertices and assume
that G has no triangles. Let A C V be the largest independent set, i.e., a
maximal set of vertices, no two of which are adjacent in G. Since G is triangle-
free, the neighbors of a vertex x € V' form an independent set, and we infer
d(xz) < |A| for all .

The set B = V'\ A meets every edge of G. Counting the edges of G accord-
ing to their end-vertices in B, we obtain |E| < Y _ 5 d(x). The inequality of
the arithmetic and geometric mean (1.16) yields

Al + |B|\> n?
< <|Al-|B| < [ ————— = —.
\EI_xEEBd(x)_\ |- |_< 5 1

O

Third proof. To avoid ceilings and floorings, we will prove the theorem for
graphs on an even number 2n of vertices. We want to prove that every such
graph with at least n? + 1 edges must contain a triangle. We argue by induc-
tion on n. If n = 1, then G cannot have n? + 1 edges; hence the statement
is true. Assuming the result for n, we now consider a graph G on 2(n + 1)
vertices with (n + 1)? 4+ 1 edges. Let x and y be adjacent vertices in G, and
let H be the induced subgraph on the remaining 2n vertices. If H contains
at least n2 + 1 edges then we are done by the induction hypothesis. Suppose
that H has at most n? edges, and therefore at least 2n+41 edges of G emanate
from x and y to vertices in H:
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By the pigeonhole principle, among these 2n 4+ 1 edges there must be an
edge from z and an edge from y to the same vertex z in H. Hence G contains
the triangle {z, vy, z}. O

4.4 Turan’s theorem

A k-clique is a graph on k vertices, every two of which are connected by an
edge. For example, triangles are 3-cliques. Mantel’s theorem says that, if a
graph on n vertices has no 3-clique then it has at most n?/4 edges. What
about k > 37

The answer is given by a fundamental result of Paul Turan, which initiated
extremal graph theory.

Theorem 4.8 (Turdn 1941). If a graph G = (V,E) on n vertices has no

(k + 1)-clique, k > 2, then
1Y\ n?
|E| < <1 - %) ER (4.1)

Like Mantel’s theorem, this result was rediscovered many times with vari-
ous different proofs. Here we present the original one due to Turdn. The proof
based on so-called “weight shifting” argument is addressed in Exercise 4.9. In
Sect. 18.4 we will give a proof which employs ideas of a totally different nature
— the probabilistic argument.

Proof. We use induction on n. Inequality (4.1) is trivially true for n = 1. The
case k = 2 is Mantel’s theorem. Suppose now that the inequality is true for
all graphs on at most n — 1 vertices, and let G = (V| E) be a graph on n
vertices without (k + 1)-cliques and with a maximal number of edges. This
graph certainly contains k-cliques, since otherwise we could add edges. Let
A be a k-clique, and set B =V '\ A.

Since each two vertices of A are joined by an edge, A contains ey = (g)
edges. Let ep be the number of edges joining the vertices of B and e4 g the
number of edges between A and B. By induction, we have

e (i-3) e

Since G has no (k+1)-clique, every x € B is adjacent to at most k—1 vertices
in A, and we obtain
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eap < (k—1)(n—-k).

Summing up and using the identity

1\ n? k n\ 2
(1 - z) El <2) ()
we conclude that

|E| <eateptean< (;“) + (];) (n;k)2+(k—1)(n—k)

k n—k\* 1\ n?
() () - 0e) s :
An n-vertex graph T'(n, k) that does not contain any (k4 1)-clique may be
formed by partitioning the set of vertices into k parts of equal or nearly-equal
size, and connecting two vertices by an edge whenever they belong to two
different parts. Thus, Turdn’s theorem states that the graph T'(n, k) has the
largest number of edges among all n-vertex graphs without (k + 1)-cliques.

4.5 Dirichlet’s theorem

Here is the application of the pigeonhole principle which Dirichlet made,
resulting in his name being attached to the principle. It concerns the existence
of good rational approximations to irrational numbers. The result belongs to
number theory, but the argument is combinatorial.

Theorem 4.9 (Dirichlet 1879). Let x be a real number. For any natural num-
ber n, there is a rational number p/q such that 1 < q <n and

r—=—-|<—<
q q q

p 1 1
_2.

Note that it is easy to get an approximation whose error is at most 1/n,
by fxing the denominator to be ¢ = n. The improved approximation uses the
pigeonhole principle.

Proof. For this proof, we let {2z} denote the fractional part of the real number
x, that is, {z} := x— | x]. Consider the n+1 numbers {az},a =1,2,...,n+1.
We put these numbers into the n pigeonholes

[0,1/n),[1/n,2/n),...,[1—1/n,1) .

By the pigeonhole principle, some interval contains more than one of the
numbers, say {ax} and {bx} with a > b, which therefore differ by less than
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1/n. Letting ¢ = a—b, we see that there exists an integer p = |ax| — | bx] such
that |gz — p| < 1/n, from which the result follows on division by ¢. Moreover,
q is the difference between two integers in the range 1,...,n+1,s0¢ <n. 0O

4.6 Swell-colored graphs

Let us color the edges of the complete graph K,, on n vertices. We say that
the graph is swell-colored if each triangle contains exactly 1 or 3 colors, but
never 2 colors and if the graph contains more than one color. That is, we
must use at least two colors, and for every triangle, either all its three edges
have the same color or each of them has a different color.

It can be shown (do this!) that K, can never be swell-colored with exactly
two colors. A simple investigation shows that K3 and K, are the only K,
swell-colorable with 3 colors; the other K, require more colors since they are
more highly connected.

Using the pigeonhole principle we can prove the following lower bound.

Theorem 4.10 (Ward—Szab6 1994). The complete graph on n vertices can-
not be swell-colored with fewer than \/n + 1 colors.

Proof. Let K,, be swell-colored with r distinct colors. Let N(z,¢) denote the
number of edges incident to vertex x which have color c. Fix zy and ¢y for
which N(zo, cp) is maximal, and denote this maximum by N.

The n — 1 edges incident to zg can be partitioned into < r color classes,
each of which with N or fewer members. By the pigeonhole principle,

N-r>n-—1.

Let z1,x2,...,zN be the vertices connected to z¢ by the N edges of color
¢o. Let G denote the (complete) subgraph of K,, induced by the vertex set
{zo,x1,...,2n}. The swell-coloredness of K, is inherited by G and so all
edges of G have color c¢y. Since K, is assumed to have at least two colors,
there must be some vertex y of K, not in subgraph G and such that at least
one edge joining y to G has a color different from cg.

Claim 4.11. The N + 1 edges connecting y to G all are distinctly colored
with colors other than c¢g.

The claim implies that » > N + 2, which together with N -r > n—1 yields
r(r —2) > n —1, and hence, r > /n + 1, as desired. So, it remains to prove
the claim.
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If an edge connecting y to G, say {y, z1} (see the figure above), has color ¢
then by the swell-coloredness of G, edge {y, xo} would have color ¢y, contrary
to the definition of x¢ (recall that x1, o, ..., zy are all the edges incident to
xo and colored by ¢g). Furthermore, if any two edges connecting y to G, say
{y,z1} and {y,x2}, have the same color, then the swell-coloredness of K,
implies that the edge {x1, 22} shares the same color. But {x1,z2} belongs to
G, and hence has color ¢y and so {y, z1} would have color ¢y which we have
seen is impossible. This completes the proof of the claim, and thus, of the
theorem. O

The optimality of the lower bound given by Theorem 4.10, can be shown
using a configuration known as “affine plane.” We will investigate these con-
figurations in Chap. 12. For our current purposes it is enough to know that
an affine plane AG(2,q) of order q contains exactly ¢ points and exactly
q+ 1 classes (also called “pencils”) of parallel lines, each containing ¢ lines
(two lines are parallel if they share no point). Moreover, each two points lie
on a unique line.

Having such a plane, we can construct a swell-coloring of K, with ¢ + 1
colors as follows. Identify the vertices of K> with the points in AG(2,¢) and
associate some unique color with each of the g+ 1 pencils of parallel lines. In
order to define a swell-coloring, consider two distinct vertices x and y of K.
These points lie on a unique line which, in its turn, belongs to exactly one
of the pencils. Color the edge {x,y} with the color of this pencil. Since any
two points lie on a unique line and parallel lines do not meet in a point, all
three edges of a triangle will receive different colors, and hence, the coloring
is swell, as desired.

In fact, Ward and Szabé (1994) have proved that the converse also holds:
if the graph K (¢ > 2) can be swell-colored using ¢ + 1 colors then this
coloring can be used to construct an affine plane of order gq.

4.7 The weight shifting argument

A version of the pigeonhole principle is the averaging principle which we
formulated in Sect. 1.5: every set of numbers contains a number at least as
large as the average (and one at least as small).

Trying to show that some “good” object exists, we can try to assign objects
their “weights” so that objects with a large enough (or small enough) weight
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are good, and try to show that the average weight is large (or small). The
averaging principle then guarantees that at least one of the objects is good.
The main difficulty is to define the weights relevant for the desired application.
After this we face the problem of how to compute the weights and accumulate
their sum. At this step the so-called “shifting argument” can help. Let us
illustrate this by three examples (the first is trivial, whereas the next two are
not).

Proposition 4.12. Let n < m < 2n. Then for any distribution of m pigeons
among n pigeonholes so that no hole is left empty, at most 2(m — n) of the
pigeons will be happy, i.e., will sit not alone in their holes.

Proof. If some hole contains more than two pigeons then, by removing a
pigeon from this hole and placing it in a hole which had contained exactly
one pigeon, we arrive to a new distribution with one more happy pigeon. Thus,
the maximum number of happy pigeons is achieved when each hole has at
most two pigeons, and in this case this number is < 2(m —n), as desired. O

A trail in a graph is a walk without repeated edges.

Theorem 4.13 (Graham-Kleitman 1973). If the edges of a complete graph
on n vertices are labeled arbitrarily with the integers 1,2,. .., (g), each edge
receiving its own integer, then there is a trail of length at least n — 1 with an
increasing sequence of edge-labels.

Proof. To each vertex x, assign its weight w, equal to the length of the longest
increasing trail ending at x. If we can show that ) w, > n(n — 1), then the
averaging principle guarantees a vertex with a large enough weight.

We accumulate the weights and their sum iteratively, growing the graph
from the trivial graph; at each step we add a new edge whose label is minimal
among the remaining ones. Initially, the graph has no edges, and the weights
are all 0. At the i-th step we take a new edge e = {z,y} labeled by i. Let w,
and w, be the weights of x and y accumulated so far.

If w, = wy then increase both weights by 1. If w, < w, then the edge e
prolongs the longest increasing trail ending at y by 1; so the new weights are
wy, = wy + 1 and wy = wy. In either case, when an edge is added, the sum
of the weights of the vertices increases by at least 2. Therefore, when all the
() steps are finished, the sum of the vertex weights is at least n(n — 1), as
desired. O
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Finally, we illustrate the shifting argument by the fourth proof of Mantel’s
theorem: If a graph G on 2n vertices contains n? 4+ 1 edges, then G contains
a triangle.

Fourth proof of Mantel’s theorem (Motzkin—Straus 1965). Let G be a graph
on 2n vertices, and let m be the number of edges in G. Assume that G has
no triangles. Our goal is to prove that then m < n%. We assign a nonnegative
w, to each vertex x such that Z$ w,; = 1. We seek to maximize

S = wawy,

where the sum is taken over all edges {x,y} of G. One way of assigning the
weights is to let w, = 1/(2n) for each x. This gives

m
S > @ (4.2)
We are going to show that, on the other hand, S never exceeds 1/4, which
together with the previous lower bound will imply that m < n?, as desired.

And now comes the “shifting argument.” Suppose that x and y are two
nonadjacent vertices and W, and W, are the total weights of vertices con-
nected to = and y, respectively. Suppose also that W, > W,. Then for any
€e>0,

(we + Wy + (wy — €)Wy > w, Wy + w, Wy,

This, in particular, means that we do not decrease the value of S if we shift
all of the weight of vertex y to the vertex x. It follows that S is maximized
when all of the weight is concentrated on a complete subgraph of G. But we
have assumed that G has no triangles; so G cannot have complete subgraphs
other than single edges. Hence, S is maximized when all of the weight is
concentrated on two adjacent vertices, say x and y. Therefore

ngax{ww~wy : wx—i—wy:l}:l/él

which, together with (4.2), yield the desired upper bound m < n?. a

4.8 Schur’s theorem

The famous Fermat’s Last Theorem states that if n > 2, then 2" +y™ = 2" has
no solutions in nonzero integers x, y and z. This theorem was first conjectured
by Pierre de Fermat in 1637, but was not proven until 1995 despite the efforts
of many mathematicians. The last step in its proof was done by Andrew
Wiles.

As early as 1916, Issai Schur used the pigeonhole principle to show that
Fermat’s Last Theorem is false in the finite field Z, for any sufficiently large



64 4 The Pigeonhole Principle

prime p. He derived this from the following combinatorial result about color-
ings of numbers. The result may perhaps be considered as the earliest result
in Ramsey theory.

An r-coloring of a set assigns one of the colors 1,2,...,7 to each element
of the set.

Theorem 4.14 (Schur 1916). For any r > 2 and for any r-coloring of
{1,2,...,n}, where n = [er!], there are three integers x,y,z of the same
color and such that x +y = 2.

Proof. Let x : {1,...,n} — {1,...,7} be an r-coloring of the first n positive
integers. Assume that there do not exist positive integers x,y with x +y <n
such that x(x) = x(y) = x(z + y). Our goal is to show that then n < erl.

Let ¢p be a color which appears most frequently among the n elements,
and let zp < 21 < ... < zp,—1 be the elements of color ¢o. By the pigeonhole
principle, we know that n < rnq,

Consider the set Ag = {x; — 209 : 1 < i < n;1}. By our assumption, no
number in Ay can receive color ¢g. So, the set Ag is colored by r — 1 colors.
Let ¢; be a color which appears most frequently among the elements of Ay,
and let yo < y1 < ... < yYp,—1 be its elements of color c¢;. Observe that
ny — 1< (r—1)na.

Consider the set A1 = {y; —yo : 1 < i < nz}. By the assumption, no
number in A; can receive any of colors ¢y and ¢;. So, the set A; is colored
by r — 2 colors. Let ¢z be a color which appears most frequently among the
elements of A;, and let zp < 23 < ... < zp,_1 be its elements of color cs.
Observe that ng — 1 < (r — 2)ns.

Continue this procedure until some ny becomes 1. Since we have only r
colors, this happens at the latest for £ = r. Thus, we obtained the inequalities
n<rny and n; < (r—i)njp1+1fori=1,... k-1, with ny = 1. Putting
them together we obtain that

i r—1(r—=2)--(r—1i) Z—: 'Z =er! O
: 20

i=0 =0

Schur (1916) used Theorem 4.14 to show that Fermat’s Last Theorem is
false in the finite field Z, for any sufficiently large prime p.

Theorem 4.15. For every integer n > 1, there exists py such that for any
prime p > pg, the congruence

" 4+y" =2" modp
has a solution.

Proof. The multiplicative group Z; = {1,2,...,p — 1} is known to be cyclic
and hence it has a generator g. Each element of Z;, can be written as z = grate
where 0 < i < n. We color the elements of Z; by n colors, where x(z) = i



4.9 Ramseyan theorems for graphs 65

Fig. 4.2 What is the color of e?

if x = g™/*%. By Schur’s theorem, for p sufficiently large, there are elements
x',y', 2" € Zy such that o' +3y = 2’ and x(2') = x(y') = x(2’). Therefore,
217/ — gnjz+i7 y/ — gnjy+i7 Z/ — gnszri and

gnjz“ri + gnjy“’i — gnjz"r’i .
n

Setting 2 = g7, y = ¢’» and z = g7, we get a solution of 2" + y" = z
in Z,. O

4.9 Ramseyan theorems for graphs

How many people can we invite to a party where among each three people
there are two who know each other and two who don’t know each other? It
turns out that at most five persons can attend such a party.

To show this, let us consider the following simple game. Mark six points
on the paper, no three in line. There are two players; one has a Red pencil the
other Blue. Each player’s turn consists in drawing a line with his/her pencil
between two of the points which haven’t already been joined. (The crossing
of lines is allowed). The player’s goal is to create a triangle in his/her color.
If you try to play it with a friend, you will notice that it always end in a win
for one player: a draw is not possible. Prove this! (Hint: see Fig. 4.2.)

We can generalize this argument to arbitrary graphs, not only those with
up to six vertices.

Let G = (V, E) be an undirected graph. A subset S C V is a clique of
G if any two vertices of S are adjacent. Similarly, a subset T C V is an
independent set of G if no two vertices of T' are adjacent in G.

For integers s, ¢ > 1, let R(s,t) denote the smallest number n such that in
any(!) graph on n or more vertices, there exists either a clique of s vertices
or an independent set of ¢ vertices.

s (717)-(117)

Proof. By induction on s + ¢. It is clear form the definition that R(1,t) =
R(s,1) = 1. For s > 1 and ¢t > 1, let us prove that

Theorem 4.16.
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R
. S

Fig. 4.3 Splitting the graph into neighbors and non-neighbors of x

R(s,t) < R(s,t—1)+ R(s — 1,¢). (4.3)

Let G = (V, E) be a graph on n = R(s,t — 1) + R(s — 1,t) vertices. Take an
arbitrary vertex x € V, and split V' \ {z} into two subsets S and T', where
each vertex of S is nonadjacent to = and each vertex of T is adjacent to x
(see Fig. 4.3). Since

R(s,t —1)+ R(s—1,t) = |S|+|T| + 1,

we have either |S| > R(s,t — 1) or |T| > R(s — 1,1).

Let |S| > R(s,t — 1), and consider the induced subgraph G[S] of G: this
is a graph on vertices S, in which two vertices are adjacent if and only if
they are such in G. Since the graph G[S] has at least R(s,t — 1) vertices,
by the induction hypothesis, it contains either a clique on s vertices or an
independent set of t — 1 vertices. Moreover, we know that z is not adjacent
to any vertex of S in GG. By adding this vertex to S, we conclude that the
subgraph G[SU{z}] (and hence, the graph G itself) contains either a clique of
s vertices or an independent set of ¢ vertices. The case when |T'| > R(s —1,t)
is analogous.

Since (".1) + (321)
plies

R@J)glﬂ&t—lykR@—lJﬁg<s+t_3)+(s+t_3>::<s+t_2>.
O

(1) (see Proposition 1.3), the recurrence (4.3) im-

s—1 s—2 s—1

We have proved Theorem 4.16 by induction on s 4+ ¢t. The same result can
also be proved using so-called induced coloring argument. This argument is
encountered frequently in Ramsey theory. To explain the idea, let us prove
the following weaker bound for s = ¢:

R(t,t) < 2%,

That is, any graph on 4% or more vertices must contain either a clique or an
independent set on t vertices.

Proof via induced coloring argument. Take a complete graph on 22¢ vertices,
and fix an arbitrary coloring of its edges in red and blue. Let us suppose for
convenience that the vertices are totally ordered. Let z; be the first vertex.
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Then by the pigeonhole principle there is a set of vertices S of size at least
22=1 guch that every edge from z; to S; has the same color. Now let x5 be
the least vertex of S7. By the pigeonhole principle again there is a set So C 51
of size at least 22!~2 such that every edge from x5 to Sy has the same color.
Continuing this process, we obtain a sequence z1,...,To; of vertices and a
sequence Sy D S1 D S2 D ... D So; of sets such that x; € S;_; for every 7, and
every edge from z; to S; has the same color. (Here Sy is the set of all vertices.)
It follows that the color of the edge joining z; to x; depends only on min{i, j}.
That is, for each i =0,1,...,2t — 1, all edges joining x; with the subsequent
vertices 11, ..., x9 have the same color ¢; € {red, blue}. Since we have 2t
distinct values for ¢ and only two colors, the pigeonhole principle implies that
there must be a subset T' C {1,...,2t} of size |T| > (2t)/2 = t such that
¢; = c¢j for all 4, j € T. Thus, all edges joining vertices in {x; : ¢ € T'} have
the same color. a

A simple probabilistic argument yields the following lower bound.
Theorem 4.17 (Erd8s 1947). R(t,t) > 2¢/2 for all t > 3.

That is, the edges of K, can be colored in two colors so that we get no
monochromatic K21og .

Proof. Consider a random 2-coloring of the edges of K, obtained by coloring
each edge independently either red or blue, where each color is equally likely.
For any fixed set T of ¢ vertices, the probability that all (;) edges between
these vertices receive the same color (i.e., that either all edges are red or they
are blue) is 2 - 9-(2). The number of t-element subsets of vertices () and
therefore the probability that there is at least one monochromatic ¢-clique is

at most . 14t/2
n .21,(;)<TL_.2T,
t t 2t?/2
which is < 1 if n < 2t/2 and t > 3. i

Using Stirling’s Formula, the lower bound on R(t,t) can be improved to
about #2%/2. On the other hand, Theorem 4.16 gives an upper bound (*) on
R(t+1,t+1). This bound was recently improved by Conlon (2009) to about
t=¢ (ztt) with £ > clogn/loglogn. The gap is still large, and tight bounds are
known only for s = 3:

t2 t2
Cl—— S R(3,t) S Co—.
logt logt
The upper bound is due to Ajtai, Komlds, and Szemerédi (1980) and the
lower bound was proved by Kim (1995) using a probabilistic argument.
In the case of bipartite graphs the following bounds are known. Let b(t)
be the smallest number n such that, in any two-coloring of the complete
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bipartite n X n graph K, , there is a monochromatic Ky ;. The best known
lower bound b(t) = 2(k2¥/2) is the same as for ordinary graphs. The best
known upper bound b(t) = O(2F log k) was proved by Conlon (2008).

4.10 Ramsey’s theorem for sets

We now consider colorings of k-element subsets of [n] for k > 2. The Ramsey
theorem for graphs (we just proved) speaks about the case k = 2: for every
s > 1, there is an n such that it is not possible to color 2-element subsets of
[n] (edges) in red and blue so that every s-element subset of [n] will contain
two 2-element subsets of different colors. (In this case n > 4° is enough.) In
its unabridged form, the celebrated result of Ramsey (1930) speaks about
colorings of larger subsets using any number of colors.

Theorem 4.18 (Ramsey’s theorem). For every natural numbers 1 < k < s
and v > 2 there exists a natural number n = R,(k;s) such that whenever
k-subsets of [n] are colored in r colors, there is an s-subset of [n] whose all
k-subsets receive the same color.

Proof. We first observe that it is enough to consider the case of r = 2 colors.
Claim 4.19. R,1(k;s) < R, (k; Ra(k; 9)).

Proof. Let N = R, (k; Ra(k;s)) and let an arbitrary coloring of k-subsets of
an N-element set X with r +1 colors 0,1,...,r be given. Then consider this
as an r-coloring simply by identifying the colors 0 and 1. (This is known as
the “mixing colors” trick.) By the choice of N, either there exists an Ry (k; s)-
element subset, all whose k-subsets receive one of the colors 2, ... r (and we
are done), or there exists an Ro(k; s)-element subset Y with each its k-subsets
in color 0 or 1. According to the size of Y, all k-subsets of some its s-element
subset must be monochromatic. O

By Claim 4.19, it is enough to show that Ry (k;s) exists.

In order to argue by induction, we define a more “granulated” version of
the Ramsey number Ra(k; s). Namely let R(k;s,t) be the smallest number n
with the following property: If k-subsets of an n-set are colored with two colors
0 and 1, then all k-subsets of some s-subset receive color 0 or all k-subsets of
some t-subset receive color 1. Thus, the theorem claims that R(k; s, s) exists
for all s > k. We will prove a stronger statement that R(k;s,t) < n, where

n:=R(k—1;R(k;s—1,t),R(k;s,t — 1)) + 1.

We prove this recurrence by induction on k£ and on s,t. Observe that, by
the pigeonhole principle, R(1;s,t) = s+ ¢ — 1 for all s and ¢ and, moreover,
R(k;z,k) = R(k; k,z) = x for all k and z > k. By induction, we may assume
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that the numbers R(k;s —1,t) and R(k;s,t— 1) exist, and take an arbitrary
n-element set X, where n is defined above.

Let x be a coloring of k-subsets of X with two colors 0 and 1. Fix a
point z € X, and let X’ := X \ {z}. We define a new coloring x’ of the
(k — 1)-subsets A of X’ by

X'(A) == x(Au{z}).

By the choice of n and by symmetry, we can assume to have found a subset
Y C X’ such that |[Y| = R(k;s — 1,t) and

X' (A) =0 for all (k— 1)-subsets A of Y.

Now consider how the original coloring x acts on the k-subsets of Y. Ac-
cording to its size, the set Y must either contain a t-element subset, all
whose k-subsets receive color 1 (and we are done), or it must contain an
(s — 1)-element subset Z, all whose k-subsets receive color 0. In this last case
consider the s-element subset Z U {z} and take an arbitrary its subset B of
size k. If 2 ¢ B then B is a k-element subset of Z, and hence, x(B) = 0. If
x € B then the set A = B\ {z} is a (k — 1)-subset of Y, and hence again,

X(B) = x (AU {z}) = X'(A) = 0. O

One of the earliest and most popular applications of Ramsey’s theorem is
due to Erdés and Szekeres (1935). In fact, this application was a first step in
popularizing Ramsey’s theorem.

Theorem 4.20 (Erdds—Szekeres 1935). Let m > 3 be a positive integer. Then
there exists a positive integer n such that any set of n points in the Fuclidean
plane, no three of which are collinear, contains m points which are the vertices
of a convexr m-gon.

Proof (due to Johnson 1986). Choose n = Ra(3;m), the number from the
Ramsey’s Theorem 4.18, and let A be any set of n points in the plane, no
three of which are collinear (i.e., lie on a line). For a,b, ¢ € A, let |abe| denote
the number of points of A which lie in the interior of the triangle spanned by
a,b and c. Define the 2-coloring x of triples of points in A by x(a,b,c) =0
if |abe| is even and x(a,b,c) = 1 otherwise. By the choice of n, there exists
an m-element subset B C A such that all its 3-element subsets receive the
same color. Then the points of B form a convex m-gon. Otherwise, there
would be four points a,b,c,d € B such that d lies in the interior of the
triangle abe (see Fig. 4.4). Since no three points of B are collinear, we have
|abe| = |abd| 4 |acd| + |bed| + 1, contradicting that the coloring x is constant
on all triples from B. a
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a c

Fig. 4.4 Point d lies in none of the lines ab, bc and ac.

Exercises

4.1. Suppose five points are chosen inside an equilateral triangle with side-
length 1. Show that there is at least one pair of points whose distance apart
is at most 1/2. Hint: Divide the triangle into four suitable boxes.

4.2. (D.R. Karger). Jellybeans of 8 different colors are in 6 jars. There are
20 jellybeans of each color. Use the pigeonhole principle to prove that there
must be a jar containing two pairs of jellybeans from two different colors of
jellybeans. Hint: For each color there is a jar containing a pair of jellybeans of that
color, and we have more colors than jars.

4.3. Show that for any positive integer n, there is a multiple of n that contains
only the digits 7 or 0. Hint: Consider the values modulo n of all the numbers a; of
the form 77...7, with i sevens, i = 1,...,n+ 1.

4.4. Prove that every set of n+ 1 distinct integers chosen from {1,2,...,2n}
contains a pair of consecutive numbers and a pair whose sum is 2n + 1. For
each n, exhibit two sets of size n to show that these results are the best
possible. Hint: Use pigeonholes (2i,2i — 1) and (3,2n —i+1),i=1,...,n.

4.5. Prove that every set of n+ 1 distinct integers chosen from {1,2,...,2n}
contains two numbers such that one divides the other. Sketch: (due to Lajos
Pésa): Write every number z in the form z = k2%, where k; is an odd number between
1 and 2n — 1. Take odd pigeonholes 1,3,5,...,2n — 1 and put x into the pigeonhole
number k. Some hole must have two numbers z < y.

4.6. Coin-weighing problem (Erdds—Spencer 1974). Let n coins of weights 0
and 1 be given. We are also given a scale with which we may weigh any
subset of the coins. The information from previous weighings may be used.
The object is to determine the weights of the coins with the minimal number
of weighings. Formally, the problem may be stated as follows. A collection
S1,...,Sm of subsets of [n] is called determining if an arbitrary subset T of
[n] can be uniquely determined by the cardinalities |S; N T|, 1 < i < m. Let
D(n) be the minimum m for which such a determining collection exists. By
weighting each coin separately (S; = {i}) we see that D(n) < n. Show that
D(n) > n/ (10g2 (n + 1)) Hint: Take a determining collection Si,..., Sy, observe
that for each ¢ there are only n+ 1 possible |\S; NT|, and apply the pigeonhole principle.
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4.7. Suppose that n is a multiple of k. Construct a graph without (k + 1)-
cliques, in which the number of edges achieves the upper bound (4.1) given
by Turan’s theorem. Hint: Split the n vertices into k equal size parts and join all
pairs of vertices from different parts (this is a complete k-partite graph).

4.8. Recall that the independence number a(G) of a graph G is the maximum
number of pairwise nonadjacent vertices of G. Prove the following dual version
of Turdn’s theorem: if G is a graph with n vertices and nk/2 edges, k > 1,
then a(G) > n/(k+1).

4.9. (Motzkin—Straus 1965). Prove Turén’s theorem using the shifting argu-
ment described in the fourth proof of Mantel’s theorem. Hint: Let G be a graph
with n vertices and m edges, and suppose that G has no (k+1)-clique. Assign weights wy
to the vertices as before. Setting w, = 1/n for all vertices, we obtain S > m/n?. On the
other hand, the same shifting argument yields that the weight is concentrated on some
clique U with |U| =t < k vertices. Setting w, = 1/t for € U, and ws; = 0 otherwise,
the total weight becomes (;) /t? = (1 — 1/t)/2. Since this expression is increasing in ¢,
the best we can do is to set t = k.

4.10. Derive the Erdds—Szekeres theorem from Lemma 4.6. Hint: Given a se-
quence A = (a1,...,an) of n > rs+ 1 real numbers, define a partial order < on A by
a; X aj if a; < aj and ¢ < j, and apply Dilworth’s lemma.

4.11. Let n? 41 points be given in R2. Prove that there is a sequence of n+1
points (x1,y1),- -, (Tnt1,Ynt1) for which 1 < z9 < -+ < 241 and y1 >
Yo > -+ > Ynt1, O a sequence of n+ 1 points for which 1 < xo < -+ < 49
and y1 < y2 < - < Ynta-

4.12. Show that, if n > srp, then any sequence of n real numbers must con-
tain either a strictly increasing subsequence of length greater than s, a strictly
decreasing subsequence of length greater than r, or a constant subsequence of
length greater than p. Hint: By the pigeonhole principle, if only sr or fewer distinct
values occur, then some value must be taken by more than p numbers in the sequence.
Otherwise, we can argue as in the Erdés—Szekeres theorem.

4.13.Let 0 < a1 < az < --- < agr41 be sr+ 1 integers. Prove that we can
select either s + 1 of them, no one of which divides any other, or r + 1 of
them, each dividing the following one. Hint: Apply Dilworth’s lemma.

4.14. Show that the bound in the Erdés—Szekeres’ theorem is best possible.
Hint: Consider the sequence A = (Bs—1, Bs—2, ..., Bo), where

B; = (ir+1,ir+2,...,ir +7r).

4.15. Use the pigeonhole principle to prove the following fact, known as Chi-

nese remainder theorem. Let ai,...,ax,b be integers, and m = mq---my
where m; and m; are relatively prime, for all 7 # j. Then there exists exactly
one integer a, b < a < b+ m, such that a =a; mod m; foralli =1,... k.

Hint: The integers z € {b,b+1,...b+m—1} are different modulo m; hence their residues
(z mod myq, ...,z mod mg) run through all m possible values.
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4.16. (Moon—Moser 1962). Let G = (V, E) be a graph on n vertices and ¢(G)
the number of triangles in it. Show that

E 2
t(G)Z|3—n|(4~\E|—n )-

Hint: For an edge e = {z,y}, let t(e) be the number of triangles containing e. Let
B = V \ {z,y}. Among the vertices in B there are precisely t(e) vertices which are
adjacent to both z and y. Every other vertex in B is adjacent to at most one of these
two vertices. We thus obtain d(z) + d(y) — t(e) < n. Summing over all edges e = {z,y}

we obtain
> (d(@) +d(y) = Y te) <n- Bl
e E

e E

Apply the Cauchy—Schwarz inequality to estimate the first sum.

Comment: This implies that a graph G on an even number n of vertices with |E| =
n? /4 4+ 1 edges not only contains one triangle (as it must be by Mantel’s theorem), but
more than n/3.

4.17. (Goodman 1959). Let G be a graph with n vertices and m edges. Let
t(G) denote the number of triangles contained in the graph G or in its com-
plement. Prove that

HG) > <g) + % —m(n - 1).

Hint: Let ¢; be the number of triples of vertices {i, j, k} such that the vertex ¢ is adjacent
to precisely one of j or k. Observe that ¢t(G) > (73’) —% Zl t; and that t; = d;(n—1—d;),
where d; is the degree of the vertex i in G. Use the Cauchy—Schwarz inequality (13.3)
and Euler’s theorem (Theorem 1.8) to show that de >1 (Z di)z — 4m?

n

4.18. A set S C V of vertices in a graph G = (V, E) spans an edge e €
E if both endpoints of e belong to S. Say that a graph is (k,r)-sparse if
every subset of k vertices spans at most r of its edges. Turan’s theorem
(Theorem 4.8) gives an upper bound on the maximal possible number of
edges in a (k,r)-sparse graph for r = (]2“) — 1. Show that every (k, r)-sparse

. -1
graph on n vertices has at most o - (}) edges, where a = 7 - (5) . Hint:
Observe that every edge is spanned by precisely (::g) of k-element subsets and use

Exercise 1.12.

4.19. Color all non-empty subsets (not the points!) of [n] = {1,...,n} with r
colors. Prove that, if n is large enough, then there are two disjoint non-empty
subsets A, B such that A, B and A U B have the same color. Hint: Take n =
R-(2;3). Assume the non-empty subsets of [n] are colored with 7 colors. Now color each
pair {4, 5} (1 <i < j < n) by the color of the interval {i,7+1,...,j—1}. By Theorem 4.18,
there exists a monochromatic triangle * < y < z. Take A = {z,z 4+ 1,...,y — 1} and
B={y,y+1,...,2—1}.

4.20. Show that for every r > 2 there exists a constant ¢ = ¢(r) such that, if
n is large enough, then for every r-coloring of the points 1, ..., n, at least c¢-n?
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of the pairs {i,j} of points will receive the same color. Hint: By the pigeonhole
principle, every (r + 1)-subset of points contributes at least one monochromatic pair,
and every pair is contained only in (::f) of such subsets.

4.21. Prove that R(3,4) < 9. Hint: Color the edges of Ko in red and blue, and
assume that there are no red triangles and no blue 4-cliques. Then each vertex is incident
to precisely three red edges and five blue edges. Thus, there are exactly (9 - 3)/2 many
red edges. But this should be an integer!

4.22. Derive the following weaker version of Schur’s theorem (Theorem 4.14)
from Ramsey’s theorem (Theorem 4.18): For any r > 2 there is n > 3 such
that for any r-coloring of {1,2,...,n}, there are three integers of the same
color and such that z+y = z. Hint: Choose n = R, (2;3). Given a coloring x : [n] —
[r] of the points in [n], consider the coloring x of the pairs defined by: x {z,y}) = x(|Jz—
y|) What does it means to have a x -monochromatic triangle with vertices z < y < 27

4.23. Use the previous exercise to show that R(4,4) < 18. Hint: (4.3).

The next exercises are about the chromatic number x(G) of graphs. Recall
that this is the smallest number of colors we need in order to color the vertices
of G in such a way that no two adjacent vertices receive the same color.

4.24. Show that any graph G must have at least (X(QG )) edges.

4.25. Let G1, G2 be two graphs. Prove that x(G1UG2) < x(G1) - x(G2). Hint:

Use pairs of colors to color G1 U Ga.

4.26. Let G be a graph on n vertices. A complement G of a graph G is
a graph on the same set of vertices in which two vertices are adjacent if

and only if they are non-adjacent in G. Prove that x(G) - x(G) > n and

X(G) + x(G) = 2/n. Hint: (x(G) — x(@)) > 0.

4.27. Prove that x(G) < A(G) + 1, where A(G) is the maximum degree of a

vertex in G. Hint: Order the vertices v1,...,v, and use greedy coloring: assign to v;
the smallest-indexed color not already used on its lower-indexed neighbors.

4.28. (Welsh—Powell 1967). Let G be a graph on n vertices, whose degrees
are dy > dg > ... > d,. Prove that x(G) < 1+ max; min{d;,7 — 1}. Hint:
Apply the greedy algorithm from the previous exercise. When we color the i-th vertex,
at most min{d;,7 — 1} of its neighbors have already been colored, so its color is at most
1+ min{d;,7 — 1}.

4.29.Let G = (V,E) be a graph and S C V a subset of its vertices. The
induced subgraph of G is the graph G[S] on vertices S, in which two vertices
are adjacent if and only if they are such in the original graph G. Prove that
for any graph G we can find a partition V = S UT of its vertices into two
disjoint non-empty subsets S and T such that x(G[S]) + x(G[T]) = x(G).
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{1,3} {12} {13}

{1.2) (3.4) 2y (13)

Fig. 4.5 The graphs Ko 4 and K33 with a particular lists of color sets

4.30. A graph G is k-critical if x(G) = k but x(H) < k for every proper
subgraph H of G. Let §(G) denote the minimum degree of a vertex in G.
Prove the following: if G is a k-critical graph, then §(G) > k — 1. Hint: Assume
there is a vertex x € V of degree at most k — 2, and consider the induced subgraph
H = G[V \ {z}]. Graph H must have a legal (k — 1)-coloring, and at least one of these
k — 1 colors is not used to color the neighbors of z; we can use it for z.

4.31. (Szekeres—Wilf 1968). Prove that x(G) < 1 + maxgcg 6(H) holds for
any graph G. Hint: Let k = x(G), take a k-critical subgraph H of G and use the
previous estimate.

4.32. Let G be a directed graph without cycles and suppose that G has no
path of length k. Prove that then x(G) < k. Hint: Let ¢(z) denote the maximum
length of a path starting from z. Then c is a coloration with colors 0,1, ...,k — 1. Show
that it is legal.

4.33. Let G be a graph on n vertices, and «(G) be its independence number,
i.e., the maximal number of vertices, no two of which are joined by an edge.
Show that n/a(G) < x(G) <n —a(G) + 1.

4.34. It is clear that x(G) > w(G), where w(QG) is the cliqgue number of G, i.e.,
the maximum size of a clique in G. Erdds (1947) has proved that, for every
large enough n, there exists an n-vertex graph G such that w(G) < 2log,n
and w(G) < 2log, n (see Theorem 4.17 for a proof). Use this result to show
that the gap between x(G) and w(G) can be quite large: the maximum of
X(G)/w(G) over all n-vertex graphs G is £2 (n/(log, n)?). Hint: x(G) > n/w(G).

4.35. Let G = (V, E) be a graph, and (C,),ev be a sequence of (not neces-
sarily disjoint) sets. We can look at each set C,, as a color set (or a “palette”)
for the vertex v. Given such a list of color sets, we consider only colorings
¢ such that ¢(v) € C, for all v € V, and call them list colorings of G. As
before, a coloring is legal if no two adjacent vertices receive the same color.
The list chromatic number x¢(G) is the smallest number k such that for any
list of color sets C,, with |C,| = k for all v € V, there always exists a legal list
coloring of G. Of course, x¢(G) < |V|. Show that x(G) < x¢(G) < A(G) +1

4.36. Let K5 4 be a complete bipartite graph with parts of size 2 and 4 (see
Fig. 4.5). Show that x(K24) = 2 but x¢(K24) = 3. What is x¢(K33)? Hint:
Use the list of color sets given in Fig 4.5.
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4.37. Generalize the above construction for K33 to find graphs G where
X(G) = 2, but x¢(G) is arbitrarily large. For this, consider the complete
bipartite graph G = V7 x V5 whose parts V; and V5 consist of all k-subsets
vof {1,...,2k — 1}. Define the pallete C,, of a vertex (k-subset) v to be the
subset v itself. Show that x,(G) > k. Hint: Observe that we need at least k colors
to color V1 and at least k colors to color V5.

4.38. Let S, be a graph which has vertex set the n? entries of an n x n matrix
with two entries adjacent if and only if they are in the same row or in the
same column. Show that x¢(S,) > n. Hint: Any legal coloring of S, corresponds
to Latin square.

Comment: The problem, whether x¢(Sn,) = m, was raised by Jeff Dinitz in 1978.

Janssen (1992) has proved that x¢(Sn) < n + 1, and the final solution x¢(Sn) = n
was found by Galvin (1995).






5. Systems of Distinct Representatives

A system of distinct representatives for a sequence of (not necessarily distinct)
sets 51,52, ..., n is a sequence of distinct elements x1, zo, ..., T, such that
x; € S;foralli=1,2,...,m.

When does such a system exist? This problem is called the “marriage
problem” because an easy reformulation of it asks whether we can marry
each of m girls to a boy she knows; boys are the elements and S; is the set
of boys known to the i-th girl.

Clearly, if the sets S1,59,...,5,, have a system of distinct representatives
then the following Hall’s Condition is fulfilled:

¢

(x) for every k =1,2,...,m the union of any k sets has at least k elements:

Us.

icl

>|I| forall I C{1,...,m}.

Surprisingly, this obvious necessary condition is also sufficient.

5.1 The marriage theorem

The following fundamental result is known as Hall’s marriage theorem (Hall
1935), though an equivalent form of it was discovered earlier by Konig (1931)
and Egervary (1931), and the result is also a special case of Menger’s theorem
(1927). The case when we have the same number of girls as boys was proved
by Frobenius (1917).

Theorem 5.1 (Hall’s Theorem). The sets S1, 53, ..., Sm have a system of
distinct representatives if and only if (x) holds.

Proof. We prove the sufficiency of Hall’s condition (%) by induction on m.
The case m = 1 is clear. Assume that the claim holds for any collection with
less than m sets.
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Case 1: For each k, 1 < k < m, the union of any k sets contains more than
k elements.

Take any of the sets, and choose any of its elements z as its representative,
and remove x from all the other sets. The union of any s < m — 1 of the
remaining m — 1 sets has at least s elements, and therefore the remaining
sets have a system of distinct representatives, which together with = give a
system of distinct representatives for the original family.

Case 2: The union of some k, 1 < k < m, sets contains exactly k elements.
By the induction hypothesis, these k sets have a system of distinct rep-
resentatives. Remove these k elements from the remaining m — k sets. Take
any s of these sets. Their union contains at least s elements, since otherwise
the union of these s sets and the k sets would have less than s + k elements.
Consequently, the remaining m — k sets also have a system of distinct repre-
sentatives by the induction hypothesis. Together these two systems of distinct
representatives give a system of distinct representatives for the original fam-
ily. a

In general, Hall’s condition (%) is hard to verify: we must check if the union
of any k, 1 < k < m, of the sets S1,..., S, contains at least k elements. But
if we know more about these sets, then (sometimes) the situation is much
better. Here is an example.

Corollary 5.2. Let S1,...,S,, be r-element subsets of an n-element set such
that each element belongs to the same number d of these sets. If m < n, then
the sets Sy,...,Sm have a system of distinct representatives.

Proof. By the double counting argument (1.10), mr = nd, and hence, m < n
implies that d < r. Now suppose that S1,...,S,, does not have a system of
distinct representatives. By Hall’s theorem, the union ¥ = S5;, U---U S;, of
some k (1 < k < m) sets contains strictly less than & elements. For x € Y|
let d, be the number of these sets containing . Then, again, using (1.10),
we obtain

k
rk=Y 18,1 = Y d. <d|Y| < dk,

j=1 €Y

a contradiction with d < r. a

Hall’s theorem was generalized in different ways. Suppose, for example,
that each of the elements of the underlying set is colored either in red or in
blue. Interpret red points as “bad” points. Given a system of subsets of this
(colored) set, we would like to come up with a system of distinct representa-
tives which has as few bad elements as possible.

Theorem 5.3 (Chvatal-Szemerédi 1988). The sets St, .. ., Sy, have a system
of distinct representatives with at most t red elements if and only if they have
a system of distinct representatives and for every k = 1,2,...,m the union
of any k sets has at least k — t blue elements.
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Proof. The “only if” part is obvious. To prove the “if” part, let R be the
set of red elements. We may assume that |R| > ¢ (otherwise the conclusion
is trivial). Now enlarge S1,...,Sm to S1,...,Sm, Sm+1s-- -5 Smir by adding
r = |R| — t copies of the set R. Observe that the sequence Si,...,S,, has
a system of distinct representatives with at most ¢ red elements if and only
if the extended sequence has a system of distinct representatives (without
any restriction). Hence, Hall’s theorem reduces our task to proving that the
extended sequence fulfills Hall’s condition (), i.e., that for any set of indices
IC{1,...,m+r}, the union Y = (J,c; S; contains at least || elements. Let
J=1In{1,...,m}.If J = I then, by the first assumption, the sets S; (i € I)
have a system of distinct representatives, and hence, |Y'| > |I|. Otherwise, by
the second assumption,

¥i=| UGS\ R+ 172 010+ R
icJ
= [JI+ (IRl =) = [J|+ [T\ J[ = 1];
hence (*) holds again. O

5.2 Two applications

In this section we present two applications of Hall’s theorem to prove results
whose statement does not seem to be related at all to set systems and their
representatives.

5.2.1 Latin rectangles

An r x n Latin rectangle is an r X n matrix with entries in {1,...,n} such
that each of the numbers 1,2, ..., n occurs once in each row and at most once
in each column. A Latin square is a Latin r X n-rectangle with » = n. This
is one of the oldest combinatorial objects, whose study goes back to ancient
times.

Suppose somebody gives us an n X n matrix, some of whose entries are
filled with the numbers from {1,...,n} so that no number occurs more than
once in a row or column. Our goal is to fill the remaining entries so that to
get a Latin square. When is this possible? Of course, the fewer entries are
filled, the more chances we have to complete the matrix. Fig. 5.1 shows that,
in general, it is possible to fill n entries so that the resulting partial matrix
cannot be completed.

In 1960, Trevor Evans raised the following question: if fewer than n entries
in an n X n matrix are filled, can one then always complete it to obtain a Latin
square? The assertion that a completion is always possible became known as
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Ly 5|2|41]?

3

Fig. 5.1 A partial 2 x 5 Latin square that cannot be completed

the Evans conjecture, and was proved by Smetaniuk (1981) using a quite
subtle induction argument.

On the other hand, it was long known that if a partial Latin square has no
partially filled rows (that is, each row is either completely filled or completely
free) then it can always be completed. That is, we can build Latin squares by
adding rows one-by-one. And this can be easily derived from Hall’s theorem.

Theorem 5.4 (Ryser 1951). If r < n, then any given r X n Latin rectangle
can be extended to an (r + 1) x n Latin rectangle.

Proof. Let R be an r x n Latin rectangle. For j = 1,...,n, define S; to be
the set of those integers 1,2, ..., n which do not occur in the j-th column of
R. Tt is sufficient to prove that the sets Si, ..., S, have a system of distinct
representatives. But this follows immediately from Corollary 5.2, because:
every set S; has precisely n—r elements, and each element belongs to precisely
n —r sets S; (since it appears in precisely r columns of the rectangle R). O

5.2.2 Decomposition of doubly stochastic matrices

Using Hall’s theorem we can obtain a basic result of polyhedral combinatorics,
due to Birkhoff (1949) and von Neumann (1953).

An n x n matrix A = {a;;} with real non-negative entries a;; > 0 is
doubly stochastic if the sum of entries along any row and any column equals
1. A permutation matriz is a doubly stochastic matrix with entries 0 and 1;
such a matrix has exactly one 1 in each row and in each column. Doubly
stochastic matrices arise in the theory of Markov chains: a;; is the transition
probability from the state i to the state j. A matrix A is a convex combination
of matrices Ay, ..., As if there exist non-negative reals \q, ..., s such that
A= Zle )\1‘/4z and Zle )\z =1.

Birkhoff—Von Neumann Theorem. FEvery doubly stochastic matriz is a
convexr combination of permutation matrices.

Proof. We will prove a more general result that every n x n non-negative
matrix A = (a;;) having all row and column sums equal to some positive
value v > 0 can be expressed as a linear combination 4 = Y7 | \;P; of
permutation matrices Py, ..., Ps, where \1,..., \s are non-negative reals such
that 25:1 )‘z =7.

To prove this, we apply induction on the number of non-zero entries in A.
Since v > 0, we have at least n such entries. If there are exactly n non-zero
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entries then A = vP for some permutation matrix P, and we are done. Now
suppose that A has more than n non-zero entries and that the result holds
for matrices with a smaller number of such entries. Define

Si={j: aij >0}, i=12,...,n,

and observe that the sets Si,...,95, fulfill Hall’s condition. Indeed, if the

union of some k (1 < k < n) of these sets contained less than k elements,

then all the non-zero entries of the corresponding k rows of A would occupy

no more than £ — 1 columns; hence, the sum of these entries by columns

would be at most (k — 1)7, whereas the sum by rows is kv, a contradiction.
By Hall’s theorem, there is a system of distinct representatives

jlesl,...,jneSn.

Take the permutation matrix P; = {p;;} with entries p;; = 1 if and only if
J = Ji- Let Ay = min{as,,,. .., an;, }, and consider the matrix A; = A—\ P;.
By the definition of the sets S;, A1 > 0. So, this new matrix A; has less non-
zero entries than A. Moreover, the matrix A; satisfies the condition of the
theorem with v = v — A\;. We can therefore apply the induction hypothesis
to Aj, which yields a decomposition A; = Ao P> + -+ + AsPs, and hence,
A=MP +A =\P; 4+ Ao Py + - - - + A\g Ps, as desired. O

5.3 Min—max theorems

The early results of Frobenius and Konig have given rise to a large number of
min-mazx theorems in combinatorics, in which the minimum of one quantity
equals the maximum of another. Celebrated among these are:

e Menger’s theorem (Menger 1927): the minimum number of vertices sepa-
rating two given vertices in a graph is equal to the maximum number of
vertex-disjoint paths between them;

o Konig-Egervdry’s min-maz theorem (Konig 1931, Egervary 1931): the size
of a largest matching in a bipartite graph is equal to the smallest set of
vertices which together touch every edge;

o Dilworth’s theorem for partially ordered sets (Dilworth 1950): the mini-
mum number of chains (totally ordered sets) which cover a partially or-
dered set is equal to the maximum size of an antichain (set of incomparable
elements).

Here we present the proof of Kénig-Egervary’s theorem (stated not for bipar-
tite graphs but for their adjacency matrices); the proof of Dilworth’s theorem
is given in Sect. 8.1.

By Hall’s theorem, we know whether each of the girls can be married to a
boy she knows. If so, all are happy (except for the boys not chosen ...). But
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what if not? In this sad situation it would be nice to make as many happy
marriages as possible. So, given a sequence of sets 51,53, ..., 5nm, we try to
find a system of distinct representatives for as many of these sets as possible.
In terms of 0-1 matrices this problem is solved by the following result.

Let A be an m X n matrix, all whose entries have value 0 or 1. Two 1s
are dependent if they are on the same row or on the same column; otherwise,
they are independent. The size of the largest set of independent 1s is also
known as the term rank of A.

Theorem 5.5 (Konig 1931, Egervary 1931). Let A be an m x n 0-1 matriz.
The maximum number of independent 1s is equal to the minimum number of
rows and columns required to cover all the 1s in A.

Proof. Let r denote the maximum number of independent 1s and R the
minimum number of rows and columns required to cover all the 1s. Clearly,
R > r, because we can find r independent 1s in A, and any row or column
covers at most one of them.

We need to prove that » > R. Assume that some a rows and b columns
cover all the 1s and a + b = R. Because permuting the rows and columns
changes neither r nor R, we may assume that the first a rows and the first b
columns cover the 1s. Write A in the form

A= (Baxb Cax(nfb) ) )
Dim—ayxb E(m—a)x(n—b)

We know that there are no 1s in E. We will show that there are a indepen-
dent 1s in C. The same argument shows — by symmetry — that there are b
independent 1s in D. Since altogether these a + b 1s are independent, this
shows that » > a + b = R, as desired.

We use Hall’s theorem. Define

Si =14 : Cijzl}g{l,Q,...,n—b},

as the set of locations of the 1s in the i-th row of C' = (¢;;). We claim that
the sequence Sp, S9,...,S, has a system of distinct representatives, i.e., we
can choose a 1 from each row, no two in the same column. Otherwise, Hall’s
theorem tells us that the 1s in some k (1 < k < a) of these rows can all be
covered by less than k columns. But then we obtain a covering of all the 1s
in A with fewer than a + b rows and columns, a contradiction. a

5.4 Matchings in bipartite graphs

Let G be a bipartite graph with bipartition A, B. Two edges are disjoint if
they have no vertex in common. A matching in G is a set of pairwise disjoint
edges. The vertices belonging to the edges of a matching are matched, others
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are free. We may ask whether G has a matching which matches all the vertices
from A; we call this a matching of A into B. A perfect matching is a matching
of A into B in the case when |A| = |B].

The answer is given by Hall’s theorem. A vertex x € A is a neighbor of a
vertex y € B in the graph G if (x,y) € E. Let S, be the set of all neighbors
of z in G. Observing that there is a matching of A into B if and only if the
sets S, with z € A have a system of distinct representatives, Hall’s theorem
immediately yields the following:

Theorem 5.6. If G is a bipartite graph with bipartition A, B, then G has a
matching of A into B if and only if, for every k =1,2,...,|A|, every subset
of k wvertices from A has at least k neighbors.

To illustrate this form of Hall’s theorem, we prove the following (simple
but non-trivial!) fact.

Proposition 5.7. Let X be an n-element set. For any k < (n —1)/2 it is
possible to extend every k-element subset of X to a (k + 1)-element subset
(by adding some element to that set) so that the extensions of no two sets
coincide.

Proof. Consider the bipartite graph G = (4, B, E), where A consists of all k-
element subsets, B consists of all (k4 1)-element subsets of X and (z,y) € E
if and only if z C y. What we need is to prove that this graph has a matching
of A into B. Is the condition of Theorem 5.6 satisfied? Certainly, since for
I C A, every vertex of I is joined to n — k vertices in B and every vertex
of B is joined to at most k + 1 vertices in I. So, if S(I) is the union of all
neighbors of the vertices from I, and E' = EN (I X B) is the set of edges in
the corresponding subgraph, then

[T|(n — k) = [E"| < |S(D)]|(k +1).

Thus,
1S = |(n—k)/(k+1) = [1]

for every I C A, and Theorem 5.6 gives the desired matching of A into B. O

In terms of (bipartite) graphs, the Konig-Egervary theorem is as follows.
A vertex cover in a bipartite graph G with bipartition A, B is a set of vertices
S C AU B such that every edge is incident to at least one vertex from S. A
mazximum matching is a matching of maximum size.

Theorem 5.8. The mazimum size of a matching in a bipartite graph equals
the minimum size of a vertex cover.

How can we find such a matching of maximal size? To obtain a large
matching, we could iteratively select an edge disjoint from those previously
selected. This yields a matching which is “maximal” in a sense that no more
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Fig. 5.2 Enlarging the matching M by the M-augmenting path P

edges can be added to it. But this matching does not need to be a maximum
matching: some other matching may have more edges. A better idea is to
jump between different matchings so that the new matching will always have
one edge more, until we exhaust the “quota” of possible edges, i.e., until we
reach the maximal possible number of edges in a matching. This idea employs
the notion of “augmenting paths.”

Assume that M is a (not necessarily maximum) matching in a given graph
G. The edges of M are called matched and other edges are called free. Simi-
larly, vertices which are endpoints of edges in M are called matched (in M);
all other vertices are called free (in M). An augmenting path with respect to
M (or M-augmenting path) is a path in G such that its edges are alternatively
matched and free, and the endpoints of the path are free.

If P is an M-augmenting path, then M is certainly not a maximum size
matching: the set M’ of all free edges along this path form a matching with
one more edge (see Fig. 5.2). Thus, the presence of an augmenting path
implies that a matching is not a maximum matching. Interestingly (and it is
a key for the matching algorithm), the converse is also valid: the absence of an
augmenting path implies that the matching is, in fact, a maximum matching.
This result was proved by Berge (1957), and holds for arbitrary graphs.

Theorem 5.9 (Berge 1957). A matching M in a graph G is a mazimum
matching if and only if G has no M -augmenting path.

Proof. We have noted that an M-augmenting path produces a larger match-
ing. For the converse, suppose that G has a matching M’ larger than M; we
want to construct an M-augmenting path. Consider the graph H = M @& M,
where @ is the symmetric difference of sets. That is, H consists of precisely
those edges which appear in ezactly one of the matchings M and M’.

Since M and M’ are matchings, every vertex has at most one incident
edge in each of them. This means that in H, every vertex has at most degree
2, and hence, the graph H consists of disjoint paths and cycles. Furthermore,
every path or cycle in H alternates between edges of M and edges of M'. This
implies that each cycle in H has even length. As |M’| > |M|, the graph H
must have a component with more edges of M’ than of M. Such a component
can only be a path that starts and ends with an edge of M’; it remains to
observe that every such path in H is an M-augmenting path in G. O
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This theorem suggests the following algorithm to find a maximum match-
ing in a graph G: start with the empty matching M = (), and at each step
search for an M-augmenting path in G. In one step the matching is enlarged
by one, and we can have at most £ such steps, where £ is the size of a max-
imum matching. In general, the computation of augmenting paths is not a
trivial task, but for bipartite graphs it is quite easy.

Given a bipartite graph G = (4, B, F) and a matching M in it, construct
a directed graph Gy by directing all matched edges from A to B and other
edges from B to A. Let Ay, By denote the sets of free vertices in A and B,
respectively.

Proposition 5.10. A bipartite graph G has an M -augmenting path if and
only if there is a directed path in Gps from a vertex in By to a vertex in Ag.

We leave the proof of this fact as an exercise.

Using this fact, one may easily design an augmenting path algorithm run-
ning in time O(n?), where n is the total number of vertices. (One can apply,
for example, the “depth-first search” algorithm to find a path from By to Ap.)
We need to find an augmenting path at most n/2 times, hence, the complex-
ity of this matching algorithm is O(n?). Using a trickier augmenting path
algorithm, Hopcroft and Karp (1973) have found a faster algorithm using
time O(n®/?).

Exercises

5.1. Let Si,...,S,, be a sequence of sets such that: (i) each set contains at
least r elements (where r > 0) and (ii) no element is in more than r of the
sets. Show that these sets have a system of distinct representatives. Hint: See
the proof of Corollary 5.2.

5.2. Show that in a group of m girls and n boys there exist some ¢ girls for
whom husbands can be found if and only if any subset of the girls (k of them,
say) between them know at least k + ¢t — m of the boys. Hint: Invite additional
m —t “very popular” boys who are known to all the girls. Show that at least ¢ girls can
find husbands in the original situation if and only if all the girls can find husbands in
the new situation. Then apply Hall’s theorem to the new situation.

5.3. Show that any bipartite graph with maximum degree d is a union of d
matchings. Hint: Argue by induction on d and use Theorem 5.6 in the induction step.

5.4. Let S1,..., S be a sequence of sets satisfying Hall’s condition (). Sup-
pose that for some 1 < k < m, the union S; U ---U Sy of the first k£ sets has
precisely k elements. Show that none of the remaining sets Si41,..., S, can
lie entirely in this union.
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5.5. In Theorem 5.4 we have shown that (as long as 7 < n) we can add a
new row to every r x n Latin rectangle such that the resulting (r + 1) x n
matrix is still Latin. Prove that this can be done in at least (n — r)! ways.

5.6. Let G be a bipartite graph with bipartition A, B. Let a be the minimum
degree of a vertex in A, and b the maximum degree of a vertex in B. Prove
the following: if @ > b then there exists a matching of A into B.

5.7. Let S1,...,5,, be a sequence of sets each of cardinality at least r, and
assume that it has a system of distinctive representatives. Prove that then it

has at least
min{r,m}

flr,m) = H (r4+1-—1)
=1
systems of distinctive representatives. Hint: Follow the proof of Hall’s theorem.
Case 1 gives at least 7 - f(r — 1,m — 1) > f(r,m) and Case 2 at least f(r k) -
f (max{r — k,1},m — k) = f(r,m) systems of distinctive representatives.

5.8. Prove that every bipartite graph G with ¢ edges has a matching of size
at least //A(G), where A(G) is the maximum degree of a vertex in G. Hint:
Use Theorem 5.8.

5.9. Suppose that M, M’ are matchings in a bipartite graph G with bipar-
tition A, B. Suppose that all the vertices of S C A are matched by M and
that all the vertices of T C B are matched by M’. Prove that G contains a
matching that matches all the vertices of SUT.

5.10. (Lovasz et al. 1995). Let F be a family of sets, each of size at least 2.
Let A, B be two sets such that |A| = |B|, both A and B intersect all the
members of F, and no set of fewer than |A| elements does this. Consider a
bipartite graph G with parts A and B, where a € A is connected to b € B
if there is an F' € F containing both a and b. Show that this graph has a
perfect matching. Hint: For I C A, let S(I) C B be the set of neighbors of I in Gj
show that the set A = (A\ I) U S(I) intersects all the members of F.

5.11. (Sperner 1928). Let t < n/2 and let F be a family of subsets of an
n-element set X . Suppose that: (i) each member of F has size at most ¢, and
(ii) F is an antichain, i.e., no member of F is a subset of another one. Let F;
be the family of all those t-element subsets of X, which contain at least one
member of F. Prove that then |F| < |F|. Hint: Use Proposition 5.7 to extend
each member of F to a unique member in the family F;.

5.12. Let A be a 0-1 matrix with m 1s. Let s be the maximal number of
1s in a row or column of A, and suppose that A has no square r x r all-1
sub-matrix. Use the Koénig-Egervary theorem to show that we then need at
least m/(sr) all-1 (not necessarily square) sub-matrices to cover all 1s in A.
Hint: There are at least m/s independent 1s, and at most r of them can be covered by
one all-1 sub-matrix.
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6. Sunflowers

One of most beautiful results in extremal set theory is the so-called Sunflower
Lemma discovered by Erdés and Rado (1960) asserting that in a sufficiently
large uniform family, some highly regular configurations, called “sunflowers,”
must occur, regardless of the size of the universe. In this chapter we will
consider this result as well as some of its modifications and applications.

6.1 The sunflower lemma

A sunflower (or A-system) with k petals and a core Y is a collection of sets
S1,...,Sk such that S; N S; =Y for all i # j; the sets S; \ Y are petals, and
we require that none of them is empty. Note that a family of pairwise disjoint
sets is a sunflower (with an empty core).

Fig. 6.1 A sunflower with 8 petals

Sunflower Lemma. Let F be family of sets each of cardinality s.
If |F| > s!(k — 1)® then F contains a sunflower with k petals.

Proof. We proceed by induction on s. For s = 1, we have more than k£ — 1
points (disjoint 1-element sets), so any k of them form a sunflower with &
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petals (and an empty core). Now let s > 2, and take a maximal family
A={A1,..., A} of pairwise disjoint members of F.

If t > k, these sets form a sunflower with ¢ > k petals (and empty core),
and we are done.

Assume that t < k—1, and let B = A; U---U A;. Then |B| < s(k —1).
By the maximality of A, the set B intersects every member of F. By the
pigeonhole principle, some point x € B must be contained in at least

|F[ _ si(k—1)°

B~ stk—1) (s — D)k — 1)1

members of F. Let us delete = from these sets and consider the family
Fo={S\{z} : SeF,zeS}.

By the induction hypothesis, this family contains a sunflower with k petals.
Adding z to the members of this sunflower, we get the desired sunflower in
the original family F. O

It is not known if the bound s!(k — 1)® is the best possible. Let f(s, k)
denote the least integer so that any s-uniform family of f(s, k) sets contains
a sunflower with k£ petals. Then

(k—1)" < f(s,k) < sl(k —1)° + 1. (6.1)

The upper bound is the sunflower lemma, the lower bound is Exercise 6.2.
The gap between the upper and lower bound for f(s,k) is still huge (by a
factor of s!).

Conjecture 6.1 (Erdés and Rado). For every fixed k there is a constant C' =
C(k) such that f(s, k) < C”.

The conjecture remains open even for k = 3 (note that in this case the
sunflower lemma requires at least s!2° &~ s° sets). Several authors have slightly
improved the bounds in (6.1). In particular, J. Spencer has proved

f(s,3) < eVosl,

For s fixed and k sufficiently large, Kostochka et al. (1999) have proved
F(s,k) < k° (1 n ck:—f") ,

where c is a constant depending only on s.

But the proof or disproof of the conjecture is nowhere in sight.

A family F = {S1,...,Sn} is called a weak A-system if there is some A
such that |S; N S;| = A whenever ¢ # j. Of course, not every such system
is a sunflower: in a weak A-system it is enough that all the cardinalities of
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mutual intersections coincide whereas in a sunflower we require that these
intersections all have the same elements. However, the following interesting
result due to M. Deza states that if a weak A-system has many members then
it is, in fact, “strong,” i.e., forms a sunflower. We state this result without
proof.

Theorem 6.2 (Deza 1973). Let F be an s-uniform weak A-system. If |F| >

5?2 — s+ 2 then F is a sunflower.

The family of lines in a projective plane of order s — 1 shows that this
bound is optimal (see Exercise 6.1).

A related problem is to estimate the maximal possible number F'(n, k) of
members in a family F of subsets of an n-element set such that F does not
contain a weak A-system with & members. It is known that

90.01(nlnn)!/® F(n,3) <1.99".

The upper bound was proved by Frankl and Rodl (1987), and the lower bound
by Kostochka and R"odl (1998).

6.2 Modifications

Due to its importance, the sunflower lemma was modified in various directions.
If Sy, ..., Sk form a sunflower with a core Y, then we have two nice properties:

(a) the core Y lies entirely in all the sets Si,..., Sk;
(b) thesets S1\Y,..., Sk \Y are mutually disjoint.

It is therefore natural to look at what happens if we relax any of these two
conditions.

6.2.1 Relaxed core

We can relax property (a) and require that only the differences S; \ Y be
non-empty and mutually disjoint for some set Y.

Given distinct finite sets Si,..., Sk, their common part is the set
Y = U(SZ ﬂSj).
i#]

Note that, if |Y'| < min; |S;| then all the sets S1\Y,..., S, \Y are nonempty
and mutually disjoint.

Lemma 6.3 (Firedi 1980). Let F be a finite family of sets, and s =
maxser |S]. If | F| > (k—1)® then the common part of some k of its members
has fewer than s elements.
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Proof. We prove a contraposition of this claim: If the common part of every
k members of F has at least s = maxger |S| elements, then |F| < (k — 1)°.
The cases k = 2 and s = 1 are trivial. Apply induction on k. Once k is fixed,
apply induction on s. Let Sy be an arbitrary member of F of size s. We have

Fl=1+ > {SeF: SnS =X} (6.2)
XCSo

Fix now an arbitrary X C Sy, and consider the family
Fx ={S\ So: SeF,SNSy=X}.

The maximum size of its member is s’ < s —|X|. Moreover, the common part
of any its ¥’ = k — 1 members S7 \ So, ..., Sk—1 \ So is the common part of
k members Sy, S1, ..., Sk—1 of F minus X, and hence is at least s — | X| > s'.
We can therefore apply the induction hypothesis with ' < s— |X|, ¥ =k —1
and deduce

Fx| < (k—2)7 X (6.3)

Combining (6.2) and (6.3) we obtain

A1t Y (ko2 <y) (3) =2 = -0y,
=0

XCSo

as desired. O

6.2.2 Relaxed disjointness

What if we relax the disjointness property (b) of sunflowers, and only require
that the differences S1\Y, ..., Sk \Y cannot be intersected (blocked) by a set
of size smaller than some number ¢? In this case we say that sets S1,..., Sk
form a “flower” with ¢ petals.

A blocking set of a family F is a set which intersects all the members of F;
the minimum number of elements in a blocking set is the blocking number of
F and is denoted by 7(F); if ) € F then we set 7(F) = 0. A restriction of a
family F onto a set Y is the family

Fy ={S\Y: SeF, SDOY}.

A flower with k petals and a core Y is a family F such that 7(Fy ) > k. Note
that every sunflwover is a flower with the same number of petals, but not
every flower is a sunflower (give an example).

Héstad et al. (1995) observed that the proof of the sunflower lemma can
be easily modified to yield a similar result for flowers.

Lemma 6.4. Let F be a family of sets each of cardinality s, and k > 1 and
integer. If |F| > (k — 1)® then F contains a flower with k petals.
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Proof. Induction on s. The basis s = 1 is trivial since then F consists of at
least k distinct single-element sets. Now suppose that the lemma is true for
s — 1 and prove it for s. Take a family F of sets each of cardinality s, and
assume that |F| > (k — 1)%. If 7(F) > k then the family F itself is a flower
with at least (k—1)*+1 > k petals (and an empty core). Otherwise, some set
of size k — 1 intersects all the members of F, and hence, at least |F|/(k — 1)
of the members must contain some point x. The family

Fr:={S\{z} : SeF, xS}

has

1L
k-1
members, each of cardinality s — 1. By the induction hypothesis, the family
F. contains a flower with k£ petals and some core Y, ¢ Y. Adding the
element x back to the sets in this flower, we obtain a flower in F with the
same number of petals and the core Y U {z}. O

| Fe| > > (k—1)571

6.3 Applications

The sunflower lemma and its modifications have many applications in com-
plexity theory. In particular, the combinatorial part of the celebrated lower
bounds argument for monotone circuits, found by Razborov (1985), is based
on this lemma and on its modification due to Fiiredi (Lemma 6.3). Andreev
(1987) has also used his modification (Exercise 6.5) to prove exponential lower
bounds for such circuits. In this section we will show how the last modification
(Lemma 6.4) can be used to obtain some information about the number of
minterms and to prove lower bounds for small depth non-monotone circuits.

6.3.1 The number of minterms

Let 21,...,x, be boolean variables taking their values in {0,1}. A monomial
is an And of literals, and a clause is an Or of literals, where a literal is either
a variable x; or its negation z; = x; @ 1. Thus, we have 2° (Z) monomials and
that many clauses of size s.

A 1-term of a boolean function f :{0,1}"™ — {0,1} is a monomial M such
that M(a) < f(a) for all inputs a € {0,1}"™. That is, if we set all literals of
M to 1, then the function f is forced to take value 1 independent on what
values we assign to the remaining variables. Dually, a 0-term of f is a clause
C such that C(a) > f(a) for all inputs a € {0,1}". A minterm of f is a
1-term M of f which is minimal in the sense that deleting every single literal
from M already violates this property.
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A boolean function f is a t-And-Or (or a t-CNF) if it can be written as
an And of an arbitrary number of clauses, each of size at most ¢.

Lemma 6.5. Let f be a t-And-Or function on n variables. Then for every
s=1,...,n the function f has at most t° minterms of size s.

Proof. Let f = C1 A--- A Cyy,, where each clause C; has size at most t. We
interpret the clauses as sets of their literals, and let C = {C1,...,Cy,} be the
corresponding family of these sets. Let F be the family of all minterms of f
that have size s (we look at minterms as sets of their literals). Then every
set in C intersects each set in F (see Exercise 6.9).

Suppose that |F| > t°. Then, by Lemma 6.4, F has a flower with ¢ 4+ 1
petals. That is, there exists a set of literals Y such that no set of at most ¢
literals can intersect all the members of the family

Fy={M\Y : Me F, M DY}

The set Y is a proper part of at least one minterm of f, meaning that Y cannot
intersect all the clauses in C. Take a clause C' € C such that CNY = (. Since
this clause intersects all the sets in F, this means that it must intersect all
the sets in Fy. But this is impossible because C' has size at most t. a

6.3.2 Small depth formulas

An s-threshold function is a monotone boolean function 777 which accepts a
0-1 vector if and only if it has at least s ones. That is,

T"(x1,...,2,) =1if and only if 1 + -+ + 2, > s.

This function can be computed by the following formula:

Tz, .., %n) = \/ /\xl

I:|I|=si€l

This formula is monotone (has no negated literals) and has depth 2 (there
are only two alternations between And and Or operations). But the size of
this formula (the number of literals in it) is s(*). Can T7" be computed by
a substantially smaller formula if we allow negated literals and/or a larger
depth?

Hastad (1986) proved that, for s = |n/2], each such formula computing
T must have size exponential in n, even if we allow any constant depth, i.e.,
any constant number of alternations of And’s and Or’s. Razborov (1987) has
proved that the same holds even if we allow sum modulo 2 as an additional
operation. Both these proofs employ non-trivial machinery: the switching
lemma and approximations of boolean functions by low-degree polynomials.

On the other hand, Hastad et al. (1995) have shown that, at least for
depth-3, one can deduce the same lower bound in an elementary way using
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the flower lemma (Lemma 6.4). In fact, their proof holds for depth-3 circuits
but, to demonstrate the idea, it is enough to show how it works for special
depth-3 formulas.

An Or-And-Or formula is a formula of the form

F=FRVFV---VFE, (6.4)

where each F; is an And-Or formula, that is, each F; is an And of an arbitrary
number of clauses, each clause being an Or of literals (variables or their
negations). We say that such a formula has bottom fan-in k if each of its
clauses has at most k positive literals (the number of negated variables may
be arbitrary). The size of a formula is the total number of literals in it.

At this point, let us note that the condition on bottom fan-in is not crucial:
if the size of F' is not too large then it is possible to set some small number
of variables to constant 1 so that the resulting formula will already satisfy
this condition (see Exercise 6.10).

The idea of Hastad et al. (1995) is accumulated in the following lemma.

Lemma 6.6. Let FF = F1V FoV---V Fy be an Or-And-Or formula of bottom
fan-in k. Suppose that F rejects all vectors with fewer than s ones. Then F
cannot accept more than tk® vectors with precisely s ones.

Note that this lemma immediately implies that every Or-And-Or formula
of bottom fan-in k£ computing the threshold function 7' has size at least

n n\s
k™% > (—) .
(5) ks
Proof. Suppose that F' accepts more than tk® vectors with precisely s ones.

Then some of its And-Or subformulas F; accepts more than k*® of such vectors.
Let A be this set of vectors with s ones accepted by F;; hence

|A| > E°.
The formula F; has the form
F,=CiANCoN---NC,,

where C1, ..., C, are clauses with at most k positive literals in each of them.
Let B be the set of all vectors with at most s — 1 ones. All these vectors must
be rejected by Fj, since they are rejected by the whole formula F. Our goal
is to show that the set B contains a vector v on which each of the clauses
C1,...,C, outputs the same value as on some vector from A; this will mean
that the formula F; makes an error on this input — it is forced to accept v.

Say that a vector v is a k-limit for A if, for every subset S of k coordinates,
there exists a vector u € A such that v < w (vector comparision) and v
coincides with u in all the coordinates from S; that is, v; < u; for all ¢ and
v; = u; for alli € S.
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Claim 6.7. There exists a vector v € B which is a k-limit for A.

Proof of Claim 6.7. For a vector u € {0,1}", let E, be the corresponding
subset of {1,...,n}, whose incidence vector is u, that is, F,, = {i : u; = 1}.
Consider the family F = {E, : u € A}. This family is s-uniform and has
more than £° members. By Lemma 6.4, F has a flower with k + 1 petals.
That is, there exists a set Y such that no set of size at most & can intersect
all the members of the family 7y = {E\Y : E€F, EDY}. Let v be the
incidence vector of Y. We claim that v is a k-limit for A.
To show this, take an arbitrary subset S of {1,...,n} of size at most k.
Then
SN(E,\Y)=10 (6.5)

for at least one set F, € F such that Y C E,. The last condition implies
that v < u, and hence, v coincides with u on all coordinates from S\ E,, and
from S NY. But, by (6.5), there are no other coordinates in S, and hence, v
coincides with u on all coordinates from S, as desired. a

Fix a vector v guaranteed by the claim. To get the desired contradiction we
will show that the formula F; will be forced to (wrongly) accept this vector.
Suppose the opposite that v is rejected by F;. Then C(v) = 0 for some clause
C of F;. This clause has a form

o (\/Sx> v (\/Tf)

for some two disjoint sets of S, T such that |S| < k. By Claim 6.7, there is a
vector w in A such that v < u and v coincides with w on all the coordinates
from S. The vector u must be accepted by the formula F;, and hence, by
the clause C'. This can happen only if this vector has a 1 in some coordinate
i € S or has a 0 in some coordinate j € T' (or both). In the first case C'(v) =1
because v coincides with v on S, and in the second case C(v) = 1 because,
due to the condition v < u, vector v has 0Os in all coordinates where vector u
has them. Thus, in both cases, C'(v) = 1, a contradiction. a

Exercises

6.1. A projective plane of order s — 1 is a family of n = s> — s + 1 s-element

subsets (called lines) of an n-element set of points such that each two lines
intersect in precisely one point and each point belongs to precisely s lines
(cf. Sect. 12.4). Show that the equality in Deza’s theorem (Theorem 6.2) is
attained when a projective plane of order s — 1 exists.

6.2. Take s pairwise disjoint (k — 1)-element sets V1, ...,V and consider the
family
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F={S:|S=sand |SNV;|=1foralli=1,...,s}.
This family has (k — 1)° sets. Show that it has no sunflower with & petals.

6.3. Show that the bounds in Lemmas 6.3, and 6.4 are optimal. Hint: Consider
the family defined in the previous exercise.

6.4. A matching of size k in a graph is a set of its k pairwise disjoint edges
(two edges are disjoint if they have no vertex in common). A star of size k is
a set of k edges incident to one vertex. Argue as in the proof of the sunflower
lemma to show that any set of more than 2(k — 1)? edges either contains a
matching of size k or a star of size k.

6.5. (Andreev 1987). Let F be a family of sets each of cardinality at most s,
and suppose that |F| > (k — 1)%. Use the argument of Lemma 6.3 to prove
that then there exist k sets Sy, ..., S in F such that all the sets S;\ (S1NS2),
i =1,...,k are pairwise disjoint.

6.6. Let n—k+1 < s < n and consider the family F of all s-element subsets
of a n-element set. Prove that F has no sunflower with k£ petals. Hint: Suppose
the opposite and count the number of elements used in such a sunflower.

6.7. Given a graph G = (V, E) and a number 2 < s < |V, let G, denote the
graph whose vertices are all s-element subsets of V', and two such subsets A
and B are connected by an edge if and only if there is an edge (u,v) € E
such that u € A\ B and v € B\ A. Suppose that the graph G is “sparse” in
the following sense: every subset of at most ks vertices spans fewer that (g)
edges. Use Lemma 6.4 to show that then G5 has no clique of size larger than
(k‘ — 1)8. Hint: Let F be a clique in G5, and suppose that F forms a flower with k petals.
Then each member A € F contains an element v4 which is not contained in any other
member of F. Use the fact that F was a clique in G5 to argue that {va : A€ F}isa
clique in G.

6.8. For a graph G, let G be a graph whose vertices are all maximum cliques of
G, and where two such cliques A and B are connected by an edge if and only
if there is an edge (u,v) € E such that u € A\ B and v € B\ A. Recall that a
clique is a mazimum clique if each of remaining vertices is not connected to at
least one of its edges (i.e. we cannot add any new vertices). Let a(G) denote
the independence number of GG, that is, the maximum number of vertices no
two of which are adjacent in G. Show that a(G) < «(G). Hint: Let F be an
independent set in G. Show that then for any three distinct members A, B and K of F,
the intersections A N K and B N K must be comparable by set-inclusion. Argue that
then each member K € F must contain an element vk which belongs to none of the
remaining members. Why is then the set {vg : K € F} an independent set in G?

6.9. Show that every 0-term C and every 1-term K of a boolean function
f must share at least one literal in common. Hint: Take a restriction (a partial
assignment to variables) which evaluates all the literals of K to 1. If C' has no literal of
K, then this restriction can be extended to an input a such that f(a) = 0.
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6.10. Let F' be a set of clauses on n variables. Say that a clause is long if it
has at least k 4 1 positive literals. Let ¢ be the number of long clauses in F',

and suppose that
k
1
{< <n + ) .
m+1

Prove that then it is possible to assign some n — m variables to constant 1 so
that the resulting set F’ will have no long clauses. Hint: Construct the desired
set assignment via the following “greedy” procedure: Take the variable x;, which occurs

in the largest number of long clauses and set it to 1; then take the variable x;, which
occurs in the largest number of remaining long clauses and set it to 1, and so on, until all
n

long clauses dissapear (get value 1). In computations use the estimate le it ~Inn.

1

6.11. Consider the following function on n = sr variables:

F=NAV i

i=1j=1

Let F' be an Or-And-Or formula of bottom fan-in & (k < r) computing this
function. Show that then F has size at least (r/k)®. Hint: Observe that f rejects
all vectors with fewer than s ones and accepts r°® vectors with precisely s ones; apply
Lemma 6.6.

6.12. (Hastad et al. 1995). Consider the function on n = m? variables defined

by the formula

m m

f= /\ \/xij/\yij~

i=1j=1
This formula is a depth-3 And-Or-And formula of size only 2n. Prove that any
depth-3 Or-And-Or formula for this function has size at least 22V Hint:
Assume that f has such a formula F' of size at most 2™/3_ Reduce the bottom fan-in of F'
to k = [m/2] by setting one half of the variables to constants at random as follows: for
each pair of variables x;;, ¥i;, pick one of them at random (with probability 1/2) and set
it to 1. If some clause has more than k positive literals, then none of these literals is set
to 1 with probability at most 27%~1 The probability, that some of the clauses with more
than k positive literals is not evaluated to 1, does not exceed om/3.9=(k+1) < 27 m/6 <« 1,
and in particular such a setting exists. The resulting function has the same form as that
considered in the previous exercise.



7. Intersecting Families

A basic interrelation between sets is their intersection. The size (or other
characteristics) of mutual intersections between the members of a given family
reflects some kind of “dependence” between them. In this chapter we will
study the weakest kind of this dependence — the members are required to be
non-disjoint. A family is intersecting if any two of its sets have a non-empty
intersection.

7.1 Ultrafilters and Helly property

We start with two simple structural properties of intersecting families.

An ultrafilter over a set X is a collection F of its subsets such that: (i) F
is upwards-closed, that is, A € F and A C B implies B € F, and (ii) for
every subset A of X, exactly one of A or its complement A = X \ A belongs
to F.

Theorem 7.1. Every ultrafilter is an intersecting family, and every inter-
secting family is contained in some ultrafilter.

Proof. To prove the first claim, let F be an ultrafilter. If some two members
A, B of F were disjoint, then the complement of B would contain the set A,
and hence, would belong to F (by (i)). But this is impossible since, by (ii),
F cannot contain the set B together with its complement.

To prove the second claim, take an arbitrary intersecting family and extend
it to an ultrafilter as follows. If there are some sets not in the family and
such that their addition does not destruct the intersection property, add all
them. After that, add all supersets of the sets we already have. We claim
that the resulting family F is an ultrafilter. Indeed, if it is not, there must
be a set A such that neither A nor its complement A belongs to F. By the
construction, A must be disjoint from at least one member B of our initial
family (for otherwise A would be added during the first phase), and hence,
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B is contained in the complement A. But B € F and F is upwards-closed, a
contradiction. O

In 1923, E. Helly proved the following result: if n > k 4+ 1 convex sets in
R* have the property that any k + 1 of them have a nonempty intersection,
then there is a point common to all of them.

It is natural to ask if objects other than convex sets obey Helly-type laws.
For arbitrary families of sets we have the following Helly-type result.

Theorem 7.2. Let F be a family and k be the minimum size of its member.
If any k + 1 members of F intersect (i.e., share a common point) then all of
them do.

Proof. Suppose the opposite that the intersection of all sets in F is empty,
and take a set A = {x1,...,x} € F. For every i = 1,...,k there must be a
set B; € F such that z; € B;. Hence, ANB1N---NBy = 0, a contradiction. O

7.2 The Erdés—Ko—Rado theorem

Let F be an intersecting family of k-element subsets of {1,...,n}. The basic
question is: how large can such a family be? To avoid trivialities, we assume
n > 2k since otherwise any two k-element sets intersect, and there is nothing
to prove.

We can obtain an intersecting family by taking all (Z:.}) k-element subsets
containing a fixed element. Can we find larger intersecting families? The
whole number of k-element subsets is (Z) = %(Zj), so the question is not
trivial.

The following result, found by Erdés, Ko, and Rado in 1938 (but published

only 23 years later), answers the question.

Theorem 7.3 (Erdés—Ko-Rado 1961). If 2k < n then every intersecting
family of k-element subsets of an n-element set has at most (Z:}) members.
Proof. (Due to G.O.H. Katona 1972.) Let [n] = {0,1,...,n — 1} be the
underlying set. The idea is to study all permutations of the elements of [n],
estimating how often the consecutive elements of these permutations can
constitute one of the sets in our family. For s € [n], let Bs denote the set of k
consecutive numbers s, s+ 1,...,s 4+ k — 1, where the addition is modulo n.

Claim 7.4. At most k of the sets Bs can belong to F.

We can suppose that By € F. The only sets By that intersect By other
than By itself are the 2k — 2 sets Bs with —(k—1) < s <k—1, s # 0 (where
the indices are taken modulo n). These sets can be partitioned into k — 1
pairs of disjoint sets, By, Biyg, where —(k — 1) <i < —1.
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- (k-2) k-2

- (k1) k-1

Since F can contain at most one set of each such pair the assertion of the
claim follows.

We now count in two ways the number L of pairs (f,s), where f is a
permutation of [n] and s is a point in [n], such that the set

f(Bs) :{f(s),f(s—i-l),,f(s—i—k—l)}

belongs to F. By the claim, for each fized permutation f, the family F can
contain at most k of the sets f(Bs). Hence, L < kn!. On the other hand,
exactly nk!(n — k)! of the pairs (f,s) yield the same set f(Bs): there are n
possibilities for s, and for each fixed s, there are k!(n — k)! possibilities to
choose the permutation f. Hence, L = |F|- nk!(n — k)!. Combining this with
the previous estimate, we obtain

#1< = ) = (1) .

7.3 Fisher’s inequality

A fundamental result of design theory—known as Fisher’s inequality—states
that, if each two clubs in a town share the same number of members in
common, then the number of clubs cannot exceed the total number of inhab-
itants in the town. In the proof of this result we will use (for the first time)
a powerful tool: linear algebra.

The general frame for the linear algebra method in combinatorics is the
following: if we want to come up with an upper bound on the size of a set of
objects, associate them with elements in a vector space V' of relatively low
dimension, and show that these elements are linearly independent; hence, we
cannot have more objects in our set than the dimension of V. This fact—
there cannot be more linearly independent vectors in V' than the dimension
of V—is usually called the “linear algebra bound.” We will consider this tool
in great details in Part III. Here we restrict ourselves with just one important
application.
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Theorem 7.5 (Fisher’s inequality). Let Ai,..., A, be distinct subsets of
{1,...,n} such that |A; N A;| =k for some fized 1 <k <n and every i # j.
Then m < n.

Proof. For two vectors z,y € R"™, let (x,y) = z1y1 + - -+ + Znyn denote their
scalar product. Let vy, ..., v, € {0,1}" be incidence vectors of Ay,..., Ap,.
By the linear algebra bound it is enough to show that these vectors are
linearly independent over the reals. Assume the contrary, i.e., that the linear
relation Y .~ \;v; = 0 exists, with not all coefficients being zero. Obviously,
(vi,vj) = |A;| if j =1, and (v;,vj) = k if j # i. Consequently,

0= (i)\ivi)<i)\j7}j> :i)\f<vi,vi>+ Z )\i)\j<vi,'Uj>
=1 j=1 i=1

1<i#j<m
m m m 2
=3 NA+ D )\i)\jk:ZAfﬂAi—k)—i—k-(ZAi) .
i=1 1<i£j<m i=1 i=1
Clearly, |A;] > k for all i and |A;| = k for at most one 4, since otherwise

the intersection condition would not be satisfied. But then the right-hand is
greater than 0 (because the last sum can vanish only if at least two of the
coefficients \; are nonzero), a contradiction. O

This theorem was first proved by the statistician R. A. Fisher in 1940 for
the case when k£ = 1 and all sets A; have the same size (such configurations
are known as balanced incomplete block designs). In 1948, de Bruijn and
Erdds relaxed the uniformity condition for the sets A; (see Theorem 12.4).
This was generalized by R. C. Bose in 1949, and later by several other authors.
But it was the two-page paper of Bose where the linear argument was first
applied to solve a combinatorial problem. The general version, stated above,
was first proved by Majumdar (1953); the proof we presented is a variation
of a simplified argument found by Babai and Frankl (1992).

7.4 Maximal intersecting families

Let F be a k-uniform family of sets of some n-element set. Say that F is
maximal intersecting if

(i) F is intersecting;

(ii) the addition of any new k-element set to F destroys this property, that
is, for every k-element subset E ¢ F, the family F U {E} is no longer
intersecting.

The case when n < 2k — 1 is not interesting, because then the only maximal
intersecting family is the family of all k-element subsets. But what if n > 2k?
Intuitively, any maximal intersecting family must be large enough, because
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every k-element set not in the family must be avoided by at least one of
its members. It is therefore interesting to investigate the minimal possible
number f(k) of members which such a family can have.

To give an upper bound on f(k), consider the family F of lines in a pro-
jective plane of order k — 1 (see Sect. 12.4). For our current purposes it is
enough to know that F is a family of | F| = n = k% — k + 1 k-element subsets
(called lines) of an n-element set of points such that each two lines intersect
in precisely one point and each point belongs to precisely k lines. It is easy
to show that this family is maximal intersecting (see Exercise 7.7). Hence,
f(k) < k* —k + 1 for all those values of k for which a projective plane of
order k — 1 exists.

In the case of projective planes, we have a k-uniform family with about k2
sets. But the number of points in this case is also the same. What if we take
a lot fewer than k? points? Can we then still find a k-uniform and maximal
intersecting family of size at most k2? Using double-counting we can answer
this question negatively.

Theorem 7.6 (Fiiredi 1980). Let F be a maximal intersecting family of k-
element sets of an n-element set. If n < k*/2logk, then F must have more
than k? members.

Proof. To simplify computations, we only prove the theorem under a slightly
stronger assumption that n < k?/(1 + 2logk). The idea is to count in two
ways the number N of pairs (F, E) where F' € F and F is a k-element subset
disjoint from F' (and hence, E ¢ F). Since every such set £ must be avoided
by at least one member of 7, N > (Z) —|F|. On the other hand, each member

of F can avoid at most (".*) of the sets E; hence N < |F|- (".*). These

two inequalities, together with the estimate (1.23), imply

k
2
|f‘2 ) >ek /nflzeQIngsz. 0O

_ G 1 ( n
1+(mF5 ~2 \n—k

Now suppose that Fi,...,F,, are intersecting (not necessarily uniform)
families of an n-element set {1,...,n}. How many sets can we have in their
union?

Taking each F; to be the family of all 27 ~! subsets containing the element i,
we see that the union will have 2™ — 2"~ sets.

A beautiful result, due to Kleitman, says that this bound is best possible.

Theorem 7.7 (Kleitman 1966). The union of m intersecting families con-
tains at most 2™ — 2™ sets.

Proof. We apply induction on m. The case m = 1 being trivial, we turn to the
induction step. We say that a family A is monotone increasing (monotone
decreasing) if A € A and B D A (respectively, B C A) implies B € A.
A famous result, also due to Kleitman (we will prove it in Sect. 10.2; see
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Theorem 10.6 and Exercise 10.8) says that, if A is a monotone decreasing
and B is a monotone increasing family of subsets of an n-element set, then

IANB| < 27" A| - |B|. (7.1)

Now let F = [J;~, F;, with each F; being an intersecting family. Since
our aim is to bound |F| from the above, we may assume that each F; is
maximal intersecting family; in particular, |F,,| = 2"~1. Let A be the com-
plement of F,,, i.e., the family of all |A| = 2"~! subsets not in F,,, and
B = UZ':ll F;. Since Fi,...,F, are maximal intersecting families, A is
monotone decreasing and B is monotone increasing. By the induction hy-
pothesis, |B| <27 — 27~ *+ and, by (7.1),

AN B| <27 mn (g — gnomily — gn—l _gnom
Therefore,
BN F| = B] = |ANB| > [B] — 27! 427

and
m

U

=1

|F| = = |B| 4+ |Fin| = |BNFp| <27 =277, O

7.5 Cross-intersecting families

A pair of families A, B is cross-intersecting if every set in A intersects every
set in B. The rank of A is the maximum cardinality of a set in 4. The degree
da(z) of a point x in A is the number of sets in A containing x.

If A has rank a, then, by the pigeonhole principle, each set in A4 contains
a point x which is “popular” for the members of B in that dg(xz) > |B|/a.
Similarly, if B has rank b, then each member of B contains a point y for which
da(y) > |A|/b. However, this alone does not imply that we can find a point
which is popular in both families A and B. It turns out that if we relax the
“degree of popularity” by one-half, then such a point exists.

Theorem 7.8 (Razborov—Vereshchagin 1999). Let A be a family of rank a
and B be a family of rank b. Suppose that the pair A, B is cross-intersecting.
Then there exists a point x such that

Al 15|
da(z) > 5% and dg(x) > 9

Proof. Assume the contrary and let A, B be independent random sets that
are uniformly distributed in A, B respectively. That is, for each A € A and
B € B, Pr[A = A] = 1/|A] and Pr[B = B] = 1/|B|. Since the pair A, B is
cross-intersecting, the probability of the event “Jz(x € AN B)” is equal to
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1. Since the probability of a disjunction of events is at most the sum of the
probabilities of the events, we have

ZPr[azeAﬂB]Zl

Let X consist of those points x for which

dA(l‘) 1
=P €Al < —,
A rleeAl<gy
and X7 consist of the remaining points. Note that by our assumption, for any
x € Xy,
dp(x) 1
Priz e B < —
rle€ Bl =g <9,

holds. By double counting (see Proposition 1.7), >° da(z) = > 4c4 |4l
Hence,

> Prlzc AnB]= ) Prlzc A]-Pr[z € B]
a:EX1 a:EXl

<— ZPrxeA <— ZPrxeA]

reX;
1 da(z) 1 alAl 1
= — . = . = . < = —.
2a & A 24J4] Zz:df‘(x) 2a\A| QIA\ = 2qlA| 2

In a similar way we obtain

Z Prlre ANB] <
zeXo

[\:Jlr—l

a contradiction. O
We mention (without proof) the following related result.

Theorem 7.9 (Fiiredi 1995). Let a+b <n, A be a family of a-element sets
and B a family of b-element sets on the common underlying set [n] such that
Al > () = (0 b N+ 1and B = (37)) — (",%") + 1. If the pair A, B
is cross—z'ntersectmg, then some element x € [n) belongs to all members of A
and B.

Exercises

7.1. Let F be a family of subsets of an n-element set. Prove that if F is
intersecting then |F| < 2771, Is this the best bound? If so, then exhibit an
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intersecting family with |F| = 271, Hint: A set and its complement cannot both
be the members of F.

7.2. Let F be an intersecting family of subsets of an n-element set X. Show
that there is an intersecting family 7" O F such that |F| = 2771, Hint: Show
that for any set A such that neither A nor A belongs to F, exactly one of A and A can
be added to F.

7.3. Let n < 2k and let Ay,..., A, be a family of k-element subsets of [n]
such that A; U A; # [n] for all ¢, j. Show that m < (1 — %) (Z) Hint: Apply
the Erd8s—Ko-Rado theorem to the complements A; = [n] — A;.

7.4. The upper bound (Zj ) given by Erdés-Ko-Rado theorem is achieved
by the families of sets containing a fixed element. Show that for n = 2k there
are other families achieving this bound. Hint: Include one set out of every pair of
sets formed by a k-element set and its complement.

7.5. One can generalize the intersection property and require that |[ANB| > ¢
for all A # B € F. Such families are called t-intersecting. The first example
of a t-intersecting family which comes to mind, is the family of all subsets
of [n] containing some fixed set of ¢ elements. This family has 277! sets.
Are there larger t-intersecting families? Hint: Let n + ¢ be even and take F =
{acil: |4 =251}

7.6. Let ={By,..., By} bea (v, k, \) design, i.e., a family of k-element subsets
of a v-element set of points X = {x1,...,z,} such that every two points
belong to exactly A sets. Use Fisher’s inequality to show that b > v. Hint:
Take A; := {] LT € Bj}‘

7.7. Consider the k-uniform family of all n = k? — k + 1 lines in the set of
points of a projective plane of order k — 1. Clearly, this family is intersecting.
Show that it is also maximal intersecting, i.e., that every k-element set F,
which intersects all the lines, must be a line. Hint: Assume that E is not a line,
draw a line L through some two points z # y of F, and take a point z € L\ {z,y}. This
point belongs to k lines, and each of them intersect E.

7.8. (Razborov—Vereshchagin 1999). Show that the bound in Theorem 7.8 is
tight up to a multiplicative factor of 2. Hint: Consider the following pair of families

A={A1,..., 4}, where A; ={(i,1),(i,2),...,(4a)},
B ={B1,...,Ba}, where B; ={(1,7),(2,7),...,(b,j)}.



8. Chains and Antichains

Partial ordered sets provide a common frame for many combinatorial con-
figurations. Formally, a partially ordered set (or poset, for short) is a set P
together with a binary relation < between its elements which is transitive
and antysymmetric: if x < y and y < z then z < z, but z < y and y < =
cannot both hold. We write z < y if v < y or z = y. Elements z and y are
comparable if either z <y or y < z (or both) hold.

A chain in a poset P is a subset C' C P such that any two of its points
are comparable. Dually, an antichain is a subset A C P such that no two of
its points are comparable. Observe that |C' N A| < 1, i.e., every chain C' and
every antichain A can have at most one element in common (for two points
in their intersection would be both comparable and incomparable).

Here are some frequently encountered examples of posets: a family of sets is
partially ordered by set inclusion; a set of positive integers is partially ordered
by division; a set of vectors in R™ is partially ordered by (a1,...,a,) <
(b1,...,by) iff a; <b; for all 4, and a; < b; for at least one 3.

Small posets may be visualized by drawings, known as Hasse diagrams: x
is lower in the plane than y whenever z < y and there is no other point z € P
for which both z < z and z < y. For example:

{a,b,c} 18
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8.1 Decomposition in chains and antichains

A decomposition of a poset is its partition into mutually disjoint chains or
antichains. Given a poset P, our goal is to decompose it into as few chains
(or antichains) as possible. One direction is easy: if a poset P has a chain
(antichain) of size r then it cannot be partitioned into fewer than r antichains
(chains). The reason here is simple: any two points of the same chain must
lie in different members of a partition into antichains.

Is this optimal? If P has no chain (or antichain) of size greater than r, is it
then possible to partition P into r antichains (or chains, respectively)? One
direction is straightforward (see Exercise 8.8 for an alternative proof):

Theorem 8.1. Suppose that the largest chain in the poset P has size r. Then
P can be partitioned into r antichains.

Proof. Let A; be the set of points x € P such that the longest chain, whose
greatest element is x, has ¢ points (including ). Then, by the hypothesis,
A; = 0 for i > r+1, and hence, P = A; U Ay U --- U A, is a partition
of P into r mutually disjoint subsets (some of them may be also empty).
Moreover, each A; is an antichain, since if x,y € A; and z < y, then the
longest chain z; < ... < x; = x ending in = could be prolonged to a longer
chain 77 < ... < x; < y, meaning that y € A;. O

The dual result looks similar, but its proof is more involved. This result,
uniformly known as Dilworth’s Decomposition Theorem (Dilworth 1950) has
played an important role in motivating research into posets. There are several
elegant proofs; the one we present is due to F. Galvin.

Theorem 8.2 (Dilworth’s theorem). Suppose that the largest antichain in
the poset P has size r. Then P can be partitioned into r chains.

Proof (due to Galvin 1994). We use induction on the cardinality of P. Let
a be a maximal element of P, and let r be the size of a largest antichain in
P’ = P\ {a}. Then P’ is the union of r disjoint chains Ci,...,C,. We have
to show that P either contains an (r + 1)-element antichain or else is the
union of 7 disjoint chains. Now, every r-element antichain in P’ consists of
one element from each C;. Let a; be the maximal element in C; which belongs
to some r-element antichain in P’. It is easy to see that A = {a1,...,a,} is
an antichain in P’. If AU {a} is an antichain in P, we are done: we have
found an antichain of size r 4+ 1). Otherwise, we have a > a; for some i. Then
K ={a}U{z € C; : = < a;} is a chain in P, and there are no r-element
antichains in P\ K (since a; was the maximal element of C; participating in
such an antichain), whence P\ K is the union of r — 1 chains. O

To recognize the power of this theorem, let us show that it contains Hall’s
Marriage Theorem 5.1 as a special case!

Suppose that S1, ..., S, are sets satisfying Hall’s condition, i.e., |S(I)| >
|I] for all I C {1,...,m}, where S(I) := [J,c; Si- We construct a poset P as
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follows. The points of P are the elements of X := S; U---U.S,, and symbols
Yls-- - Ym, with x < y; if z € S;, and no other comparabilities. It is clear
that X is an antichain in P. We claim that there is no larger antichain. To
show this, let A be an antichain, and set I := {i : y; € A}. Then A contains
no point of S(I), for if € S; then x is comparable with y;, and hence,
A cannot contain both of these points. Hence, Hall’s condition implies that
|A| < |I|+|X|—1S{)] < |X], as claimed.

Now, Dilworth’s theorem implies that P can be partitioned into | X| chains.
Since the antichain X is maximal, each of the chains in the partition must
contain a point of X. Let the chain through y; be {z;,y;}. Then (z1,...,zy)
is a desired system of distinct representatives: for x; € S; (since x; < y;) and
x; # x; (since the chains are disjoint).

In general, Dilworth’s theorem says nothing more about the chains, form-
ing the partition, except that they are mutually disjoint. However, if we
consider special posets then we can extract more information about the par-
tition. To illustrate this, let us consider now the poset 2% whose points are all
subsets of an n-element set X partially ordered by set inclusion. De Bruijn,
Tengbergen, and Kruyswijk (1952) have shown that 2% can be partitioned
into disjoint chains that are also “symmetric.”

Let C = {A1,..., A} be a chain in 2%, ie., A C Ay C ... C Ai. This
chain is symmetric if |A;| + |Ax| = n and |A;41| = |Ai] + 1 for all ¢ =
1,...,k—1. “Symmetric” here means symmetric positioned about the middle
level 5. Symmetric chains with & = n are mazimal. Maximal chains are in
one-to-one correspondence with the permutations of the underlying set: every
permutation (z1,...,2,) gives the maximal chain

{xl} C {,1131,.132} cC...C {331,...,1‘”}.

Theorem 8.3. The family of all subsets of an n-element set can be parti-
tioned into (LnT/L2J) mutually disjoint symmetric chains.

Proof. Take an n-element set X, and assume for a moment that we already
have some partition of 2% into symmetric chains. Every such chain contains
exactly one set from the middle level; hence there are (WT/LQ J) chains in that
partition.

Let us now prove that such a partition is possible at all. We argue by
the induction on n = |X]|. Clearly the result holds for the one point set
X. So, suppose that it is true for all sets with fewer points then n. Pick a
point # € X, and let Y := X \ {z}. By induction, we can partition 2¥ into
symmetric chains Cy,...,C,. Each of these chains over Y

Ci = AL CAyC...C A,
produce the following two chains over the whole set X:

Ci:=A1CAyC...CAp_1 CA CAU{z}
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C''=A1U{a} Cc AyU{z} C...C Ax_1 U{x}.

These chains are symmetric since
A1 + Ak U {o}] = (Al + A + 1= (n = 1) + 1 =n
and
[Ay U{z} + [As—1 U{z} = (JA1] + |[Ak=1]) +2=(n—2) + 2 =n.

Is this a partition? It is indeed. If A C Y then only C/ contains A where C; is
the chain in 2¥ containing A. If A = BU {z} where B C Y then B € C; for
some i. If B is the maximal element of C; then C/ is the only chain containing
A, otherwise A is contained only in C;'. O

8.2 Application: the memory allocation problem

The following problem arises in information storage and retrieval. Suppose
we have some list (a sequence) L = (a1, aq,. .., an,) of not necessarily distinct
elements of some set X. We say that this list contains a subset A if it contains
A as a subsequence of consecutive terms, that is, if

A={ai,ait1,- -, 0441}

for some i. A sequence is universal for X if it contains all the subsets of X.
For example, if X = {1,2,3,4,5} then the list

L=(1234512413524)

of length m = 13 is universal for X.

What is the length of a shortest universal sequence for an n-element set?
Since any two sets of equal cardinality must start from different places of
this string, the trivial lower bound for the length of universal sequence is
({n)2))> which is about \/% 2" according to Stirling’s formula (1.7). A trivial
upper bound for the length of the shortest universal sequence is obtained by
considering the sequence obtained simply by writing down each subset one
after the other. Since there are 2™ subsets of average size n/2, the length of
the resulting universal sequence is at most n2" 1. Using Dilworth’s theorem,
we can obtain a universal sequence, which is n times (!) shorter than this
trivial one.

Theorem 8.4 (Lipski 1978). There is a universal sequence for {1,... ,n} of
length at most %2”.

Proof. We consider the case when n is even, say n = 2k (the case of odd n
is similar). Let S = {1,...,k} be the set of the first k elements and T =



8.3 Sperner’s theorem 111

{k+1,...,2k} the set of the last k elements. By Theorem 8.3, both S and T
have symmetric chain decompositions of their posets of subsets into m = ( k’/cz)
symmetric chains: 2% = C;U---UC,, and 27 = D; U---UD,,. Corresponding
to the chain

Ci:{xl,...,xj}c{xl,...,xj,xjﬂ}c...C{xl,...,xh} (]-i—h:k‘)

we associate the sequence (not the set!) C; = (1, x2,...2z5). Then every sub-
set of S occurs as an initial part of one of the sequences C1, ..., C,,. Similarly
let Dq,...,D,, be sequences corresponding to the chains D1, ...,D,,. If we
let D; denote the sequence obtained by writing D; in reverse order, then
every subset of T occurs as a final part of one of the D;. Next, consider the

sequence
L= ﬁlCIﬁng .. .ﬁlCm .. .ﬁmC’lﬁng .. .ﬁmC’m.

We claim that L is a universal sequence for the set {1,...,n}. Indeed, each
of its subsets A can be written as A = FUF where E C S and FF C T.
Now F' occurs as the final part of some ﬁf and F occurs as the initial part
of some C¢; hence, the whole set A occurs in the sequence L as the part of
EfC’e. Thus, the sequence L contains every subset of {1,...,n}. The length

2
of the sequence L is at most km? = k(kljz) . Since, by Stirling’s formula,

(k%) ~ 2k, /2 the length of the sequence is km? ~ k2 - 22F = 297, O

8.3 Sperner’s theorem

A set system F is an antichain (or Sperner system) if no set in it contains
another: if A, B € F and A # B then A € B. It is an antichain in the sense
that this property is the other extreme from that of the chain in which every
pair of sets is comparable.

Simplest examples of antichains over {1, ..., n} are the families of all sets of
fixed cardinality k, £k = 0,1, ..., n. Each of these antichains has (Z) members.
Recognizing that the maximum of (}) is achieved for k = [n/2], we conclude
that there are antichains of size (Ln72 | ) Are these antichains the largest ones?

The positive answer to this question was found by Emanuel Sperner in
1928, and this result is known as Sperner’s Theorem.

Theorem 8.5 (Sperner 1928). Let F be a family of subsets of an n element
set. If F is an antichain then |F| < (WT/LQJ).

A considerably sharper result, Theorem 8.6 below, is due to Lubell (1966).
The same result was discovered by Meshalkin (1963) and (not so explicitly)
by Yamamoto (1954). Although Lubell’s result is also a rather special case
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of an earlier result of Bollobas (see Theorem 8.8 below), inequality (8.1) has
become known as the LYM inequality.

Theorem 8.6 (LYM Inequality). Let F be an antichain over a set X of n

elements. Then .
n
<1. 8.1
> () =

AeF

Note that Sperner’s theorem follows from this bound: recognizing that (Z)
is maximized when k = [n/2], we obtain

A1) < Z () =

We will give an elegant proof of Theorem 8.6 due to Lubell (1966) together
with one of its reformulations which is pregnant with further extensions.

First proof. For each subset A, exactly |A|!(n — |A])! maximal chains over
X contain A. Since none of the n! maximal chains meet F more than once,
we have ), » |A[!(n — |A])! < nl. Dividing this inequality by n! we get the
desired result. O

Second proof. The idea is to associate with each subset A C X, a permutation
on X, and count their number. For an a-element set A let us say that a
permutation (x1,xa,...,2,) of X contains A if {z1,...,2,} = A. Note that
A is contained in precisely a!(n — a)! permutations. Now if F is an antichain,
then each of n! permutations contains at most one A € F. Consequently,
Yoacral(n —a)! < nl and the result follows. To recover the first proof,
simply identify a permutation (x1, z2, . .., 2, ) with the maximal chain {x1} C
{z1,22} C ... C{z1,22..., 20} = X. |

8.4 The Bollobas theorem

The following theorem due to B. Bollobas is one of the cornerstones in ex-
tremal set theory. Its importance is reflected, among other things, by the list
of different proofs published as well as the list of different generalizations.
In particular, this theorem implies both Sperner’s theorem and the LYM
inequality.

Theorem 8.7 (Bollobés’ theorem). Let Ai,..., A, be a-element sets and
Bi,..., By, beb-element sets such that A;NBj = 0 if and only if i = j. Then
m < (*7").

This is a special case of the following result.
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Theorem 8.8 (Bollobéds 1965). Let Ay,..., A, and Bi,..., By be two se-
quences of sets such that A; N B; =0 if and only if i = j. Then

i (‘“;bl)_l <1, (8.2)

i=1
where a; = |4;] and b; = | B;|.

As we already mentioned, due to its importance, there are several different
proofs of this theorem. We present two of them.

First proof. Our goal is to prove that (8.2) holds for every family F =
{(Ai,B;) : i =1,...,m} of pairs of sets such that A; N B; = () precisely
when ¢ = j. Let X be the union of all sets A; U B;. We argue by induction
on n = |X|. For n = 1 the claim is obvious, so assume it holds for n — 1 and
prove it for n. For every point z € X, consider the family of pairs

Since each of these families F, has less than n points, we can apply the induc-

tion hypothesis for each of them, and sum the corresponding inequalities (8.2).

a; “Fbi) -1
a;

The resulting sum counts n — a; — b; times the term ( , corresponding

ap._1\—1 .
to points « & A; U B;, and b; times the term (“ﬁflj‘ )", corresponding to
points x € B;; the total is < n. Hence we obtain that

m —1 —1
Z i+ bi it+bi—1
(n—ai—bi)<a —|—b) +bi<a +b ) <n
a; a;

i=1 v

py—1
Since (") = &=L(¥), the i-th term of this sum is equal to 7 - (“”(Zb") .
Dividing both sides by n we get the result. a

Second proof. Lubell’s method of counting permutations. Let, as before, X
be the union of all sets A; U B;. If A and B are disjoint subsets of X then
we say that a permutation (z1,xs,...,z,) of X separates the pair (A, B) if
no element of B precedes an element of A, i.e., if xp € A and z; € B imply
k<.

Each of the n! permutations can separate at most one of the pairs (A;, B;),
i = 1,...,m. Indeed, suppose that (x1,x2,...,2,) separates two pairs
(A;,B;) and (A4;, B;) with ¢ # j, and assume that max{k : =z € A;} <
max{k : xp € A;}. Since the permutation separates the pair (4;, B;),

min{l : x; € B;} > max{k : x, € A;} > max{k : z, € A;}

which implies that A; N B; = ), contradicting the assumption.
We now estimate the number of permutations separating one fixed pair.
If |Al = a and |B| = b and A and B are disjoint then the pair (A, B) is



114 8 Chains and Antichains

separated by exactly

(aib)‘“b!(”—a— b)! = n!(a2b>1

permutations. Here (/) counts the number of choices for the positions of
A U B in the permutation; having chosen these positions, A has to occupy
the first a places, giving a! choices for the order of A, and b! choices for the
order of B; the remaining elements can be chosen in (n — a — b)! ways.

Since no permutation can separate two different pairs (4;, B;), summing
up over all m pairs we get all permutations at most once

m —1
E n! (al + bz) <n!
a;

i=1

and the desired bound (8.2) follows. O

Tuza (1984) observed that Bollobas’s theorem implies both Sperner’s the-
orem and the LYM inequality. Let Aq,..., A,, be an antichain over a set X.
Take the complements B; = X \ A; and let a; = |A;| for i = 1,...,m. Then
b; =n — a; and by (8.2)

>(h) -~ () <

i=1 i=1

Due to its importance, the theorem of Bollobds was extended in several
ways.

Theorem 8.9 (Tuza 1985). Let Ay, ..., Ay, and By, ..., By, be collections of
sets such that A;NB; = 0 and for all i # j either A;NB; # 0 or A;NB; #0
(or both) holds. Then for any real number 0 < p < 1, we have

ZP\AH(I _p)lBil <1.
1=1

Proof. Let X be the union of all sets A; U B;. Choose a subset Y C X at
random in such a way that each element x € X isincluded in Y independently
and with the same probability p. Let E; be the event that A; C Y C X\
B;. Then for their probabilities we have Pr[FE;] = pl4il(1 — p)IB:l for every
i = 1,...,m (see Exercise 8.4). We claim that, for ¢ # j, the events E;
and E; cannot occur at the same time. Indeed, otherwise we would have
A; U Aj CY CX \ (B, @] B]‘), implying A; N Bj = Aj NnB; = @, which
contradicts our assumption.

Since the events Fi,...,FE, are mutually disjoint, we conclude that
Pr[Ei]+---+Pr[Ey] =Pr[E1U---UE,] <1, as desired. O
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The theorem of Bollobas also has other important extensions. We do not
intend to give a complete account here; we only mention some of these results
without proof. More information about Bollobas-type results can be found,
for example, in a survey by Tuza (1994).

A typical generalization of Bollobés’s theorem is its following “skew ver-
sion.” This result was proved by Frankl (1982) by modifying an argument of
Lovész (1977) and was also proved in an equivalent form by Kalai (1984).

Theorem 8.10. Let Ay,..., A, and By, ..., By, be finite sets such that
A;NB; =0 and A;NB; # 0 if i < j. Also suppose that |A;| < a and |B;| <b.
Then m < (“zb).

We also have the following “threshold version” of Bollobas’s theorem.

Theorem 8.11 (Fiiredi 1984). Let Ay, ..., Ay, be a collection of a-sets and
By, ..., By be a collection of b-sets such that |[A; N B;| < s and |[A; N Bj| > s
for every i # j. Then m < (a+b_25).

a—s

8.5 Strong systems of distinct representatives

Recall that a system of distinct representatives for the sets Sy, So,..., Sk is
a k-tuple (x1,x2,...,x) where the elements x; are distinct and z; € S; for
all i =1,2,... k. Such a system is strong if we additionally have x; ¢ S; for
all i # 5.

Theorem 8.12 (Fiiredi-Tuza 1985). In any family of more than (T',tk) sets
of cardinality at most r, at least k + 2 of its members have a strong system
of distinct representatives.

Proof. Let F = {A1,..., A} be a family of sets, each of cardinality at
most 7. Suppose that no k + 2 of these sets have a strong system of distinct
representatives. We will apply the theorem of Bollobas to prove that then
m < (TJ,gk) Let us make an additional assumption that our sets form an
antichain, i.e., that no of them is a subset of another one. By Theorem 8.8
it is enough to prove that, for every ¢ = 1,...,m there exists a set B;, such
that |B;| <k, BiNA; =0 and B, N A; # () for all j # i.

Fix an ¢ and let B; = {x1,...,2;} be a minimal set which intersects all
the sets A; \ A;, 7 = 1,...,m, j # i. (Such a set exists because none of
these differences is empty.) By the minimality of B;, for every v = 1,...,¢
there exists a set S, € F such that B; NS, = {x, }. Fix an arbitrary element
yi € A;. Then (y;,21,...,2¢) is a strong system of distinct representatives
for t + 1 sets A;, S1, ..., S;. By the indirect assumption, we can have at most
k + 1 such sets. Therefore, |B;| =t < k, as desired.

In the case when our family F is not an antichain, it is enough to order
the sets so that A; € A; for i < j, and apply the skew version of Bollobas’s
theorem. a
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8.6 Union-free families

A family of sets F is called r-union-free if Ag € Ay U Ay U---U A, holds for
all distinct Ag, A1,..., A, € F. Thus, antichains are r-union-free for » = 1.

Let T(n,r) denote the maximum cardinality of an r-union-free family F
over an n-element underlying set. This notion was introduced by Kautz and
Singleton (1964). They proved that

2(1/r%) < <Oo(1/r).

log, T'(n, 1)
n
This result was rediscovered several times in information theory, in combina-
torics by Erdés, Frankl, and Firedi (1985), and in group testing by Hwang
and Sés (1987). Dyachkov and Rykov (1982) obtained, with a rather involved

proof, that
log, T
log, T(n, 1) < O(logy 7/72).
n
Recently, Ruszinké (1994) gave a purely combinatorial proof of this upper
bound. Shortly after, Fiiredi (1996) found a very elegant argument, and we
present it below.

Theorem 8.13 (Fiiredi 1996). Let F be a family of subsets of an n-element
underlying set X, and r > 2. If F is r-union-free then |F| < r + () where

[ ()]

log, | F|/n < O (logy r/7?) .

Proof. Let F; be the family of all members of F having their own t-subset.
That is, F; contains all those members A € F for which there exists a t-
element subset T' C A such that T' ¢ A’ for every other A’ € F. Let 7; be
the family of these t-subsets; hence |7;| = |F¢|. Let Fo :={A € F : |A| < t},
and let 7y be the family of all t-subsets of X containing a member of Fy, i.e.,

That 1is,

To:={T : TCX,|T|=tand T D A for some A € Fy}.
The family F is an antichain. This implies that 7; and 7; are disjoint. The

family Fy is also an antichain, and since ¢ < n/2, we know from Exercise 5.11
that |Fo| < |7Zg|. Therefore,

n
IFo UR| < |T| + |To| < (t> (8.3)

It remains to show that the family

Fi=F\(FoUF)
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has at most » members. Note that A € F’ if and only if A € F, |A| >t and
for every t-subset T C A there is an A’ € F such that A’ # A and A’ D T.
We will use this property to prove that A € F/', Ay, Ag,..., A4, € F (i <7r)
imply

|[A\ (AL U---UA)| >t(r—1)+1. (8.4)

To show this, assume the opposite. Then the set A\ (A; U---U A;) can be
written as the union of some (r — i) t-element sets T;11,...T,. Therefore, A
lies entirely in the union of A;,..., A; and these sets T;11,...,7T,. But, by
the choice of A, each of the sets T} lies in some other set A; € F different
from A. Therefore, A C A; U---U A,, a contradiction.

Now suppose that F’ has more than r members, and take any r + 1 of
them Ag, Aq,..., A, € F'. Applying (8.4) we obtain

[ Ail = Ao + A1\ Ao| + A2\ (Ag U Ay)| + -+
=0
+|AT\(A0UA1U"'UAT71)‘
>r+1)+ (tr—=1)+1)+ (t(r—2)+1)+---+ (t-0+1)

1 1
zt-w—kr—klzt(r; >+r—|—1.

By the choice of ¢, the right-hand side exceeds the total number of points n,
which is impossible. Therefore, 7' cannot have more than r distinct members.
Together with (8.3), this yields the desired upper bound on |F|. O

Exercises

8.1. Let F be an antichain consisting of sets of size at most k < n/2. Show
that |F| < ().

8.2. Derive from Bollobas’s theorem the following weaker version of Theo-
rem 8.11. Let Ay,..., A, be a collection of a-element sets and By, ..., By, be
a collection of b-element sets such that |A;NB;| =t for all 4, and |A;NB;| >t

for ¢ # j. Then m < (ajﬁzt)

8.3. Show that the upper bounds in Bollobas’s and Fiiredi’s theorems (The-
orems 8.7 and 8.11) are tight. Hint: Take two disjoint sets X and S of respective
sizes a + b — 2s and s. Arrange the s-element subsets of X in any order: Y1,Y2,.... Let
A =SUY; andBZ:SU(X\YJ

8.4. Use the binomial theorem to prove the following. Let 0 < p < 1 be a real
number, and C C D be any two fixed subsets of {1,...,n}. Then the sum of
plA1(1 —p)»~ 14l over all sets A such that C' C A C D, equals pl®I(1 —p)»~IPI
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8.5. (Frankl 1986). Let F be a k-uniform family, and suppose that it is inter-
section free, i.e., that ANB ¢ C for any three sets A, B and C of F. Prove that
‘.7:| <1+ (Lk’/CZJ)' Hint: Fix a set Bo € F, and observe that {ANBg : A€ F, A# Bo}

is an antichain over Bp.

8.6. Let Aq,..., A, be a family of subsets of an n-element set, and suppose
that it is convez in the following sense: if A; C B C A; for some i, j, then B
belongs to the family. Prove that the absolute value of the sum Zgl(—l)‘Ai‘
does not exceed (LnT/sz)' Hint: Use the chain decomposition theorem. Observe that
the contribution to the sum from each of the chains is of the form £(1 —1+1—1...),
and so this contribution is 1, —1 or 0.

8.7. Let z1, ..., 2, be real numbers, x; > 1 for each 7, and let .S be the set of
all numbers, which can be obtained as a linear combinations a1 x1+. . .+, Ty,
with o; € {—=1,+1}. Let I = [a,b) be any interval (in the real line) of length
b — a = 2. Show that |I N S| < (LnT/L2j)‘ Hint: Associate with each such sum
{ = o121+ ...+ onxn the corresponding set A¢ = {i : a; = +1} of indices ¢ for which
o; = +1. Show that the family of sets A¢ for which £ € I, forms an antichain and
apply Sperner’s theorem. Note: Erdds (1945) proved a more general result that
if b — a = 2¢ then |I N S| is less than or equal to the sum of the ¢ largest

binomial coefficients (7;)

8.8. Let P be a finite poset and suppose that the largest chain in it has size
r. We know (see Theorem 8.1) that P can be partitioned into r antichains.
Show that the following argument also gives the desired decomposition: let
Aj be the set of all maximal elements in P; remove this set from P, and let
Az be the set of all maximal elements in the reduced set P\ Aj, etc.

8.9. Let F = {A4;,..., A, } and suppose that
1
|A; N A;] < —min{|A;|,|A4;]} for all i # j.
T

Show that F is r-union-free.

8.10. Let F = {A1,...,4,,} be an r-union-free family. Show that then
Uier Ai # Ujec; A;j for any two distinct non-empty subsets I, J of size at
most 7.



9. Blocking Sets and the Duality

In this chapter we will consider one of the most basic properties of set sys-
tems — their duality. The dual of a family F consists of all (minimal under
set-inclusion) sets that intersect all members of F. Dual families play an im-
portant role in many applications, boolean function complexity being just
one example.

9.1 Duality

A blocking set of a family F is a set T' that intersects (blocks) every member
of F. A blocking set of F is minimal if none of its proper subsets is such.
(Minimal blocking sets are also called transversals of F.) The family of all
minimal blocking sets of F is called its dual and is denoted by b (F).

Proposition 9.1. For every family F we have b (b (F)) C F. Moreover, if F
is an antichain then b (b (F)) = F.

Proof. To prove the first claim, take a set B € b (b (F)). Observe that none of
the sets A\ B with A € F can be empty: Since B is a minimal blocking set of
b (F), it cannot contain any member A of F as a proper subset, just because
each member of F is a blocking set of b (F'). Assume now that B ¢ F. Then,
for each set A € F, there is a point 4 € A\ B. Theset {x4 : A€ F} of all
such points is a blocking set of F, and hence, contains at least one minimal
blocking set T' € b (F). But this is impossible, because then B must intersect
the set T which, by it definition, can contain no element of B.

To prove the second claim, let F be an antichain, and take any A € F.
We want to show A is in b (b (F)). Each element of b (F) intersects A, so A
is a blocking set for b (F). Therefore A contains (as a subset) some minimal
blocking set B € b(b(F)). Since b (b(F)) is a subset of F (by the first part
of the proof), the set B must belong to F. Hence, A and its subset B are
both in F. But F is an antichain, therefore A = B, so A € b (b(F)). |

S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. 119
An EATCS Series, DOI 10.1007/978-3-642-17364-6_9,
© Springer-Verlag Berlin Heidelberg 2011


http://dx.doi.org/10.1007/978-3-642-17364-6_9

120 9 Blocking Sets and the Duality

/AN

Fig. 9.1 Example of a self-dual family.

Let us consider the following problem of “keys of the safe” (Berge 1989).
An administrative council is composed of a set X of individuals. Each of
them carries a certain weight in decisions, and it is required that only subsets
A C X carrying a total weight greater than some threshold fixed in advance,
should have access to documents kept in a safe with multiply locks. The
minimal “coalitions” which can open the safe constitute an antichain F. The
problem consists in determining the minimal number of locks necessary so
that by giving one or more keys to every individual, the safe can be opened
if and only if at least one of the coalitions of F is present.

Proposition 9.2. For every family F of minimal coalitions, |b (F) | locks are
enough.

Proof. Let b(F) = {T1,...,T¢}. Then give the key of the i-th lock to all the
members of T;. It is clear that then every coalition A € F will have the keys
to all £ locks, and hence, will be able to open the safe. On the other hand, if
some set B of individuals does not include a coalition then, by Proposition 9.1,
the set B is not a blocking set of b (F), that is, BN T; = (} for some 4. But
this means that people in B lack the i-th key, as desired. a

A family F is called self-dual if b (F) = F.

For example, the family of all k-element subsets of a (2k — 1)-element set
is self-dual. Another example is the family of » 4+ 1 sets, one of which has r
elements and the remaining r sets have 2 elements (see Fig. 9.1).

What other families are self-dual? Our nearest goal is to show that a family
is self-dual if and only if it is intersecting and not 2-colorable. Let us first
recall the definition of these two concepts.

A family is intersecting if any two of its sets have a non-empty intersection.
The chromatic number x(F) of F C 2% is the smallest number of colors
necessary to color the points in X so that no set of F of cardinality > 1 is
monochromatic. It is clear that x(F) > 2 (as long as F is non-trivial, i.e.,
contains at least one set with more than one element).

The families with x(F) = 2 are of special interest and are called 2-colorable.
In other words, F is 2-colorable iff there is a subset S such that neither S
nor its complement X \ .S contain a member of F. It turns out that x(F) > 2
is a necessary condition for a family F to be self-dual.

For families of sets F and G, we write F > G if every member of F contains
at least one member of G.
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Proposition 9.3. (i) A family F is intersecting if and only if F > b(F).
(i) x(F) > 2 if and only if b(F) >~ F.

Proof. (i) If F is intersecting then every A € F is also a blocking set of F, and
hence, contains at least one minimal blocking set. Conversely, if F > b (F)
then every set of F contains a blocking set of F, and hence, intersects all
other sets of F.

(ii) Let us prove that x(F) > 2 implies b (F) = F. If not, then there must
be a blocking set T" of F which contains no set of F. But its complement
X \ T also contains no set of F, since otherwise T would not block all the
members of F. Thus (T, X \ T') is a 2-coloring of F with no monochromatic
set, a contradiction with x(F) > 2.

For the other direction, assume that b(F) > F but x(F) = 2. By the
definition of x(F) there exists a set S such that neither S nor X \ S contain
a set of F. This, in particular, means that S is a blocking set of F which
together with b (F) > F implies that S O A for some A € F, a contradiction.

O

Corollary 9.4. Let F be an antichain. Then the following three conditions
are equivalent:

(1) b(F)=F;

(2) F isintersecting and x(F) > 2;

(3)  both F and b(F) are intersecting.

Proof. Equivalence of (1) and (2) follows directly from Proposition 9.3. Equiv-
alence of (1) and (3) follows from the fact that both F and b(F) are an-
tichains. O

9.2 The blocking number

Recall that the blocking number T(F) of a family F is the minimum number
of elements in a blocking set of F, that is,

7(F):=min{|T| : TNA#0 for every A€ F}.

We make two observations concerning this characteristic:

If F contains a k-matching, i.e., k mutually disjoint sets, then 7(F) > k.
If F is intersecting, then 7(F) < mingecr|A4|.

A family F can have many smallest blocking sets, i.e., blocking sets of
size 7(F). The following result says how many. The rank of a family F is the
maximum cardinality of a set in F.

Theorem 9.5 (Gyérfas 1987). Let F be a family of rank r, and let T = 7(F).
Then the number of blocking sets of F with T elements is at most r™.
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Proof. We will prove by backward induction on ¢ that every i-element set
I is contained in at most 77 ~¢ T-element blocking sets. It is obvious for
i = 7 and the case i = 0 gives the theorem. If ¢ < 7 then there exists a set
A € F such that ANTI =0 (because |I| < 7(F)). Now apply the induction
hypothesis for the sets I U {z}, x € A. Observe that every blocking set T'
of F, containing the set I, must contain at least one of the extended sets
IU{x}, with z € A (because IN A = () whereas TN A # 0)). By the induction
hypothesis, each of the sets I U {x} with x € A, is contained in at most
7= (+1) r_element blocking sets of F. Thus, the set I itself is contained in
at most |A| - r7=1 < r7~% r_element blocking sets, as desired. O

Considering 7 pairwise disjoint sets of size r shows that Theorem 9.5 is
best possible.

Corollary 9.6 (Erdés—Lovasz 1975). Let F be an intersecting r-uniform fam-
ily with 7(F) = r. Then |F| <r".

Proof. Each A € F is a blocking set of size r. O

9.3 Helly-type theorems

In terms of the blocking number 7, the simplest Helly-type result for families
of sets (Theorem 7.2) says that if F is r-uniform and each set of < r+1 of its
members intersect then 7(F) = 1. This result can be generalized as follows.

Theorem 9.7 (Lovasz 1979). Let F be r-uniform. If each collection of k
members (k > 2) of F intersect then 7(F) < (r —1)/(k —1) + 1.

Proof. By construction. For j =1,...,k we will select j sets Ay,...,A; in F
such that
1<|Ain---nA4| <r—(j—1)((F)-1), (9.1)

which for j = k gives the desired upper bound on 7 = 7(F).

For j =1 take A; € F arbitrarily.

Assume Ay, ..., A; have been selected (j <k —1). The set Ay N---NA,;
intersects every set of F (why?), thus |41 N ---N A;| > 7(F). Take a subset
S C A N---NA; with |S| = 7 — 1. Since |S| < 7(F), there must be a set
Aji1 € F such that SN Aj1 = 0 (this set is different from Ay, ..., A; since
S intersects all of them). Thus

[ATN-NA;NA ] <|AiNn---NA;NS|=]ANn---NA; -S|
=N N4l - (- <r—G-DF - -r+l=r—jr-1).

O
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For graphs (i.e., for 2-uniform families) Helly’s theorem (Theorem 7.2)
says that, if in a finite graph any three edges share a common vertex, then
this graph is a star. Erdés, Hajnal, and Moon (1964) generalized this easy
observation about graphs in a different direction. A set of vertices S covers
a set of edges F C F of a graph G = (V, E) if every edge in F has at least
one of its endpoints in S.

Theorem 9.8. If each family of at most (5'2"2) edges of a graph can be covered
by s vertices, then all edges can.

The complete graph on s+ 2 vertices shows that this bound is best possible.
Graphs are 2-uniform families. The question was how to generalize the result
to r-uniform families for arbitrary r. The conjecture was easy to formulate:
the formula (S':T). This turns out to be the correct answer.

Theorem 9.9 (Bollobés 1965). If each family of at most (°**") members of

T
an r-uniform family can be blocked by s points then all members can.

Proof. Let F be an r-uniform family, satisfying the assumption of the the-
orem, and suppose that 7(F) > s + 1. Then there is a subfamily F' =
{41,...,Ap} C F such that 7(F') = s+ 1 and F' is 7-critical, that is,

T(F\{A}) <

for all i = 1,...,m. Our goal is to show that m < ("7*), contradicting the
assumption (that every subfamily with so few members can be blocked by s
points).

Since 7(F’) = s+ 1 and F’ is 7-critical, for each i = 1,...,m, the family
F'\ {A;} has a blocking set B; of size s. Hence, A; N B; # § for all j # i.
Moreover, A; N B; = 0 since B; has too few elements to intersect all the
members of F’. Thus, we can apply the Bollob4s theorem (Theorem 8.8)

witha; =...=a, =7 and by = ... =b,, = s, which yields
—1 m —1
s+r a; + b;
. = <1
() =) =
and the desired upper bound on m follows. a

9.4 Blocking sets and decision trees

Blocking sets play an important role in the theory of boolean functions. In
the next sections we will present some results in that direction.

Fix an arbitrary boolean function f(z1,...,z,). Given a vector a =
(a1,...,an) in {0,1}", a certificate for a (with respect to the function f)
is a subset S C [n] = {1,...,n} of positions such that f(b) = f(a) for all
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vectors b € {0,1}™ with b; = a; for all ¢ € S. That is, if we set the variables x;
with ¢ € S to the corresponding bits of a, then the function will take the value
f(a) independent of the values of other variables. The certificate complexity

of f on a vector a, C(f,a), is the minimum size |S| of a certificate S for a.
Define

Ci(f) =max{C(f,a): f(a) =1} and Co(f)=max{C(f,a): f(a) =0}.

That is, C1(f) is the smallest number k such that, for every input a with
f(a) =1, there is a subset S of |S| < k positions such that, if we set x; := a;
for all i € S, then the function f takes value 1 independent of the values of
other variables.

Let F; be the family of all certificates for inputs a € f~1(i), i = 0,1. Then
we have the following cross-intersection property:

SNT #0 foralSeFyand T € Fi. (9.2)

Proof. Assume that there is a certificate S for a vector a € f~!(0) and a
certificate T’ for a vector b € f~1(1) such that SN T = (. Take a vector
¢ € {0,1}™ such that ¢; = a; for alli € S, ¢; = b; for all i € T, and ¢; = 0
for all i ¢ SUT. Since S is a certificate for a, and since vector ¢ coincides
with a in all position i € S, we have that f(c) = f(a) = 0. But by the same
reason we also have that f(c) = f(b) =1, a clear contradiction. O

One can describe the certificates of a given boolean function f by so-called
“decision trees.”

A decision tree for a boolean function f(z1,...,x,) is a binary tree whose
internal nodes have labels from z1, ..., z, and whose leaves have labels from
{0,1}. If a node has label x; then the test performed at that node is to
examine the i-th bit of the input. If the result is 0, one descends into the left
subtree, whereas if the result is 1, one descends into the right subtree. The
label of the leaf so reached is the value of the function (on that particular
input). The depth of a decision tree is the number of edges in a longest path
from the root to a leaf, or equivalently, the maximum number of bits tested
on such a path. Let DT(f) denote the minimum depth of a decision tree
computing f.

It is not difficult to show (do this!) that, for every boolean function f, we
have that

max{Co(f), C1(f)} < DT(f).

This upper bound is, however, not optimal: there are boolean functions f for

which

max{Co(f), C1(f)} < v DT(f).
Such is, for example, the monotone boolean function f(X) on n = m? boolean
variables defined by: f = A;Z, \/J_, x;; . For this function we have Co(f) =
Ci(f) = m but DT(f) = m? (see Exercise 9.9), implying that DT(f) =
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Co(f)-C1(f). It turns out that the example given above is, in fact, the worst
possible case.

Theorem 9.10. For every boolean function f,

DT(f) < Co(f)-Ci(f).

Proof. Induction on the number of variables n. If n = 1 then the inequality
is trivial.

Let (say) f(0,...,0) = 0; then some set Y of k < Cy(f) variables can be
chosen such that by fixing their value to 0, the function f is 0 independently
of the other variables. We can assume w.l.o.g. that the set

Y ={x1,..., 2}

of the first k£ variables has this property.

Take a complete deterministic decision tree Ty of depth k& on these k vari-
ables. Each of its leaves corresponds to a unique input a = (a1,...,ax) €
{0, 1}* reaching this leaf. Replace such a leaf by a minimal depth determin-
istic decision tree T, for the sub-function

fo:=fla1,...,ak, Trt1,...,Tn).

Obviously, Do(fa) < Co(f) and Di(fs) < Ci(f). We claim that the latter
inequality can be strengthened:

Ci(fa) <Ci(f) -1 (9-3)

The argument is essentially the same as that in the proof of (9.2). Take
an arbitrary input (ag41,...,a,) of f, which is accepted by f,. Together
with the bits (aq,...,ax), this gives an input of the whole function f with
f(a1,...,a,) = 1. According to the definition of the quantity C;(f), there
must beaset Z = {z,,...,x;, } of m < C1(f) variables such that fixing them
to the corresponding values x;, = ai,,...,x;,, = a;,_, the value of f becomes
1 independently of the other variables. A simple (but crucial) observation is
that

YNZ#0. (9.4)

Indeed, if Y N Z = ( then the value of f(0,...,0,axt1,---,a,) should be
0 because fixing the variables in Y to 0 forces f to be 0, but should be 1,
because fixing the variables in Z to the corresponding values of a; forces f
to be 1, a contradiction.

By (9.4), only |Z\ Y| < m—1 of the bits of (ag+1,- .-, a,) must be fixed to
force the sub-function f, to obtain the constant function 1. This completes
the proof of (9.3).

Applying the induction hypothesis to each of the sub-functions f, with
a € {0,1}*, we obtain
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DT(fa) < CO(fa) : Cl(fa) < CO(f)(Cl(f) - 1)'

Altogether,

DT(f) <k +max DT(fa) < Co(f) + Co(F)(C1(f) = 1) = Co(f)C1(F) -

9.5 Blocking sets and monotone circuits

A boolean function f(z1,...,zy) is monotoneif f(z1,...,z,) = land z; <y;
for all 4, imply f(y1,...,yn) = 1. A monotone circuit is a sequence fi,..., f
of monotone boolean functions, called gates, each of which is either one of the
variables x1, . .., x, or is obtained from some previous gates via an And or Or
operation. That is, each gate f; has either the form f; = x; forsome 1 <[ < n,
or one of the forms f =gV h or f = gAh for some g,h € {0,1, f1,..., fi—1}.
The size of a circuit is the number ¢ of gates in it. The function computed by
such a circuit is the last function f;.

The problem (known as the lower bounds problem) is, given an explicit
boolean function, to prove that it cannot be computed by a circuit of small
size. It is clear that every function can be computed by a circuit of size
exponential in the number of variables. However, even in the case of monotone
circuits, it is difficult to show that some function is indeed hard, i.e., requires
many gates.

In this section we will show that, using some combinatorial properties of
blocking sets, one may obtain exponential lower bounds in a relatively easy
and direct way.

A monotone k-CNF (conjunctive normal form) is an And of an arbitrary
number of monotone clauses, each being an Or of at most k variables. Dually,
a monotone k-DNF is an Or of an arbitrary number of monomials, each being
an And of at most k variables. Note that in k-CNFs we allow clauses shorter
than k.

In an ezxact k-CNF we require that all clauses have ezactly k distinct
variables; exact k-DNF is defined similarly. For two boolean functions f and
g in n variables, we write f < g if f(x) < g() for all input vectors x. For a
CNF/DNF C we will denote by |C| the number of clauses/monomials in it.

Our goal is to show that complex monotone functions, that is, monotone
functions requiring large monotone circuits cannot be “simple” in the sense
that they cannot be approximated by small CNFs and DNFs. The proof of this
is based on the following “switching lemma” allowing us to switch between
CNFs and DNFs, and vice versa.

Lemma 9.11 (Monotone Switching Lemma). For every s-CNF fq there is
an r-DNF f1 and an exact (r +1)-DNF D such that
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A<fo<AVD and |D|<s™t. (9.5)

Dually, for every r-DNF fi there is an s-CNF fo and an exact (s + 1)-CNF
C such that
fo NC S fl S fo and ‘C‘ S ’I“s_‘—1 . (96)

Proof. We prove the first claim (the second is dual). Let fo = C1 A---ACy be
an s-CNF; hence, each clause C; has |C;| < s variables. It will be convenient
to identify clauses and monomials with the sets of indices of their variables.

We associate with the CNF fj the following tree T of fan-out at most
s. The first node of T corresponds to the first clause C7, and the outgoing
|Cy| edges are labeled by the variables from C. Suppose we have reached a
node v, and let M be the monomial consisting of the labels of edges on the
path from the root to v. If M intersects all the clauses of fj, then v is a leaf.
Otherwise, let C; be the first clause such that M N C; = (. Then the node v
has |C;| outgoing edges labeled by the variables in C;.

Note that each path from the root to a leaf of T corresponds to a monomial
of fo (since each such path intersects all clauses). More important is that also
the converse holds: each monomial of fy must contain all labels of at least
one path from the root to a leaf. Thus, we have just represented the DNF
of fo as a tree, implying that T'(z) = fo(z) for all input vectors z € {0,1}".
But some paths (monomials) may be longer than r 4+ 1. So, we now cut off
these long paths.

Namely, let fi; be the Or of all paths of length at most r ending in leafs,
and D be the set of all paths of length exactly r + 1. Observe that:

(i) every monomial of f; is also a monomial of fq, and
(ii) every monomial of fy, which is not a monomial of f;, must contain (be
an extension of) at least one monomial of D.

For every input z € {0,1}", we have fi(x) < fo(z) by (i), and fo(z) <
fi(x) vV D(x) by (ii). Finally, we also have that |D| < s"*1, because every
node of T has fan-out at most s. O

Most important in the Switching Lemma is that the (r + 1)-DNF D, cor-
recting possible errors, contains only s”T! monomials instead of all (Til)
possible monomials.

We now give a general lower bounds criterion for monotone circuits.

Definition 9.12. Let f(z1,...,2,) be a monotone boolean function. We say
that f is t-simple if for every pair of integers 1 < r,s < n — 1 there exists an
exact (s + 1)-CNF C, an exact (r + 1)-DNF D, and a subset I C {1,...,n}
of size |I| < s such that

(a) |C]<t-rtland |[D| <t-s"t1, and
(b) either C < for f < DV\V, ;x; (or both) hold.

Theorem 9.13 (Lower bounds criterion). If a monotone boolean function
can be computed by a monotone circuit of size t, then it is t-simple.
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Proof. Given a monotone circuit, the idea is to approximate every interme-
diate gate (more exactly — the function computed at the gate) by an s-CNF
and an m-DNF| and to show that when doing so we do not introduce too many
errors. If the function computed by the whole circuit is not ¢-simple, then it
cannot be approximated well by such a CNF/DNF pair meaning that every
such pair must make many errors. Since the number of errors introduced
at each separate gate is small, the total number of gates must be large. To
make as few errors at each gate as possible we will use the Switching Lemma
(Lemma 9.11) which allows us to approximate an s-CNF by small r-DNFs
and vice versa.

Let F(x1,...,2,) be a monotone boolean function, and suppose that F'
can be computed by a monotone circuit of size t. Our goal is to show that
the function F' is t-simple. To do this, fix an arbitrary pair of integers 1 <
s,r<n-—1.

Let f = g« h be a gate in our circuit. By an approzimator of this gate we
will mean a pair fy, f1, where fj is an s-CNF (a left approximator of f) and
f1is an r-DNF (a right approximator of f) such that f; < fo.

We say that such an approximator fy, f1 of f introduces a new error on
input € {0,1}™ if the approximators of g and of h did not make an error
on z, but the approximator of f does. That is, go(z) = g1(x) = g(z) and
ho(z) = hi(z) = h(z), but either fo(z) # f(z) or fi(z) # f(z).

We define approximators inductively as follows.

Case 1: f is an input variable, say, f = x;. In this case we take fo = f1 := z;.
It is clear that this approximator introduces no errors.

Case 2: f is an And gate, f = g A h. In this case we take fy := go A hg as
the left approximator of f; hence, fy introduces no new errors. To define the
right approximator of f we use Lemma 9.11 to convert fy into an r-DNF f1;
hence, fi < fo. Let Ef be the set of inputs on which f; introduces a new
error, i.e.,

Ey :={a: f(z) = folx) =1 but fi(z)=0}.

By Lemma 9.11, all these errors can be “corrected” by adding a relatively
small exact (r+1)-DNF: there is an exact (r+1)-DNF D such that |D| < s"+!
and D(z) =1 for all x € Ey.

Case 3: f is an Or gate, f = g V h. This case is dual to Case 2. We take
f1 := g1 V hy1 as the right approximator of f; hence, f; introduces no new
errors. To define the left approximator of f we use Lemma 9.11 to convert f;
into an s-CNF fo; hence, fi < fo. Let E¢ be the set of inputs on which f
introduces a new error, i.e.,

Ey :={a: f(z) = fu(x) =0 but fo(z) =1}.

By Lemma 9.11, all these errors can be “corrected” by adding a relatively
small exact (s+1)-CNF: there is an exact (s+1)-CNF C such that |C| < rst1
and C(x) =0 for all x € Ey.
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Proceeding in this way we will reach the last gate of our circuit computing
the given function F'. Let Fy, F} be its approximator, and let F be the set of all
inputs € {0,1}" on which F differs from at least one of the functions Fy or
F3. Since at input gates (= variables) no error was made, for every such input
x € E, the corresponding error must be introduced at some intermediate gate.
That is, for every z € E there is a gate f such that x € E; (approximator of
f introduces an error on x for the first time). But we have shown that, for
each gate, all these errors can be corrected by adding an exact (s + 1)-CNF
of size at most r**! or an exact (r + 1)-DNF of size at most s"*1. Since we
have only ¢ gates, all such errors x € E can be corrected by adding an exact
(s +1)-CNF C of size at most t - r*T1 and an exact (r + 1)-DNF D of size at
most ¢ - s" 71, that is, for all inputs = € {0,1}", we have

C(z) AN Fo(z) < F(z) < Fi(z) V D(x).

This already implies that the function F' is t-simple. Indeed, if the CNF Fj
is empty (i.e., if Fp = 1) then C < F, and we are done. Otherwise, Fy must
contain some clause S of length at most s, say, S = \/,.; z; for some I of size
|I| < s. Since Fy < S, the condition F; < Fy implies F < F1VD < Fyp VD <
SV D, as desired. This completes the proof of Theorem 9.13. a

In applications, boolean functions f are usually defined as set-theoretic
predicates. In this case we say that f accepts aset S C {1,...,n} if and only
if f accepts its incidence vector.

A set S is a positive input for f if f(S) = 1, and a negative input if f(S) = 0,
where S is the complement of S. Put otherwise, a positive (negative) input is
a set of variables which, if assigned the value 1 (0), forces the function to take
the value 1 (0) regardless of the values assigned to the remaining variables.
Note that one set S can be both positive and negative input! For example, if
f(z1, 29, x3) outputs 1 iff 1 + 22 + 23 > 2, then S = {1,2} is both positive
and negative input for f, because f(1,1,23) =1 and f(0,0,x3) = 0.

To translate the definition of ¢-simplicity of f (Definition 9.12) in terms
of positive/negative inputs, note that if C' is a CNF, then C' < f means that
every negative input of f must contain at least one clause of C (looked at as
set of indices of its variables). Similarly, f < DV \/,.; z; means that every
positive input must either intersect the set I or contain at least one monomial
of D.

We begin with the simplest example. We will also present a more re-
spectable applications—a 2% (") Jower bound—but this special case already
demonstrates the common way of reasoning pretty well.

Let us consider a monotone boolean function A,,, whose input is an undi-
rected graph on m vertices, represented by n = (”;) variables, one for each
possible edge. The value of the function is 1 if and only if the graph con-
tains a triangle (three incident vertices). Clearly, there is a monotone circuit
of size O(m?3) computing this function: just test whether any of (7;) trian-
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gles is present in the graph. Thus, the following theorem is tight, up to a
poly-logarithmic factor.

Theorem 9.14. Any monotone circuit, detecting whether a given m-vertex
graph is triangle-free, must have (2 (m3 / log? m) gates.

Proof. Let t be the minimal number for which A,, is t-simple. By Theo-
rem 9.13, it is enough to show that ¢ > 2 (m?/log" m). For this proof we
take

s:=[5log?m| and 7r:=1.

According to the definition of ¢-simplicity, we have only two possibilities.

Case 1: Every positive input for A,, either intersects a fixed set I of s edges,
or contains at least one of L < ts"t! = ts? 2-element sets of edges Ry, ..., Ry.

As positive inputs for A,, we take all triangles, i.e., graphs on m vertices
with exactly one triangle; we have (g‘) such graphs. At most s(m —2) of them
will have an edge in I. Each of the remaining triangles must contain one of
ts? given pairs of edges R;. Since two edges can lie in at most one triangle,

we conclude that, in this case,

’?;) —s(m—2)

t> ( :Q(m3/log4m) .

S

Case 2: Every negative input for A,, contains at least one of trst! =t sets
of edges S1,..., S, each of size |S;| = s+ 1.

In this case we consider the graphs £ = E; U Fs consisting of two disjoint
non-empty cliques E7 and F5 (we look at graphs as sets of their edges). Each
such graph F is a negative input for A,,, because its complement is a bipartite
graph, and hence, has no triangles. The number of such graphs is a half of
the number 2™ of all binary strings of length m excluding 0 and 1. Hence,
We have 2~! — 1 such graphs, and each of them must contain at least one
of the sets S1,...,S:. Every of these sets of edges S; is incident to at least
V/2s vertices, and if E D S; then all these vertices must belong to one of the
cliques E; or Es. Thus, at most 9m=v2s _ | of our negative inputs £ can
contain one fixed set S;, implying that, in this case,

2m-1 1

V2s—1 3logm 3

> > > > .
t72m—\/g_172 =2 =m

Thus, in both cases, t > 2 (m?/log* m), and we are done. O

Our next example is the following monotone boolean function introduced
by Andreev (1985). Let ¢ > 2 be a prime power, and set d := |(q/Inq)"/?/2].
Consider ¢ x ¢ (0,1) matrices A = (a; ;). Given such a matrix A, we are
interested in whether it contains a graph of a polynomial h : GF(q) — GF(q),
that is, whether a; ;) = 1 for all rows i € GF(q).
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Let f, be a monotone boolean function in n = ¢? variables such that
fn(A) = 1 iff A contains a graph of at least one polynomial over GF(q) of
degree at most d — 1. That is,

fn(X) = \/ /\ Ti,h(i) »

h i€GF(q)

where h ranges over all polynomials over GF(q) of degree at most d — 1.
Since we have at most ¢? such polynomials, the function f, can be com-
puted by a monotone boolean circuit of size at most ¢?*', which is at most
nOd) — 20! *Vinn) We will now show that this trivial upper bound is
almost optimal.

Theorem 9.15. Any monotone circuit computing the function f, has size at
least 22 *Vinn)

Proof. Take a minimal ¢ for which the function f,, is t-simple. Since n = ¢
and (by our choice) d = ©(n'/*y/Inn), it is enough by Theorem 9.13 to show
that t > ¢4, For this proof we take

s:=[dlngq] and r:=d,

and look at input matrices as bipartite ¢ X ¢ graphs. In the proof we will
essentially use the well-known fact that no two distinct polynomials of degree
at most d — 1 can coincide on d points. According to the definition of ¢-
simplicity, we have only two possibilities.

Case 1: Every positive input for f,, either intersects a fixed set I of at most
s edges, or contains at least one of L < ts"*1 (r + 1)-element sets of edges
R1, ey Ryp.

Graphs of polynomials of degree at most d — 1 are positive inputs for f,.
BEach set of [ (1 < [ < d) edges is contained in either 0 or precisely ¢4
of such graphs. Hence, at most sq?~! of these graphs can contain an edge
in I, and at most ¢~ ("+1) of them can contain any of the given graphs R;.
Therefore, in this case we again have

d r
t>(1-2) — 9 > (g)m)>q9(d>.
— q 57‘—0—1 . qd—(r+1) — \s —

Case 2: Every negative input for f, contains at least one of K < trst!
(s + 1)-element sets of edges St,...,Sk.

Let E be a random bipartite graph, with each edge appearing in E indepen-
dently with probability v := (2d1n¢q)/q. Since there are only ¢% polynomials
of degree at most d — 1, the probability that the complement of E will con-
tain the graph of at least one of them does not exceed ¢%(1 —~)? < ¢~ by
our choice of 4. Hence, with probability at least 1 — ¢~¢, the graph E is a
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negative input for f. On the other hand, each of the sets S; is contained in
E with probability v/% = v5+1. Thus, in this case,

—d £2(s)
> 1—¢q > q > 902() > 2(d)
pstlystl 2d21Inq

where the third inequality holds for all d < (g/Ingq)'/?/2.

We have proved that the function f can be t-simple only if t > ¢**(9), By
Theorem 9.13, this function cannot be computed by monotone circuits of size
smaller than ¢(%), a

Exercises

9.1. The independence number a(F) of a family F C 2% is defined as the
maximum cardinality |S| of a set S C X which does not contain any member
of F. Prove that a(F) = | X| — 7(F).

9.2. Let T be a minimal blocking set of a family F. Show that, for every
x € T, there exists an A € F such that TN A = {z}.

9.3. Show that the solution to Proposition 9.2 is optimal: if F is an antichain,
then at least |b(F) | locks are also necessary.

9.4. Let F be an r-uniform family and suppose that 7(F \ {4}) < 7(F) for
all A € F. Prove that |F| < (T+T(f:)_l). Hint: Observe that, for each A € F, there
is a set B of size 7(F) — 1 which is disjoint from A but intersects all other members of
F; apply the Bollobés theorem (Theorem 8.7).

9.5. Let F and H be antichains over some set X. Prove that:

(i) H =0 (F) if and only if for every coloring of the points in X in Red and
in Blue, either F has a Red set (i.e., all points in this set are red), or
(exclusive) H has a Blue set.

(ii) F > H if and only if b (H) > b (F).

9.6. Consider the following family F. Take k disjoint sets Vi,...,V} such
that |V;| =i for ¢ = 1,..., k. The members of F are all the sets of the form
Vi UT, where T is any set such that |T| = k — i and |TNV;| = 1 for all
j=1i+1,... k. Show that this family is self-dual, i.e., that F = b (F). (This
construction is due to Erdés and Lovész.)

9.7. A pair of sets (A, B) separates a pair of elements (z,y) if x € A\ B and
y € B\ A. A family F = {4;,..., A} of subsets of X = {z1,...,2,} is a
complete separator if every pair of elements in X is separated by at least one
pair of sets in F. Let F* be the family of all non-empty sets X; := {j : z; €
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A;}. Prove that F is a complete separator if and only if F* is an antichain.
Hint: X; Z X; means that there exists k such that k € X; and k € X, i.e., that x; € Ay
and z; & Ag.

9.8. Let F be a family of rank r. Show that then, for any s > 1, the family
F has at most r® minimal blocking sets of size s.

9.9. Prove that any decision tree for the function f = AL, V., 2;; has
depth m?. Hint: Take an arbitrary decision tree for f and construct a path from the
root by the following “adversary” rule. Suppose we have reached a node v labeled by
xi;. Then follow the outgoing edge marked by 1 if and only if all the variables z;; with
| # j were already tested before we reached the node v.

9.10. The storage access function is a boolean function f(z,y) on n + k
variables * = (zg,...,2,_1) and y = (yo,...,yr_1) where n = 2¥, and is
defined as follows: f(z,y) := Zipy(y), Where int(y) := Zf;ol ;2" is the integer
whose binary representation is the vector y. Prove that f is a (k + 1)-DNF
function although some of its minterms have length 2*. Hint: For the first claim
observe that the value of f only depends on k + 1 bits o, ..., yx—1 and Z;,¢(y). For the

lower bound, consider the monomial zox1 - - - n—1 and show that it is a minterm of f.

9.11. A partial b—(n,k,\) design is a family F of k-element subsets of
{1,...,n} such that any b-element set is contained in at most A of its mem-
bers. We can associate with each such design F a monotone boolean function
f7 such that fz(S) =1 if and only if S D F for at least one F' € F. Assume
that In|F| < k — 1 and that each element belongs to at most N members of
F. Use Theorem 9.13 to show that for every integer a > 2, every monotone
circuit computing f£ has size at least

£ :=min 1 i Y Ml-a N
o 2\ 2bln|F|) Aeab

Hint: Take s = a, r = b and show that under this choice of parameters, the function fg

can be t-simple only if ¢ > £. When doing this, note that the members of F are positive
inputs for fg. To handle the case of negative inputs, take a random subset in which
each element appears independently with probability p = (1 + In |F|)/k, and show that
its complement can contain a member of F with probability at most |F|(1 —p)* <e 2.

9.12. Derive Theorem 9.15 from the previous exercise. Hint: Observe that the
family of all ¢¢ graphs of polynomials of degree at most d — 1 over F, forms a partial
b—(n, k,\) design with parameters n = ¢, k = ¢ and X = ¢ °.

9.13. Andreev (1987) has shown how, for any prime power ¢ > 2 and d < ¢,
to construct an explicit family D of subsets of {1,...,n} which, for every
b < d+ 1, forms a partial b—(n, k, \) design with parameters n = ¢%, k = ¢2,
A = ¢?¥*1=b and |D| = ¢***!. Use Exercise 9.11 to show that the corre-
sponding boolean function fp requires monotone circuits of size exponential

in 2 (nl/?’*"(l)).
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9.14. (due to Berkowitz). A k-threshold is a monotone boolean function
Tp(x1, ..., xy) which outputs 1 if and only if the input vector x = (1, ..., zy)
has weight at least k, i.e., if |z| := x1 + - - - + x, > k. Show that

T,?fl(xl,-~-,$¢—1,$i+1,~-~,$n) = Ty,
for all inputs (z1,...,x,) such that 1 +--- + 2, = k.

9.15. A boolean function f is a slice function if there is some 0 < k£ < n such
that for every input z € {0,1}",

f(x):{(l) if |z| < k;

if |z > k.

That is, f can be non-trivial only on inputs with exactly k ones; in this case
we also say that f is the k-slice function. Use the previous exercise and the
fact that the threshold function 7} has a monotone circuit of size O(n?) to
prove that for such functions, using the negations cannot help much. Namely,
prove that if a slice function f has a non-monotone circuit of size ¢, then f
can also be computed by a monotone circuit of size at most £ + O(n?).



10. Density and Universality

In many applications (testing logical circuits, construction of k-wise inde-
pendent random variables, etc.), vector sets A C {0,1}"™ with the following
property play an important role:

For any subset of k coordinates S = {i1,...,ir} the projection of A onto
the indices in S contains all possible 2* configurations.

Such sets are called (n, k)-universal. If the same holds not for all but only
for at least one subset S of k indices, then A is called (n,k)-dense. The
maximal number k, for which A is (n, k)-dense, is also known as the Vapnik—
Chervonenkis dimension of A.

Given n and k, the problem is to find a universal (or dense) set A with as
few vectors as possible. In this chapter we will discuss several approaches to
its solution.

10.1 Dense sets

Given a vector v = (v1,...,vy,), its projection onto a set of coordinates S =
{#1,...,ix} is the vector vlg := (vs,...,v; ). The projection of a set of
vectors A C {0,1}™ onto S is the set of vectors Alg := {v]g : v € A}. Thus,
A'is (n, k)-dense iff Alg = {0,1}* for at least one subset of k coordinates S.

It is clear that every (n, k)-dense set must contain at least 2¥ vectors. On
the other hand, if A is the set of all vectors in {0,1}" with less than k ones,

then A has s
n
H(n k) :=
=3 (")

i=0
vectors but is not (n, k)-dense. It turns out, however, that every larger set

already s (n, k)-dense! This interesting fact, whose applications range from
probability theory to computational learning theory, was discovered indepen-
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dently by three sets of authors in remarkable simultaneity: Perles and Shelah
(see Shelah 1972), Sauer (1972), and Vapnik and Chervonenkis (1971). No
less remarkable is the range of contexts in which the results arose: logic, set
theory, and probability theory.

Theorem 10.1. If A C {0,1}" and |A| > H(n, k) then A is (n, k)-dense.

Proof. Induction on n and k. If k& = 1 then A has at least two different
vectors and hence is (n, 1)-dense. For the induction step take an arbitrary set
A C{0,1}"™ of size |A| > H(n, k). Let B be the projection of A onto the first
n — 1 coordinates, and C be the set of all vectors u in {0,1}"~! for which
both vectors (u,0) and (u,1) belong to A. A simple but crucial observation
is that

4] = [B] +[C].

Now, if |B| > H(n—1,k) then the set B is (n — 1, k)-dense by induction, and
hence the whole set A is also (n, k)-dense. If |B| < H(n — 1,k) then, using
the identity (") — (") = (?7}) (see Proposition 1.3) we obtain

i i—1

Cl = [A] = |B] > H(n, k) — H(n —1,k)

5 () f(“f) ()
(n—1,k—

By the induction hypothesis, the set C is (n — 1,k — 1)-dense, and since
C x {0,1} lies in A, the whole set A is also (n, k)-dense. O

10.2 Hereditary sets

Alon (1983) and Frankl (1983) have independently made an intriguing obser-
vation that for results like Theorem 10.1, we can safely restrict our attention
to sets with a very special structure.

A set A C {0,1}™ is hereditary or downwards closed if v € A and u < v
implies u € A. (Here, as usual, v < v means that u; < v; for all ¢.) Thus, being
hereditary means that we can arbitrarily switch 1s to Os, and the resulting
vectors will still belong to the set.

For a set S C {1,...,n} of coordinates, let t5(A) denote the number of
vectors in the projection Afg. If v is a vector and ¢ is any of its coordinates,
then the i-th neighbor of v is the vector v;_o obtained from v by switching
its i-th bit to 0; if this bit is 0 then we let v;_,o = v.

Theorem 10.2. For every subset A of the n-cube {0, 1}™ there is a hereditary
subset B such that |B| = |A| and ts(B) < ts(A) for all sets S of coordinates.
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Before we prove this result, observe that it immediately implies Theo-
rem 10.1: if B is hereditary and |B| > H(n, k), then B must contain a vector
v with at least k ones, and so, must contain all the 2¥ vectors obtained from
v by changing any subset of these ones to zeroes.

Proof. If A itself is hereditary, there is nothing to do. Otherwise, we have
some “bad”coordinates, i.e., coordinates ¢ such that v;_.o ¢ A for some v € A.
To correct the situation, we will apply for each such bad coordinate i, the
following transformation T;. Take a vector v € A with v; = 1, and see if v;_.g
belongs to A. If so, do nothing; otherwise, replace the vector v in A by v;_g.
Apply this transformation as long as possible, and let B denote the resulting
set. It is clear that |B| = |A|. We also claim that tg(B) < ts(A) for every
SC{l1,...,n}.

Indeed, if i ¢ S then tg(B) = tg(A), and we are done. Suppose that i € S
and let S” = S\ {i}. Assume, for notational convenience, that ¢ was the first
coordinate, i.e., that ¢ = 1. Now, if t5(B) > ts(A) 4 1, this can happen only
when A has two vectors z = (1,u,w;) and y = (1,u,wy) with v € {0,1}*
and wy # we, and such that exactly one of them, say x, was altered by T;.
That is, the S-projection of B contains both vectors (1,u) and (0, u), whereas
(0, u) does not appear in the S-projection of A. But this is impossible because
the fact that the other vector y = (1, u, wy) was not altered by T; means that
its i-th neighbor (0, u, w2) belongs to A, and hence vector (0, u) must appear
among the vectors in the S-projection of A. This contradiction proves that
ts(B) < ts(A).

Thus, starting with A, we can apply the transformations T; along all n
coordinates i = 1,...,n, and obtain the set B = T,,(Ty—1(---T1(A)---)),
which is hereditary, has the same number of vectors as the original set A and
satisfies the condition ts(B) < tg(A) for all S. O

Frankl (1983) observed that this result also has other interesting conse-
quences. For a set A C {0,1}", let t5(A) = maxtg(A) over all S C {1,...,n}
with |S| = s; hence, ¢,(A4) = |A].
Theorem 10.3 (Bondy 1972). If |A| < n then t,_1(A) = |A4].
Proof. We will give a direct proof of this result in Sect. 11.1; here we show
that it is a consequence of Theorem 10.2.

By this theorem we may assume that A is hereditary. If A is empty, there

is nothing to prove. Otherwise, A must contain the all-0 vector. Hence, at
least one of n unit vectors

e;=(0,...,0,1,0,...,0),

with the 1 in the i-th coordinate, does not belong to A. As A is hereditary,
this implies that |A| = ¢, (A) = ts(A) for S ={1,...,n}\ {i}. O

Bollobés (see Lovasz 1979, Problem 13.10) extended this result to larger
sets.
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Theorem 10.4. If |A| < [3n] then t,—1(A) > |A| — 1.

Proof. By Theorem 10.2 we may assume that A is hereditary. If there is an
i such that e; ¢ A, then again t,,_1(A) = |A|, and we are done. Otherwise,
A contains the all-0 vector and all unit vectors ey, ..., e,. Let A’ be the set
of all vectors in A with precisely two 1s. Each such vector covers only two of
the unit vectors. Therefore, some e¢; must remain uncovered, for otherwise we
would have |[A| > 1+ n+ [n/2] > [3n]. But this means that e; is the only
vector in A with 1 in the i-th coordinate, implying that for S = {1,...,n}\{i},
ts(A) = [A\ {ei}] = 4] — 1. 0

Combining Theorem 10.2 with the deep Kruskal-Katona theorem about
the shadows of arbitrary families of sets (see Theorem 10.16 below), Frankl
(1983) derived the following general result, which is the best possible whenever
t divides n (see Exercise 10.9). We state it without proof.

Theorem 10.5 (Frankl 1983). If A C {0,1}™ and |A| < [n(2! — 1)/t], then
tho1(A) > |A] =271 + 1.

The following result concerning the intersection of hereditary sets, due
to Kleitman, has many generalizations and applications (see, for example,
Exercise 10.8 and Theorem 7.7):

Theorem 10.6 (Kleitman 1966). Let A, B be downwards closed subsets of
{0,1}™. Then

AnB| > ALl
i 2” .

Proof. Apply induction on n, the case n = 0 being trivial. For € € {0, 1}, set
ce = |Ae| and d. = |B|, where

Ac:={(a1,...,an-1) : (a1,...,an_1,¢) € A}
and

B. = {(bl,...,bnfl) : (bl,...,bnfl,e) € B}
Then

|[AN B| =|Ay N By| + |41 N By
> (codo 4 c1d1) /2" (by induction)
= (co +c1)(do + d1)/2" + (co — c1)(do — d1)/2".
Since sets A, B are downwards closed, we have A; C Ag and B; By,

implying that (Co — Cl)(do — dl) > 0. Since ¢y + ¢1 = ‘A| and dg + dq |B|,
we are done. a

11N
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10.3 Matroids and approximation

Given a family F of subsets of some finite set X, called the ground-set, and
a weight function assigning each element z € X a non-negative real number
w(z), the optimization problem for F is to find a member A € F whose weight
w(A) =3, .4 w(z) is maximal. For example, given a graph G = (V, E) with
non-negative weights on edges, we might wish to find a matching (a set of
vertex-disjoint edges) of maximal weight. In this case X = FE is the set
of edges, and members of F are matchings. As it happens in many other
situations, the resulting family is hereditary, that is, A € F and B C A
implies B € F.

In general, some optimization problems are extremely hard—the so-called
“NP-hard problems.” In such situations one is satisfied with an “approxima-
tive” solution, namely, with a member A € F whose weight is at least 1/k
times the weight of an optimal solution, for some real constant k& > 1.

One of the simplest algorithms to solve an optimization problem is the
greedy algorithm. It first sorts the elements x1,xs,...,x, of X by weight,
heaviest first. Then it starts with A = () and in the i-th step adds the element
x; to the current set A if and only if the result still belongs to F. A basic
question is: for what families F can this trivial algorithm find a good enough
solution?

Namely, say that a family F is greedy k-approximative if, for every weight
function, the weight of the solution given by the greedy algorithm is at
least 1/k times the weight of an optimal solution. Note that being greedy
l-approximative means that for such families the greedy algorithm always
finds an optimal solution.

Given a real number k > 1, what families are greedy k-approximative?

In the case k = 1 (when greedy is optimal) a surprisingly tight answer
was given by introducing a notion of “matroid.” This notion was motivated
by the following “exchange property” in linear spaces: If A, B are two sets of
linearly independent vectors, and if | B| > |A|, then there is a vector b € B\ A
such that the set AU {b} is linearly independent.

Now let F be a family of subsets of some finite set X; we call members
of F independent sets. A k-matroid is a hereditary family F satisfying the
following k-exchange property: For every two independent sets A, B € F, if
|B| > k|A| then there exists b € B\ A such that* A + b is independent
(belongs to F). Matroids are k-matroids for & = 1.

Matroids have several equivalent definitions. One of them is in terms of
maximum independent sets. Let F be a family of subsets of X (whose mem-
bers we again call independent sets), and Y C X. An independent set A € F
is a mazimum independent subset of Y (or a basis of Y in F) if A CY and
A4z ¢ Florallz € Y\ A. A family is k-balanced if for every subset Y C X

Here and in what follows, A + b will stand for the set AU {b}.
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and any two of its maximum independent subsets A, B C Y we have that
|B| < k|A].

Lemma 10.7. A hereditary family is k-balanced if and only if it is a k-
matroid.

Proof. (<) LetY C X andlet A, B CY be two sets in F that are maximum
independent subsets of Y. Suppose that |B| > k|A|. Then by the k-exchange
property, we can add some element b of B\ A to A and keep the result A+b
in F. But since A and B are both subsets of Y, the set A + b is also a subset
of Y and thus A is not maximum independent in Y, a contradiction.

(=) We will show that if F does not satisfy the k-exchange property,
then it is not k-balanced. Let A and B be two independent sets such that
|B| > k|A| but no element of B\ A can be added to A to get a result in F.
We let Y be AU B. Now A is a maximum independent set in Y, since we
cannot add any of the other elements of Y to it. The set B may not be a
maximum independent set in Y, but if it isn’t there is some subset B’ of Y
that contains it and is maximum independent in Y. Since this set is at least
as big as B, it is strictly bigger than k|A| and we have a violation of the
k-balancedness property. a

For k = 1, the («=) direction of the following theorem was proved by Rado
(1942), and the (=) direction by Edmonds (1971).

Theorem 10.8. A hereditary family is greedy k-approzimative if and only if
it is a k-matroid.

Proof. (<) Let F be a k-matroid over some ground-set X. Fix an arbitrary
weight function, and order the elements of the ground-set X according to
their weight, w(xz1) > w(xze) > ... > w(z,). Let A be the solution given by
the greedy algorithm, and B an optimal solution. Our goal is to show that
w(B)/w(A) < k.

Let Y; := {x1,...,2;} be the set of the first i elements considered by the
greedy algorithm. The main property of the greedy algorithm is given by the
following simple claim.

Claim 10.9. For every i, the set ANY; is a maximum independent subset
of ;.

Proof. Suppose that the independent set A NY; is not a maximum indepen-
dent subset of Y;. Then there must exist an element z; € Y; \ A (an element
not chosen by the algorithm) such that the set ANY;+x; is independent. But
then ANY;_1+ z; (as a subset of an independent set) is also independent,
and should have been chosen by the algorithm, a contradiction. O

Now let A; := ANY;. Since A; \ A;_1 is either empty or is equal to {x;},
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w(A) = w(z1)|Asr] + Zw(l”z')(\AH — A1)
= S () — wlei)| il + w(wa)|Anl.

i=1
Similarly, letting B; := BNY;, we get

n—1

w(B) =Y (w(@:) = w(wi1))|Bil +w(wn)|Bal .
i=1

Using the inequality (a + b)/(z + y) < max{a/x,b/y} we obtain that
w(B)/w(A) does not exceed |B;|/|A;| for some i. By Claim 10.9, the set
A; is a maximum independent subset of Y;. Since B; is also a (not necessar-
ily maximum) independent subset of Y;, the k-balancedness property implies
that | B;| < k|A;|. Hence, w(B)/w(A) < |B;|/|A:| < k, as desired.

(=) We will prove that if our family F fails to satisfy the k-exchange
property, then there is some weight function on which the greedy algorithm
fails to approximate an optimal solution by a factor of 1/k.

Suppose there are two sets A and B in F, with |B| > k|A|, such that no
element of B\ A can be added to A while keeping the result in F. Let m = |A|.
Take any two positive numbers a and b such that 0 < a —b < 1/k. Define
the weight function as follows: elements in A have weight m + a, elements
in B\ A have weight m + b, and other elements have weight 0. Then the
greedy algorithm tries elements of weight m + a first, gets all m of them, but
then is stuck because no element of weight m + b fits; hence, the total score
of the greedy algorithm is m(m + a). But the optimum is at least the total
weight (m + b)|B| > (m + b)(km + 1) of elements in B. Thus, the greedy
algorithm can (1/k)-approximate this particular optimization problem only
if (m+0)(km+ 1) < km(m + a), or equivalently, if k(a — b) > 1+ b/m. But
this is impossible because a — b < 1/k and b > 0. O

When trying to show that a given family is a k-matroid, the following
somewhat easier to verify property, suggested by Mestre (2006), is often useful.
We say that a family F is k-extendible if for every sets A C B € F and for
every element x ¢ B the following holds: If the set A + x is independent
then the set B 4+ = can be made independent by removing from B at most &k
elements not in A, that is, there exists Y C B\ A such that |Y| < k and the
set B\ 'Y + z is independent.

Lemma 10.10. Every k-extendible hereditary family is a k-matroid.

Proof. Given two independent sets A and B with |B| > k|A|, we need to
find an element z € B\ A such that the set A + z is independent. If A C B
then we are done since all subsets of B are independent. Suppose now that
A ¢ B. The idea is to pick an element 2z € A\ B and apply the k-extendibility



142 10 Density and Universality

property to the sets C := ANB and D := B to find asubset Y C D\C' = B\ A
with at most k elements such that the set B’ = B\ 'Y + « is independent.
If A is still not a subset of B’, then repeat the same procedure. Since, due
to the condition Y C B\ A, at any step none of the already added elements
of A are removed, after at most |A \ B| steps we will obtain an independent
set B’ such that A C B’. From |B| > k|A|, we have that |B\ A| > k|A\ B|.
Since in each step at most k elements of B are removed, at least one element
z € B\ A must remain in B’, that is, A is a proper subset of B’. But then
the set A + z is independent, because B’ is such, and we are done. a

In the case of matroids (k = 1) we also have the converse.
Lemma 10.11. Every matroid is 1-extendible.

Proof. Let F be a matroid. Given sets A C B € F and an element z ¢ B
such that the set A+ x is independent, we need to find an element y € B\ A
such that B —y+ x is independent. If necessary, we can repeatedly apply the
matroid property to add elements of B\ A to A until we get a subset A’ such
that AC A" € B, A’ +z € F and |A’ + z| = |B|. Since = ¢ B, this implies
that B\ A’ consists of just one element y. But then B—y+ 2 = A"+«
belongs to F, as desired. O

It can be shown (see Exercise 10.12) that for & > 2 the converse of
Lemma 10.10 does not hold, that is, not every k-matroid is k-extendible.
Still, together with Theorem 10.8, Lemma 10.10 gives us a handy tool to
show that some unrelated optimization problems can be approximated quite
well by using the trivial greedy algorithm.

Ezample 10.12 (Maximum weight f-matching). Given a graph G = (V, E)
with non-negative weights on edges and degree constraints f : V — N for
vertices, an f-matching is a set of edges M such that for all v € V' the number
deg,,(v) of edges in M incident to v is at most f(v). The corresponding
optimization problem is to find an f-matching of maximal weight.

In this case we have a family F whose ground-set is the set X = FE of
edges of G and f-matchings are independent sets (members of F). Note that
F is already not a matroid when f(v) = 1 for all v € V: if A = {a,b} and
B = {{c,a}, {b,d}} are two matchings, then |B| > |A| but no edge of B can
be added to A. We claim that this family is 2-extendible, and hence, is a
2-matroid.

To show this, let A+ x and B be any two f-matchings, where A C B and
x = {u,v} is an edge not in B. If B + z is an f-matching, we are done. If
not, then degg(u) = f(u) or degg(v) = f(v) (or both). But we know that
deg 4 (u) < f(u) and deg,(v) < f(v), for otherwise A + z would not be an
f-matching. Thus, we can remove at most two edges of B not in A so that
the resulting graph plus the edge x forms a f-matching.



10.4 The Kruskal-Katona theorem 143

Ezample 10.13 (Maximum weight traveling salesman problem). We are given
a complete directed graph with non-negative weights on edges, and we must
find a maximum weight Hamiltonian cycle, that is, a cycle that visits every
vertex exactly once. This problem is very hard: it is a so-called “NP-hard”
problem. On the other hand, using Theorem 10.8 and Lemma 10.10 we can
show that the greedy algorithm can find a Hamiltonian cycle whose weight
is at least one third of the maximum possible weight of a Hamiltonian cycle.

The ground-set X of our family F in this case consists of the directed edges
of the complete graph. A set is independent if its edges form a collection of
vertex-disjoint paths or a Hamiltonian cycle. It is enough to show that F is
3-extendible.

To show this, let A+z and B be any two members of F, where A C B and
x = (u,v) is an edge not in B. First remove from B the edges (if any) out of
u and into v. There can be at most two such edges, and neither of them can
belong to A since otherwise A+ (u,v) would not belong to F. If we add (u, v)
to B then every vertex has in-degree and out-degree at most one. Hence, the
only reason why the resulting set may not belong to F is that there may be
a non-Hamiltonian cycle which uses (u,v). But then there must be an edge
in the cycle, not in A, that we can remove to break it: if all edges, except for
(u,v), of the cycle belong to A, then A + (u,v) contains a non-Hamiltonian
cycle and could not belong to F. Therefore we need to remove at most three
edges in total.

10.4 The Kruskal-Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by
flipping one of its l-entries to 0. A shadow of a set A C {0,1}" of vectors
is the set O(A) of all its neighbors. A set A is k-reqular if every vector in A
contains exactly k 1-entries. Note that in this case 9(A) is (k — 1)-regular.

A basic question concerning shadows is the following one: What can one
say about |0(A)| in terms of the total number |A| of vectors in a k-regular
set A?

In general one cannot improve on the trivial upper bound [0(A4)| < k|A|.
But what about lower bounds? The question is non-trivial because one and
the same vector with k — 1 ones may be a neighbor of up to n — k + 1 vectors
in A. Easy counting shows that

k Al [ n
o= = ()

k

This can be shown by estimating the number N of pairs (u,v) of vectors
such that v € A and w is a neighbor of v. Since every v € A has exactly
k neighbors, we have that N = k|A|. On the other hand, every vector u
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with & — 1 ones can be a neighbor of at most n — k + 1 vectors of A. Hence,
E|Al = N < (n—k+1)|0(A4)|, and the desired lower bound on |9(A)| follows.

Best possible lower bounds on |0(A)| were obtained by Kruskal (1963) and
Katona (1966). The idea, again, is to show that the minimum of |9(A)| over
all sets A with |A| = m is achieved by sets of a very special structure, and use
the Pascal identity for binomial coefficients (}) = z(x — 1)+ (z — k + 1) /k!:
for every real number x > k

<ki 1> " @ - (T) ' (10.1)

In Proposition 1.3 we gave a combinatorial proof of this identity in the case
when x is a natural number. The case when x is not necessarily an integer
can be shown by a simple algebraic manipulation:

Qf¢>+(®‘W¢—w—%wk—nﬁXxj%w

k't (41 -kt x4+
(1R O\ k)

The following lemma allows us to restrict our attention to sets with a very
special structure. For a set of vectors A C {0,1}", let Ap and A; denote the
sets of vectors in A starting, respectively, with 0 and 1. Hence, A = Ay U 4.
Let also e; denote the vector in {0,1}™ with exactly one l-entry in the i-th
position.

Proposition 10.14. For every set B C {0,1}" there is a set A C {0,1}" of
the same size such that |9(B)| > |0(A)] and

0(Ap) +e1 C Ay (10.2)

That is, if we take a vector v in A with v; = 0, flip any of its 1s to 0 and
at the same time flip its first bit to 1, then the obtained vector will again
belong to A.

Proof. For 1 < j < n, the j-th shift of B is the set s;(B) of vectors defined as
follows. First, we include in s;(B) all vectors v € B;. For the vectors v € By
we look whether v; = 1. If yes, we include in s;(B) the vector v @ e1 & e;
(obtained from vector v by flipping its 1-st and j-th bits), but only if this
vector does not already belong to B; if v @ e; @ e; belongs to B, we include
in s;(B) the vector v itself. This last requirement ensures that |s;(B)| = | B|
for every 1 < j < n. For example, if

1010 1010
1101 1101
B=g119 then  s(B)=,,

0101 1001
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We claim that the shifting operation preserves the neighborhood. Namely, for
every 1 < j <mn,
9(s;(B)) € 5;(0(B)) .

The following diagram sketches the proof idea:

0...1...1..) 2% 1...0...1..)
| neighbor | neighbor

0...1...0..) 2% 1...0...0..)

If we repeatedly apply the shift operators s;, j = 2,...,n to B, the number
of vectors containing 1 in the first position increases, so that after a finite
number of applications the shifts must therefore cease to make any change.
We have then obtained a new set A of the same size as B, with s;(4) = A
for each j > 2, and with |0(B)| > |0(A)|. We claim that A satisfies (10.2).
To show this, take a vector u € 0(Ap). Then u+e; belongs to Ag for some
j > 2, and hence, u + e; belongs to s;(A) = A. O

We first state and prove a slightly weaker but much more handy version
of the Kruskal-Katona theorem.

Theorem 10.15. If A C {0,1}" is k-regular, and if

1A > (2) —a(@—1) - (z—k—+1)/K

for some real number x > k, then
T
|0(A)] > (k B 1) . (10.3)

Note that this is the best possible: If A C {0,1}" is the set of all (})
vectors with exactly k ones, then |9(A)] = (,",).

Proof (due to Lovész 1979). By Proposition 10.14, we can assume that A
satisfies (10.2). Consider the set

A% = {(0,w) : (1,w) € A}

obtained from A; by flipping the first bit from 1 to 0. Note that |A°| = |A4].
Observe also that
[0(4)| > [A°] + |0(A°)]. (10.4)

Indeed, vectors in the set A® are neighbors of A by the definition of this set.
Moreover, each neighbor of AY plus the unit vector e; is also a neighbor of A.

We now argue by double induction on k and m = |A|. For k = 1 and m
arbitrary, (10.3) holds trivially.
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For the induction step, we first use the fact that A has a special structure—
namely, satisfies (10.2)—to show that |A°| cannot be smaller than (;_1). To
show this, assume the opposite. Then

_ _ _ 140 T\ z—1\ (x-1
ol =141 - lanl =14 - 10> () - (721) = (0 1)

and so, by induction, [0(4o)| > (;_}). But then (10.2) implies that

-1
0] _ > (*
=1l = (7).

a contradiction. Hence, [4°] > (777).

Since A° is (k—1)-regular, the induction hypothesis yields [9(A%)| > (7-1).
Together with (10.4) this implies

ot = 1+ 1o > (7 71) + (7 25) = (,71):

as desired. O

To state the Kruskal-Katona theorem in its original form, we write m =
|A] in k-cascade form:

- (akk> N (Zk—l1) P (‘2) (10.5)

where ax > ap—1 > ... > as > s > 1 are integers. Such a representation of m
can be obtained as follows. Let a; be the maximal integer for which (%) < m.
Then choose aj—1 as the largest integer for which (¢*7}) < m — (9). If

k—1
ap—1 > ay, then we would have m > (“k’“) + (kafl) = (Hk“"‘), contradicting the

maximality of a. Therefore ay_1 < ag. Continuing this process we eventually
reach a stage where the choice of as for some s > 2 actually gives an equality,

(%) =m= ()= ()~ (1)

or we get right down to choosing a; as the integer such that

(1) == (2) = (3)< (")

in which case we have

so that
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m:(a;)+...+(c;l).

It can be shown by induction (do this!) that the representation (10.5) is
unique.

Theorem 10.16 (Kruskal-Katona Theorem). If A C {0,1}" is k-regular,

and if
= () (1) e ()
|0(A)| > <ka_’“1) + (Zk_lz) N (s(fl) .

We leave the proof as an exercise. It is the same as that of Theorem 10.15
with (i) and (kfl) replaced by the corresponding sums of binomial coeffi-
cents.

The representation (10.5) of m = |A| in the k-cascade form seems some-
what magical. To interpret this representation, let us consider the so-called
colexicographic order (or colex order) of vectors in {0,1}™. This order is de-
fined by letting u < v iff there is an 4 such that u; = 0, v; = 1 and u; = v; for
all j > 4. Note that the only difference from the more standard lezicographic
order is that we now scan the strings from right to left. For example, the
colex order of all (3) = 10 vectors in {0,1}° with exactly 3 ones is (with the
“smallest” vector on the top):

then

11100
11010
10110
01110
11001
10101
01101
10011
01011
00111

Let E} denote the k-th slice of the binary n-cube, that is, the set of all vectors
in {0,1}™ with exactly k ones.

Proposition 10.17. If the m-th vector in the colex order of E} contains 1s
in positions a1 +1 < azs+1<...<ax+1 then

m= (1) () e ()

Proof. Let v be the m-th vector in the colex order of E}}. To reach v we must
skip all vectors whose k-th 1 appears before position ax + 1, and there are
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(%) of these. Some vectors with last (rightmost) 1 in position a, may also
precede v. These are the vectors whose first £k —1 1s precede position ag_1 +1,

and there are (‘}C’“j 11) of these. Arguing further in this way gives the result. O

By the same argument one can show that the shadow of the first m =
Zf:l (%) vectors in the colex order of B} consists of the first dx(m)
Ef:l (l‘il) vectors in the colex order of E}' ;. Thus, the Kruskal-Katona
theorem says that the shadow of a family of m vectors in K}’ is minimized
by the set consisting of the first m vectors in the colex ordering on Ej ;.

Furthermore, the size of the shadow is 9k (m).

10.5 Universal sets

The (n, k)-density of a set of vectors means that its projection on at least
one set of k coordinates gives the whole binary k-cube. We now consider a
stronger property — (n, k)-universality — where we require that the same holds
for all subsets of k coordinates.

Of course, the whole cube {0,1}"™ is (n, k)-universal for every k < n. This
is the trivial case. Do there exist smaller universal sets? Note that 2% is a
trivial lower bound.

Using the probabilistic argument it can be shown that there exist (n, k)-
universal sets of size only k2¥logn (see Theorem 3.2).

This result tells us only that small universal sets exist, but gives us no
idea of how to construct them. In this section we will show how to construct
explicit sets in {0, 1} which only have size n and are (n, k)-universal as long
as k2% < /n. The construction employs some nice combinatorial properties
of so-called Paley graphs.

In this section we introduce one property of (bipartite) graphs which is
equivalent to the universality property of 0-1 vectors. In the next section we
will describe an explicit construction of such graphs based on the famous
theorem of Weil (1948) regarding character sums.

By a bipartite graph with parts of size n we will mean a bipartite graph
G = (V1,Va, E) with V1| = |Va| = n. We say that a node y € V5 is a common
neighbor for a set of nodes A C Vj if y is joined to each node of A. Dually,
a node y € Vo is a common non-neighbor for a set of nodes B C Vj if y is
joined to no node of B. Given two disjoint subsets A and B of V;, we denote
by v(A, B) the number of nodes in V5 which are common neighbors for A,
and at the same time are common non-neighbors for B. That is, v(A4, B) is
the number of nodes in V5 joined to each node of A and to no node of B.

Definition 10.18. A bipartite graph G = (V1, Vs, E) satisfies the isolated
neighbor condition for k if v(A, B) > 0 for any two disjoint subsets A, B C V;
such that |[A| + |B| = k.
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Such graphs immediately yield (n, k)-universal sets of 0-1 strings:

Proposition 10.19. Let G be a bipartite graph with parts of size n and C' be
the set of columns of its incidence matriz. If G satisfies the isolated neighbor
condition for k then C is (n, k)-universal.

Proof. Let G = (V1,V2, E) and M = (my,) be the adjacency matrix of G.
That is, M has n rows labeled by nodes x from V;, n columns labeled by
nodes y from V3, and m,, = 1 if and only if (z,y) € E.

Let S = {i1,...,ix} be an arbitrary subset of k rows of M and v =
(Vi ,-..,v;. ) be an arbitrary (column) vector in {0,1}*. Each row of M cor-
responds to a node in V;. Let A be the set of nodes in V; corresponding
to the 1-coordinates of v, and B be the set of nodes corresponding to the
0-coordinates of v. Since |A| + |B| = |S| = k and our graph satisfies the iso-
lated neighbor condition for k, there must be a node y € V5 which is joined
to each node of A and to no node of B. But this means that the values of the
y-th column of M at rows from S coincide with the corresponding values of
the vector v, as desired. O

10.6 Paley graphs

Here we will show how to construct explicit bipartite graphs satisfying the
isolated neighbor condition for k close to logn.

A bipartite Paley graph is a bipartite graph G, = (V1, Vs, E) with parts
Vi = Vo = F, for ¢ odd prime congruent to 1 modulo 4; two nodes, z € V;
and y € Vh, are joined by an edge if and only if x — y is a non-zero square in
Fy, ie., if z—y = 2% mod ¢ for some z € F,, z # 0. The condition ¢ = 1 mod 4
is only to ensure that —1 is a square in the field (see Exercise 10.7), so that
the resulting graph is undirected.

Given two disjoint sets of nodes A, B C Vi, let v(A, B), as before, denote
the number of nodes in V5 joined to each node of A and to no node of B. It
turns out that for |A|+ |B| = k < (log ¢)/3, this number is very close to ¢/2¥,
independent of what the sets A, B actually are.

Theorem 10.20. Let G, = (V1,Va, E) be a bipartite Paley graph with ¢ > 9,
and A, B be disjoint sets of nodes in Vi such that |A| 4+ |B| = k. Then

v(A, B) —27%q| < k\/q. (10.6)

In particular, v(A, B) > 0 as long as k2F < /q.

This result is a slight modification of a similar result of Bollobds and
Thomason (1981) about general (non-bipartite) Paley graphs; essentially the
same result was proved earlier by Graham and Spencer (1971). The proof is



150 10 Density and Universality

based on the theorem of Weil (1948) regarding character sums. Its special
case states the following.

Let x be the quadratic residue character inFq: x(x) = 2(@=1/2 That is,
x(x) = 1 if = is a non-zero square in Fy, x(z) = —1 if x is non-square, and
x(0) = 0. Also, x(z - y) = x(z) - x(y)-

Theorem 10.21 (Weil 1948). Let f(t) be a polynomial over F, which is not
the square of another polynomial, and has precisely s distinct zeros. Then

> x(f(w))‘ < (s—1)va

z€Fq

We omit the proof of this important result. Weil’s original proof relied
heavily on several ideas from algebraic geometry. Since then other (but still
complicated) proofs have been found; the interested reader can find the details
n (Schmidt 1976).

With Weil’s result, the above stated property of Paley graphs can be de-
rived by easy computations.

Proof of Theorem 10.20. Recall that (x,y) is an edge in G, if and only if
Xx(x —y) = 1. Say that a node x € V3 is a copy of a node y € V; if both these
nodes correspond to the same element of [Fy; hence, each node of V5 is a copy
of precisely one node in V;. Moreover, no x is joined to its copy y since then
x(z —y) = x(0) = 0.

Let A’ and B’ be the set of all copies of nodes in A and, respectively, in
B. Also let U := V5 \ (A’ U B’). Define

g(z) == H (1+x(z —a)) H (1—x(z—0))

acA beB

and observe that, for each node = € U, g(x) is non-zero if and only if x is
joined to every node in A and to no node in B, in which case it is precisely
2% Hence,
> glx) =2 v*(4,B), (10.7)
xeU
where v*(A, B) is the number of those nodes in U which are joined to each
node of A and to no node of B.
Expanding the expression for g(x) and using the fact that x(z - y) =
x(x) - x(y), we obtain

_1+Z |COB|X fC( ))

where fc(z) denotes the polynomial [ .~(z — ¢), and the sum is over all
non-empty subsets C of AU B. By Weil’s theorem,
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3 X(fc(x))‘ < (10 - V)va.

zelF,

Hence,

P CR ESCRIVE iy ()=

z€F, C s=2

= Va((k—2)281 +1).

Here the last equality follows from the identity Zf:l s(];) = k21 (see
Exercise 1.5).

The summation above is over all nodes x € V5 = F,. However, for every
node z € A’ U B', g(z) < 28! and the nodes of A’ U B’ can contribute at

most
> g

€A UB

< k-2k T

Therefore,

> glz) - q‘ < a((k—2)25"1 +1) + k- 281
zelU

Dividing both sides by 2* and using (10.7), together with the obvious estimate
v(A, B) —v*(A,B) < |A"UB'| = k, we conclude that

k k
‘U(A,B) —2*’€q‘ < Tﬁ —\/a+‘2/—,? +5+k (10.8)
which does not exceed k,/q as long as ¢ > 9. ad

Theorem 10.20 together with Proposition 10.19 give us, for infinitely many
values of n, and for every k such that k2% < \/n, an explicit construction of
(n, k)-universal sets of size n. In Sect. 17.4 we will show how to construct
such sets of size n®*) for arbitrary k using some elementary properties of
linear codes.

10.7 Full graphs

We have seen that universal sets of 0-1 strings correspond to bipartite graphs
satisfying the isolated neighbor condition. Let us now ask a slightly different
question: how many vertices must a graph have in order to contain every k-
vertex graph as an induced subgraph? Such graphs are called k-full. That is,
given k, we are looking for graphs of small order (the order of a graph is the
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number of its vertices) which contain every graph of order k as an induced
subgraph.

Note that if G is a k-full graph of order n then (Z) is at least the number
of non-isomorphic graphs of order k, so

(Z) > 2(8) k1

n > 2k-1/2,

and thus

On the other hand, for every k it is possible to exhibit a k-full graph of order
n = 2F. This nice construction is due to Bollobas and Thomason (1981).

Let P, be a graph of order n = 2* whose vertices are subsets of {1,...,k},
and where two distinct vertices A and B are joined if and only if |[A N B is
even; if one of the vertices, say A, is an empty set then we join B to A if and
only if |B| is even. Note that the resulting graph is regular: each vertex has
degree 2F=1 — 1.

Theorem 10.22 (Bollobds-Thomason 1981). The graph Py is k-full.

Proof. Let G be a graph with vertex set {v1, va, ..., v }. We claim that there
are sets Ay, As, ..., Ax uniquely determined by G, such that

A; C {1,...,2}, iEAi,
and, for 7 # 7,
|A; N Aj| is even if and only if v; and v; are joined in G.

Indeed, suppose we have already chosen the sets Ai, As, ..., Aj_1. Our
goal is to choose the next set A; which is properly joined to all the sets
Ay, A, ..., Aj 4, that is, |A; N A;| must be even precisely when v; is joined
to v; in G. We will obtain A; as the last set in a sequence By € By C ... C
Bj_1 = A;, where, for each 1 < i < j, B; is a set properly joined to all sets
Al,AQ,...,Ai.

As the first set By we take either {j} or {1, j} depending on whether v;
is joined to vy or not. Having the sets By, ..., B;—1 we want to choose a set
B;. If v; is joined to v; then we set B; = B;_1 or B; = B;_1 U{i} depending
on whether |B;_1 N A;| is even or odd. If v; is not joined to v; then we act
dually. Observe that our choice of whether i is in B; will effect | B; N A4;| (since
i € A;) but none of |B; N Ay|, I <i (since A; C{1,...,1}). After j — 1 steps
we will obtain the desired set B;_; = A;. O
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Exercises

10.1. Let A C {0,1}"™ be (n, k)-dense and suppose that no vector in A has
more than r ones. Prove that some two vectors in A have at most r — k ones
in common.

10.2. (Alon 1986). Let A be a 0-1 matrix of 2" rows and n columns, the i-th
row being the binary representation of ¢ — 1 (1 <4 < 2™). Show that for any
choice of k distinct columns of A and any choice of k bits, there are exactly
2"~k rows of A that have the j-th chosen bit in the j-th chosen column.

10.3. Let A C {0,1}", |A] = n. By induction on k prove that, for every
k=1,2,...,n— 1, there exist k coordinates such that the projection of A
onto these coordinates has more than k vectors. For k = n — 1 this is the
well-known Bondy’s theorem (Theorem 11.1).

10.4. (Chandra et al. 1983). Prove the following (n, k)-universality criterion
for the case k = 2. Given a set A C {0, 1}" of m = |A| vectors, look at it as
an m X n matrix, whose rows are the vectors of A. Let vy,...,v, € {0,1}"™
be the columns of this matrix, and let vy,...,v, be their complements, i.e.,
7; is obtained from v; by switching all its bits to the opposite values. Prove
that A is (n, 2)-universal if and only if all the vectors vy, ..., v,, 01, ..., U, are
different and form an antichain in {0,1}™, i.e., are mutually incomparable.

10.5. Let A C {0,1}", |A| = m. Look at A as an m x n matrix, and let F4 be
the family of those subsets of {1, ..., m}, whose incidence vectors are columns
of this matrix. Show that A is (n, k)-universal if and only if the family Fy4 is
k-independent in the following sense: for every k distinct members Sq, ..., Sk
of F4 all 2% intersections ﬂle T; are non-empty, where each T; can be either
S; or its complement S;.

10.6. Show that the converse of Proposition 10.19 also holds: if the set of
rows of the incidence matrix of a given bipartite graph is (n, k)-universal
then the graph satisfies the isolated neighbor condition for k.

10.7. Let p be a prime with p = 1 mod 4. Show that —1 is a square in the
field Fp. Hint: Let P be the product of all nonzero elements of F,. If —1 is not a square,
then 22 = —1 has no solutions; so, the set of all p — 1 nonzero elements of F,, can be
divided into (p — 1)/2 pairs such that the product of the elements in each pair is —1;
hence P = 1. On the other hand, for any & # +1 there exists exactly one y # x with
zy = 1, so all the elements of F, \ {—1,0,4+1} can be divided into pairs so that the

product of elements in each pair is 1; hence, P = —1, a contradiction.

10.8. Recall that a set A C {0,1}" of vectors is downwards closed if v € A
and u < v implies u € A. Similarly, say that a set is upwards closed if v € A
and u > v implies u € A. Show that Kleitman’s theorem (Theorem 10.6)
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implies the following: Let A, B be upwards closed and C' downwards closed
subsets of {0,1}". Then

A|-|B

|[ANB| > %

and
Al - 1€

on
Hint: For the first inequality, apply Kleitman’s theorem to the complements of A and B.
For the second inequality, take B := {0,1}" \ C, and apply the first inequality to the
pair A, B to get

ANC| <

Al = [ANC| =]ANB| = 27"A[(2" - |C]).

10.9. Show that the lower bound ¢,_1(A) > |A| — 2!=! + 1 given in Theo-
rem 10.5 is the best possible whenever ¢ divides n. Hint: Split {1,...,n} into n/t
disjoint subsets S1,. .., Sy, /s with |Si| = t and define A to be the set of all vectors v # 0
such that v; = 0 for all j € .5;.

10.10. Let F be a matroid over a ground-set X, and Y C X. Recall that a
maximum independent subset of Y is a member A € F such that A C Y and
A+x ¢ Fforallz € Y\ A. Use the exchange property of matroids to show
that if Z C Y then every maximal independent set in Z can be extended to
a maximal independent set in Y.

10.11. Let F be a matroid over a ground-set X. By Lemma 10.7, we know
that, for every subset Y C X, all independent subsets of Y have the same
number of elements. This number r(Y") is callled the rank of the set Y within
F. Use Exercise 10.10 to show that then the rank function is submodular: for
every subsets Y, Z C X, r(YUZ)+r(YNZ) <r(Y)+r(Z). Hint: |BNY|+
|[BNZ|=|BN(YUZ)|+|BN (Y NZ).

10.12. Let X =Y U{xa} where |[Y| =k+2and = ¢ Y. Let F be a hereditary
family whose only maximum independent sets are the set Y and all 2-element
sets {x,y} with y € Y. Show that F is a k-matroid, but is not k-extendible.

10.13. Show that the intersection of k matroids is a k-matroid. Hint: Show
that the intersection of k£ l-extendible systems is k-extendible and use Lemma 10.10.



11. Witness Sets and Isolation

Given a set A of distinct 0-1 vectors and a vector u in A, how many bits
of u must we know in order to distinguish it from the other vectors in A?
Such a set of bits is a witness for the fact that u &€ A\ {u}. In this chapter
we will give some basic estimates on the size of these witnesses. We will
also consider a related problem of how to isolate an object within a given
universum according to its weight. Finally, we will describe the so-called
“dictator paradox” saying that, if the society fulfills some simple “democracy
axioms,” then there will always be an individual (a dictator?) whose options
prevail against all options.

11.1 Bondy’s theorem

Let A C {0,1}™ be a set of m distinct 0-1 vectors of length n. A set S C
{1,...,n} of coordinates is a witness for a vector u in A if for every other
v € A there exists a coordinate in S on which u differs from v. We may also
say that exposing the entries of u corresponding to S uniquely determines u
among vectors in A. The minimum size of a witness for u in A is denoted by
wa(u) (or by w(u), if the underlying set A is clear from the context).

It is easy to show that every set of m vectors contains a vector whose
witness has size at most log, m (see Exercise 11.2). On the other hand, it is
obvious that wa(u) < |A| — 1 for any A and u € A, and a simple example
shows that this is tight: if A consists of the all-0 vector 0™ and the n vectors
with precisely one 1, then w4(0™) = n.

The following result, due to Bondy (1972), shows that if we take only
m < n vectors, then all the vectors will already have one and the same
witness of size at most m — 1. The projection of a vector v = (vq, ..., v,) onto
a set of coordinates S = {i1,...,4x} is the vector v|g := (vi;,...,v;, ). The
projection of a set of vectors A is the set Alg = {v]g : v € A}

S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. 155
An EATCS Series, DOI 10.1007/978-3-642-17364-6_11,
© Springer-Verlag Berlin Heidelberg 2011
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Theorem 11.1 (Bondy 1972). For every set A of 0-1 vectors there exists a
set S of at most |A| — 1 coordinates such that all the vectors {vl]g : v € A}
are distinct.

Proof. Suppose that A is a counterexample, that is, |[Alg| < |A] for every set
S of at most |A| — 1 coordinates. Let S be a mazximal set of coordinates for
which |Alg] > |S| + 1. Since |AJg| < |A| — 1, at least two vectors u # v € A
must coincide on S. Take a coordinate i € S on which these two vectors differ,
and set T := S U {i}. Since the vectors u,v coincide on S but differ on T, the
projection Ay must have at least one more vector than Alfg; hence,

[Alr| > |Als| +1 >[5 +2 =T +1,
a contradiction with the maximality of .S. O

Given k, how large must a set A be in order to be sure that at least one
of its vectors will have no witness of size < k7 It is clear that any such set
A must have more than 2% vectors; this is a trivial lower bound. A trivial
upper bound is 2. The following simple observation shows that much fewer
vectors are enough.

Proposition 11.2. In every set of more than 2F (Z) 0-1 wectors of length n
there is a vector which has no witness of size k.

Proof. Let A be a set of 0-1 vectors of length n, and assume that every vector
in it has a witness of size k. Then each vector u € A has its own set Sy of k
coordinates on which this vector differs from all other vectors in A. That is,
we can assign to each vector u € A its “pattern” — a set S, of k bits and the
projection u[q of u onto this set — so that different vectors will receive different
patterns, i.e., if u # v then either S, # S, or S, = S, but u and v differ on
some coordinate in S,,. There are (Z) possible subsets of k coordinates and,
on each of these sets, vectors can take no more than 2¥ possible values. Thus,
there are at most (2)2’C possible patterns and, since each vector in A must

have its own pattern, we conclude that |A] < (})2. O

11.2 Average witnesses

Since the worst-case witness sets may have to be large, it is natural to consider
the average witness size:

1
Wave(A) 1= A ;WA(U).

The same example, as in the previous section, shows that the gap between the
worst-case witness size and the average witness size may be exponential: if A
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is the set of n+ 1 vectors with at most one 1, then w,ye(A) =2n/(n+1) < 2,
but in the all-0 vector all n bits must be exposed.

How large can waye(A) be as a function of |A|? The following result of
Kushilevitz, Linial, Rabinovitch, and Saks (1996) says that the average wit-
ness size of any set does not exceed the square root of its size, and that this
bound is almost optimal.

Theorem 11.3. For every set A of m 0-1 vectors, Waye(A) < 2ml/2. On the
other hand, for infinitely many numbers m, there exists a set A of m 0-1
vectors such that Waye(A) > 2\1[ mt/2,

Proof. Upper bound. Take an arbitrary set A of m vectors and order its
vectors wui,us, ..., U, by decreasing value of their smallest witness size:
w(uy) > w(ug) > -+ > w(uy,). Consider the sum of the first k& largest values
25:1 w(u;) for a value k soon to be set. Find a set T of at most k — 1 coordi-
nates as guaranteed by Bondy’s theorem applied to the set {uq,...,u;} and
expose the T-coordinates in all vectors of A. By the property of T', vectors
u1,...,u are already mutually distinguished. The T-coordinates of every
vector u; with j > k, distinguish «; from all uq,...,ux, except, perhaps, one
u; (because no two of the vectors us, ..., uy coincide on T'). It is possible to
expose a single additional bit in u; to distinguish u; from u;. Apply this step
for every uj, 7 > k. Consequently, each of uy,...,u, is distinguished from
every other vector in A. No more than m — k additional bits get exposed in
this process, so:

w(u) <k(k—1)+m—k=k>—2k+m. (11.1)

M=

i=1

In particular, it follows that w(ug) < k — 2+ m/k.
Putting these two observations together we get

m k m
S ww = ot + 35 wiw)
=1 =1 i=k+1

g(k2—2k+m)+(m—k)<k—2+%).

Pick k := m!/2; the above inequality then yields > " | w(u;) < 2m?®/2, which
means that waye(A) < 2m'/?, as desired.

Lower bound. We will explicitly construct a set A C {0,1}" which achieves
the lower bound. Let p be a prime and consider a projective plane PG(2, p)
of order p (see Sect. 12.4). Such a plane consists of n = p?+p+1 points P =
{1,...,n} and n subsets of points Li,...,L, C P (called lines) satisfying
the following three conditions: (i) each line has exactly p+ 1 points; (ii) every
two lines intersect in exactly one point, and (iii) exactly p + 1 lines meet in
one point.
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We consider n-dimensional vectors where the coordinates correspond to
points of P, and define A C {0,1}" to be the family of m = 2n binary
vectors, of which n are the incidence vectors of lines of PG(2, p), and another
n are all unit vectors, i.e., incidence vectors of all singletons {i}, i € P.

For a vector u € A, corresponding to a line L, w(u) = 2, since it suffices
to expose the coordinates corresponding to any two points on L. Such a pair
distinguishes u from all singletons, and since distinct lines share exactly one
point, this pair also distinguishes u from the incidence vectors of other lines.

On the other hand, w(u) = p+2ifu =(0,...,0,1,0,...,0) corresponds to
a singleton point ¢ € P. To distinguish u from the incidence vector of a line L
containing ¢, a zero in u should be exposed in a coordinate that corresponds
to a point on L other than 7. There are p+ 1 lines, whose pairwise intersection
is {i}, so to distinguish « from all of them, at least p 4+ 1 distinct O-entries
should be exposed. To distinguish w from other singletons, the 1-entry should
be exposed as well (the alternative being to expose all p? + p O-entries).

Putting things together, we get

1 p+4 _ n'/?
weld) = = S w(u) = (20 + (p+2m) = LEL >
Wave (A4) 1] UEAW(U) 5, (2n+ (p+2)n) 5 W)

O

The next natural problem concerning 0-1 vectors is the following question
about the distribution of their witness sizes:

Given an integer ¢, 1 <t < m, and a set of m vectors, how many of its vectors
have a witness of size at least (or at most) ¢?

If we know nothing more about the set except for its size, the question turns
out to be difficult. Still, Kushilevitz et al. (1996) have found the following
interesting partial solutions (see also Exercise 11.3):

Lemma 11.4. Let A be a set of m distinct 0-1 vectors. Then

(a) for any t < m at most t of vectors in A have a minimal witness of size
at least t +m/t — 2;

(b) for any t < \/m at least t> —t of vectors in A have a witness of size at
most 2t + logy m.

Proof. The first claim (a) follows from the proof of the upper bound in Theo-
rem 11.3: let k be the number of vectors u € A for which w(u) > t+m/t —2,
and apply (11.1).

To prove the second claim (b), reorder the vectors in A as follows: split
the vectors into two groups according to their first coordinate, and let the
vectors of the smaller group (i.e., of the group containing at most half of
the vectors) precede those in the larger. Expose the first coordinate in all
vectors of the smaller group. Proceed recursively in the same manner on each
group separately (by looking at next coordinates), and so on, until each group
reduces to a single vector (see Fig. 11.1). Observe that:
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Fig. 11.1 Exposed bits are in boldface; a vector u follows vector v if u is below v.

(i) each vector is distinguished from all those following it (but not necessarily
from those preceding it);

(ii) no vector has more than log, m bits exposed (since each time one bit is
exposed in at most one-half of the vectors of a current group).

Let B be the set of the first t? vectors. Applying the first claim (a) to
this set, we conclude that at most ¢ of its vectors have a witness of size at
least 2t. Therefore, at least t2 — ¢ of the vectors in B can be distinguished
from other members of B at the cost of exposing at most 2t additional bits
in each of them. We call these vectors good. By (i) and (ii), at the cost of
exposing at most logy m bits, each good vector v is already distinguished from
all the vectors in A following it. On the other hand, all the vectors preceding
v belong to B, and hence, v is distinguished also from them by at most 2¢
additional bits. Thus, we have at least t*> — ¢t good vectors v and for each of
them, wa(v) < 2t + log, m. O

11.3 The isolation lemma

Let X be some set of n points, and F be a family of subsets of X. Let us
assign a weight w(z) to each point z € X and let us define the weight of a set
E to be w(E) =3, . pw(x). It may happen that several sets of F will have
the minimal weight. If this is not the case, i.e., if minge 7 w(F) is achieved
by a unique E € F, then we say that w is isolating for F.

The following lemma, due to K. Mulmuley, U. Vazirani, and V. Vazirani
(1987), says that — independent of what our family F actually is — a randomly
chosen w is isolating for F with large probability.

Lemma 11.5. Let F be a family of subsets of an n-element set X. Let
w: X — {l,...,N} be a random function, each w(x) independently and
uniformly chosen over the range. Then
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Prw is isolating for F] > 1 — %
Proof (Spencer 1995). For a point = € X, set

= i E)— i E .
oln) = papin pw ) = i wE )
A crucial observation is that evaluation of a(x) does not require knowledge
of w(z). As w(x) is selected uniformly from {1,..., N},

Pr{w(z) = a(x)] <1/N,

so that
Prw(z) = a(x) for some x € X] < n/N.

But if w had two minimal sets A, B € F and = € A\ B, then

i E) = w(B
Eeg}gng( ) = w(B),

i E =w(A) —
plin w(EN{x}) = w(d) —w(@),
so w(z) = a(z). Thus, if w is not isolating for F then w(x) = a(x) for some
x € X, and we have already established that the last event can happen with
probability at most n/N. O

11.4 Isolation in politics: the dictator paradox

One of the problems of politics involves averaging out individual preferences
to reach decisions acceptable to society as a whole. In this section we will
prove one isolation-type result due to Arrow (1950) which shows that, under
some simple “democracy axioms” this is indeed a difficult task.

The simple process of voting can lead to surprisingly counterintuitive para-
doxes. For example, if three people vote for three candidates, giving the rank-
ingsx<y<zy<z<uzx, z<z<y,then a majority prefers y to z (z < y),
x to z (z < x) but also z to y (y < 2). In general, we have the following
situation.

Suppose that T = {1,...,n} is a society consisting of a set of n individuals.
These individuals are to be offered a choice among a set X of options, for
example, by a referendum. We assume that each individual 7 has made her/his
mind up about the relative worth of the options. We can describe this by a
total order <; on X, for each ¢ € I, where x <; y means that the individual
i prefers option y to option z. So, after a referendum we have a set R = {<3
,e- oy <n} of total orders on X. A social choice function F takes such a set of
total orders as input and comes up with a “social preference” on X, i.e., with
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some total order < on X. Being total means, in particular, that the order <
is transitive: if x < y and y < z then z < z.

Given a social choice function F', a dictator is an individual ig € I such
that for every referendum, the resulting social preference < coincides with
the preference <, of this individual. That is, for any given set of total or-
ders R = {<1,...,<n}, the social choice function will output the order <;,,
independent of preferences <; made by other individuals i # ig.

Arrow’s theorem asserts that, if the choice function F' fulfills some natural
“democracy axioms,” then there will always be a dictator! That is, once we fix
some social choice function F, then there will be an individual (a dictator?)
whose options prevail against all options.

Let us consider the following three natural democracy azioms:

(A1) If x < y (in the social preference), then the same remains true if the
individual preferences are changed in y’s favor.

(A2) IfY C X is a set of options and if during two referendums no individual
changes his/her mind about the options within the set ¥ (i.e. no one
changes his mind about y < 3 or ¢’ < y for y, 4’ that are both in Y),
then the society also don’t changes its mind about these options.

(A3) For any distinct options z,y € X, there is some system of individual
preferences for which the corresponding social preference has = < y.
That is, it should be possible for society to prefer y to z if enough
individuals do so.

Theorem 11.6. If | X| > 3 then for every social choice function, satisfying
the three democracy axioms above, there is a dictator.

Proof. We follow the elegant argument from Cameron (1994). Suppose that
we have a social choice function. If (z, y) is an ordered pair of distinct options,
we say that a set J of individuals is (z,y)-decisive if, whenever all members
of J prefer y to x, then so does the social order; formally, if z <; y for all
i € J, then z < y. Further, we say that J is decisive if it is (z, y)-decisive for
some distinct z,y € X.

Let J be a minimal decisive set. It follows from (A1)—(A3) that, for any
distinct options z,y € X, if every individual prefers y to x then so does the
social order. Hence, J # 0. Suppose that J is (z,y)-decisive, and let ig be a
member of J.

Claim 11.7. J = {ip}.

To prove the claim, suppose the opposite and let J' := J \ {ip} and K :=
I\ J. Let v be an option in X different from x and y (remember that | X| > 3).
Consider the individual preferences <;,¢ € I for which

T <Y <ipU
v<; x <; y forallieJ
y<j v <; x forall j € K
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Then = < y, since all members of the (z,y)-decisive set J think so, and
y < v, since if v < y then J' would be (v,y)-decisive (nobody outside J’
thinks so), contradicting the minimality of J. Hence z < v. But then {io} is
(z,v)-decisive, since nobody else agrees with this order. By minimality of J,
we have J = {ig}, as desired.

Claim 11.8. iy is a dictator.

We have to prove that {ig} is (u, v)-decisive for any pair of different options
u # v. The case when u = x is covered by the (proof of) Claim 11.7, and we
are left with two possible situations: either v = x or neither v = x nor v = =z.
The argument in both cases is similar.

Case 1: u # x and v # x.
Consider individual preferences in which

U <o T <jg U
v<; u <; x forall j#ig

Then v < x (because everybody thinks so) and « < v (because iy thinks so
and, by Claim 11.7, is (x, v)-decisive for any v # x); hence v < v, and {ip}
is (u, v)-decisive because nobody else agrees with this order.

Case 2: v = 2.
Take z ¢ {u,z} and consider individual preferences in which

U <92 <jy T
z <j v <; u forall j#ig

Then u < z (because i thinks so and both u, z differ from z) and z < x
(because everybody thinks so); hence v < z, and {io} is (u, z)-decisive.

This completes the proof of the claim, and thus, the proof of the theorem.

O

Exercises

11.1. Bondy’s theorem (Theorem 11.1) implies that, if we take n binary
vectors of length n, then all these vectors differ on some set of n — 1 bits.
Does this hold for n + 1 vectors?

11.2. Prove that every set of m vectors contains a vector whose witness has
size at most log, m.

11.3. Generalize Lemma 11.4 as follows. Let A be a set of m 0-1 vectors. For
an integer [, 1 <[ < m, let

fm,)=min{k : k>1and k+m/k>1+2}.
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Prove that:

(a) at most f(m,!) vectors in A have a minimal witness of size at least [;
(b) for any k < m, at least k — f(k,l — log, m) vectors in A have witness of
size at most [.

11.4. Lemma 11.5 isolates the unique set with the minimal weight. With
what probability will there be a unique set with the mazimal weight?

11.5. Prove that Lemma 11.5 also holds when the weight of a set is defined
to be the product of the weights of its elements.






12. Designs

The use of combinatorial objects, called designs, originates from statistical
applications. Let us assume that we wish to compare v varieties of wines. In
order to make the testing procedure as fair as possible it is natural to require
that:

(a) each participating person tastes the same number (say k) of varieties so
that each person’s opinion has the same weight;

(b) each pair of varieties is compared by the same number (say A) of persons
so that each variety gets the same treatment.

One possibility would be to let everyone taste all the varieties. But if v is
large, this is very impractical (if not dangerous, as in the case of wines), and
the comparisons become rather unreliable. Thus, we should try to design the
experiment so that k < v.

Definition 12.1. Let X = {1,...,v} be a set of points (or wvarieties).
A (v,k,\) design over X is a collection D of distinct subsets of X (called
blocks) such that the following properties are satisfied:

(1) each set in D contains exactly k points;
(2) every pair of distinct points is contained in exactly A blocks.

The number of blocks is usually denoted by b. If we replace (2) by the following
property:

(2’) every t-element subset of X is contained in exactly A blocks,

then the corresponding family is called a t—(v, k, A) design. A Steiner system

S(t, k,v) is a t—(v, k, \)-design with A = 1. A design, in which b = v (i.e., the
number of blocks and points is the same) is often called symmetric.
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12.1 Regularity

In every design, every pair of points lies in the same number of blocks. It is
easy to show that then the same also holds for every single point. A family
of sets F is r-regular if every point lies in exactly r sets; r is the replication
number of F.

Theorem 12.2. Let D be a (v,k,\) design containing b blocks. Then D is
r-reqular with the replication number r satisfying the equations

r(k—1) = Ao —1). (12.1)

and
bk = vr. (12.2)

Proof. Let a € X be fixed and assume that a occurs in r, blocks. We count
in two ways the cardinality of the set

{(z,B) : B€D;a,xz € B;x#a}.

For each of the v — 1 possibilities for « (x # a) there are exactly A blocks
B containing both a and x. The cardinality of the set is therefore (v — 1)A.
On the other hand, for each of the r, blocks B containing a, the element
x € B\{a} can be chosen in |B|—1 = k—1 ways. Hence (v —1)\ = r (k—1).
This shows that r, is independent of the choice of a and proves (12.1).

To prove the second claim we count in two ways the cardinality of the set

{(z,B) : Be D,z € B}.

For each z € X the block B can be chosen in r ways. On the other hand, for
each of the b blocks B the element x € B can be chosen in k ways. Hence
vr = bk, as desired. a

Thus, every design is an r-regular family with the parameter r satisfying
both equations (12.1) and (12.2). It turns out that for regularity the second
condition (12.2) is also sufficient. The proof presented here is due to David
Billington (see Cameron 1994).

Theorem 12.3. Let k < v and b < (Z) If bk = vr then there is an r-regular
family F of k-subsets of {1,...,v} with |F|=b.

Proof. There is a simple way to make a k-uniform family F “more regular.”
(We have already used a similar argument in the proof of Theorem 10.2 to
make a given set of binary vectors “more hereditary.”)

Let r, be the replication number of x, the number of sets of F which
contain z. (In our previous notation this is the degree d(x) of a point in the
family F. Here we follow the notation which is usual in the design theory.)
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If r, > ry, then there must exist a (k — 1)-set A, containing neither
nor y, such that {x} UA € F and {y} UA ¢ F. Now form a new family
F’ by removing {z} U A from F and including {y} U A in its place. In the
new family, r, = r, — 1, r; = 7y + 1, and all other replication numbers
are unaltered. Starting with any family of k-sets, we reach by this process
a family in which all the replication numbers differ by at most 1 (an almost
regular family), containing the same number of sets as the original family. By
double counting, the average replication number is

1 1 bk
p2re =y 2 M= 5

AeF

and an almost regular family whose average replication number is an integer
must be regular. a

12.2 Finite linear spaces

Sometimes it is possible to show that a design has at least as many blocks
as it has points. The well-known Fisher’s Inequality (Theorem 7.5) implies
that if D is a (v, k, \) design then |D| > v (see Exercise 12.1). Many general-
izations exist. For example, the Petrenjuk—Ray-Chaudhuri-Wilson Inequality
(Petrenjuk 1968, Ray-Chaudhuri, and Wilson 1975) states that, if D is a 2s—
(v,k, A) design with v > k + s then |D| > (V). Both results can be obtained
using the linear algebra method (cf. Exercise 7.6).

Some of these results, however, may be proved by direct double counting.
Such, for example, is the argument due to Conway for the case of “finite
linear spaces.” (Do not confuse these linear spaces with those from Analysis.)

A (finite) linear space over a set X is a family £ of its subsets, called lines,
such that:

- every line contains at least two points, and
- any two points are on exactly one line.

Theorem 12.4 (De Bruijn—Erd8s 1948). If L is a linear space over X then
|L] > | X, with equality iff any two lines share exactly one point.

Proof (due to J. Conway). Let b = |£| > 2 and v = | X|. For a point z € X,
let r,, as above, be its replication number, i.e., the number of lines in £
containing x. If © ¢ L then r, > |L| because there are |L| lines joining x to
the points on L. Suppose b < v. So, for x & L, we have

b(v—|L|) > v(b—ry).

Hence
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and this implies that all inequalities are equalities so that b = v, and r, = |L]|
whenever x ¢ L. O

There are several methods to construct (symmetric) designs. In the next
two sections we will study two of them: one comes from “difference sets”
in abelian groups, and the other from “finite geometries.” The third impor-
tant construction, which arises from Hadamard matrices, will be described
in Chap. 14 (see Theorem 14.11).

12.3 Difference sets

Let Z, be an additive Abelian group of integers modulo v. We can look at
Z, as the set of integers {0,1,...,v — 1} where the sum is modulo v.

Definition 12.5. Let 2 < k < v and A > 1. A (v, k,\) difference set is a
k-element subset D = {d,ds, ...,dr} C Z, such that the collection of values
d; —d; (i # j) contains every element in Z, \ {0} exactly A times.

Since the number of pairs (7, j) with ¢ # j equals k(k — 1) and these give
each of the v — 1 nonzero elements A times as a difference, it follows that

Av—=1)=k(k—-1). (12.3)
If D is a difference set, we call the set
a+D:={a+d,a+ds,...,a+d}

a translate of D. Notice that our assumption k£ < v together with (12.3)
implies that all the translates of a difference set are different. Indeed, if a +
D = D for some a # 0, then there is a permutation 7 of {1,...,k} so that
m(i) # i and a +d; = dr;) for all i. Hence, a can be expressed as a difference
dr@y — d; in k ways; but A < k by (12.3) and our assumption that k£ < v.

Theorem 12.6. If D = {d1,ds,...,dx} is a (v, k,\) difference set then the
translates
D,1+D,...,(v—1)+D

are the blocks of a symmetric (v, k, \) design.

Proof. We have v blocks over v points. Since, clearly, every one of the trans-
lates contains k points, it is sufficient to show that every pair of points is
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contained in exactly A blocks. Let x,y € Z,, x # y. Suppose that z,y € a+ D
for some a € Z,. Then z = a + d; and y = a + d; for some pair i # j. Also,
we have d; —d; = v —y = d. Now, there are exactly A pairs ¢ # j such
that d; — d; = d, and for each such pairs, there is exactly one a for which
z,y € a+ D, namely, a =2 —d; =y — d;. a

Let us now describe one construction of difference sets. Squares (or
quadratic residues) in Z, are the elements a? for a € Z,.

Theorem 12.7. If v is a prime power and v = 3 mod 4, then the nonzero
squares in Z, form a (v,k,\) difference set with k = (v —1)/2 and X\ =
(v—3)/4.

The condition v = 3 mod 4 is only used to ensure that —1 is not a square in
Zoy, i.e., that —1 # a? mod v for all a € Z,,. This fact follows from elementary
group theory, and we omit its proof here.

Proof. Let D be the set of all nonzero squares, and k = |D|. First, observe
that k = (v — 1)/2. Indeed, the nonzero squares in Z, are the elements a?
for a € Z, \ {0}. But for every such a the equation 2 = a? has two different
solutions = +a. So, every pair (+a, —a) gives rise to only one square. This
means that exactly half of the nonzero elements in Z, are squares, and hence
E=(@w-1)/2.

By the remark above, —1 is not a square in Z,. Hence, if S is the set of
all nonzero squares then —S = {—s : s € S} is exactly the set of nonsquares.
For any s € S, the pair (z,y) € S x S satisfies the equation z —y = 1 if
and only if the pair (sz,sy) € S x S satisfies the equation sz — sy = s, or
equivalently, if and only if the pair (sy,sxz) € S x S satisfies the equation
sy — sx = —s. This shows that all nonzero squares s € S and all nonsquares
—s € —S have the same number A of representations as a difference of two

nonzero squares. We can compute A from the equation (12.3), which gives
A=k(k-1)/(v—=1)=(v—3)/4. O

12.4 Projective planes

Let £ C 2% be a linear space with |£| = b and |X| = v. By Theorem 12.4,
b > v. In this section we will consider linear spaces with b = v and with
an additional requirement that every line has the same number, say q + 1,
of points. Then £ turns into a symmetric (v, k, A) design with A = 1 and
k = g+ 1. Such a design is known as a projective plane of order q. (The
reason for taking the block size of the form k = ¢ + 1 is that, for any prime
power ¢, such a design has a very transparent construction using the Galois
field Fy; we will give this construction below.) By Theorem 12.2, we have
v=b=¢>+q+1.
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Projective planes have many applications. They are particularly useful to
show that some bounds in Extremal Set Theory are optimal (cf., for example,
Lemma 2.1 and Theorems 6.2, 11.3). Due to their importance, projective
planes deserve a separate definition.

Definition 12.8. A projective plane of order q consists of a set X of ¢? +¢q+1
elements called points, and a family £ of subsets of X called lines, having the
following properties:

- Every line has ¢ 4+ 1 points.
- Every two points lie on a unique line.

The only possible projective plane of order ¢ = 1 is a triangle. For ¢ = 2,
the unique projective plane of order g is the famous Fano plane (see Fig. 12.1).

Fig. 12.1 The Fano plane with 7 lines and 3 points on a line

Additional properties of projective planes are summarized as follows:

Proposition 12.9. A projective plane of order q has the properties:

(i) Any point lies on g+ 1 lines.
(ii) There are ¢* + q+ 1 lines.
(iii) Any two lines meet in a unique point.

Proof. (i) Take a point . There are g(¢ + 1) points different from x; each
line through z contains ¢ further points, and there are no overlaps between
these lines (apart from z). So, there must be ¢ + 1 lines through .

(ii) Counting in two ways the pairs (x, L) with x € L, we obtain
IL]-(a+1)=(¢>+q+1)-(g+1),50 L] =¢*+q+1

(iii) Let Ly and Lo be lines, and z a point of L;. Then the g + 1 points of
Lo are joined to x by different lines; since there are only ¢ + 1 lines through
x, they all meet Ly in a point; in particular, L; meets Lo. a

A nice property of projective planes is their duality. Let (X, £) be a pro-
jective plane of order ¢, and let M = (m, 1) be its incidence matrix. That is,
M is n by n 0-1 matrix, the rows and columns of which correspond to points
and lines, and mg, ; = 1 iff x € L. Each row and column of M has exactly
q + 1 ones, and any two rows and any two columns share exactly one 1.
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12.4.1 The construction

The standard construction for projective planes of any prime order g > 2 is
the following.

Let V be the set of all vectors (xo, z1, 2) of elements of Fy, where xq, z1, z2
are not all zero. We identify the vectors that can be obtained from each other
by multiplying by a nonzero element of F,, and call each such collection of
vectors a point. That is, points of our plane are sets

[0, z1, 22] = {(cx0, cx1,c22) : c € Fy, ¢ # 0}

of ¢ — 1 vectors in V. There are (¢ —1)/(q — 1) = ¢®> + q + 1 such sets,
and hence, so many points. The line L(ag, a1, as), where (ag,a1,az2) € V, is
defined to be the set of all those points [zg, 21, x2] for which

apro + a1x1 + asxs = 0. (12.4)

How many points does such a line L(ag, a1, az) have?

Because (ag,a1,a2) € V, this vector has at least one nonzero compo-
nent; say ag # 0. Therefore, the equation (12.4) has exactly ¢? — 1 solutions
(o, x1,22) € V: for arbitrary x1, z2, not both zero, this equation uniquely de-
termines xg. Since each [xg, x1, 23] consists of ¢ — 1 vectors, there are exactly
(¢> —1)/(¢ — 1) = q + 1 points [xg, x1,72] satisfying (12.4). In other words:
there are exactly ¢ + 1 points on each line. So, it remains to verify that any
two points lie on a unique line.

To show this, let [zg,x1,z2] and [yo,y1,y2] be two distinct points. How
many lines contain both these points? For each such line L(ag, a1, az),

apxrg + a1xy + asxe = 0,

aoyo + ary1 + azys = 0.

Without loss of generality xg # 0. Then ag = —a121 /29 — aswa/xg, and we
can replace the second equation by
731 <y1 — ﬂ1‘1) + ag <y2 — ﬂxg) =0. (125)
xo Zo
If

Yo Yo
y1— —x1 =yY2— —12=0
o o

then (yo,y1,y2) = (cxo,cx1,cxs) with ¢ = yo/z0, and hence, [yo,y1,y2] =
[0, 1, 22], which is impossible since we consider distinct points. Therefore,
at least one of them, say y1 —(yo/x0)21, is nonzero. Then for arbitrary nonzero
ag, both a1 and ag are uniquely determined by (12.5) and the first equation;
and if (ag,a1,asz) is a solution then (cag, cai, cag) for ¢ # 0 are all the solu-
tions. Consequently, every two different points [z, z1, 22] and [yo, y1, y2] are
contained in a unique line, as desired.



172 12 Designs

The constructed projective plane is usually denoted by PG(2, q).

12.4.2 Bruen’s theorem

A blocking set in a projective plane is a set of points which intersects every
line. The smallest (with respect to the set—theoretic inclusion) blocking sets
are just the lines (show this!). This is why blocking sets containing a line are
called trivial.

What can be said about the size of non-trivial blocking sets? Lines them-
selves have g 4+ 1 points, and these are trivial blocking sets. Can we find a
non-trivial blocking set with, say ¢ + 2 or ¢ + 3 points? The fundamental re-
sult due to Bruen (1970) says that any non-trivial blocking set in a projective
plane of order ¢ must have at least ¢+ /g + 1 points, and this lower bound is
tight when ¢ is a square (that is, for square ¢ blocking sets of this size exist).
For the prime order ¢, Blokhuis (1994) improved Bruen’s bound to 3(g+1)/2
(which is also optimal).

Theorem 12.10 (Bruen 1970). Let B be a non-trivial blocking set in a pro-
jective plane of order q. Then |B| > q + \/q+ 1.

This result captures a very interesting property of projective planes: if we
take any set of at most g+ ,/q points, then either it contains a line or avoids
a line (the third is impossible!).

Proof. Let |B| = q + m, and assume that m < /g + 1. We will show that
|B| = q+/q+1. Let l; be the number of lines containing precisely ¢ points of
B. Counting lines, point-line pairs (z, L) with z € BN L, and triples (z,y, L)
with x # y in BN L, we obtain

m

Z li = q2 +q+1
i=1
Zi 1, =1|B|(¢g+1) every point lies in ¢ + 1 lines
i=1
i(i — 1)l; = |B|(|B] - 1) two points lie on exactly one line.
i=1

Since m < /g + 1, we have that i — /g —1 <0 for alli=1,...,m. This, in
particular, implies that
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0>

(t—1)(—+q—1

-

©
Il
-

(=D)L= (Va+ 1)) i Li+(Va+1)) L

i=1 i=1 i=1

=|BI(1Bl - 1) — (Va+ DIBl(g+1) + (vVa+1)(@® +q+1)

1Bl = (a+ g+ 1D]-[IB] = (ava +1)].-

Since |B| < ¢+ /g + 1 (by our assumption), the second term is negative,

implying that the first one cannot be negative, that is, [B| > ¢+ /g + 1, as
desired. O

NE

12.5 Resolvable designs

Suppose D is a (v, k, \) design over a set X. A parallel class in D is a subset
of disjoint blocks from D whose union is X. Observe that a parallel class
contains v/k blocks, and every point of X appears in exactly one of these
blocks. Moreover, by (12.1) and (12.2), we have

r = |Dlk/v = Ao —1)/(k - 1)

such classes, where r is the replication number of D (the number of blocks
containing a given point). A partition of D into r parallel classes is called a
resolution, and a design is said to be resolvable if it has at least one resolution.

Let us consider the following example from Anderson and Honkala (1997).
We have a football league of 2n teams and each team plays exactly once
against every other team. We wish to arrange the league schedule so that all
the matches are played during 2n — 1 days, and on each day every team plays
one match. Is this possible?

What we are looking for is a resolvable (2n,2,1) design. For convenience,
let our ground set (of teams) be X = {x,1,...,2n — 1}, where * is some
symbol different from 1,...,2n — 1. Since by (12.1), the replication number
equals

r=Av-1)/(k—1)=1-(2n—-1)/(2—1) =2n—1,

we have to show how to partite the collection D of all 2-element subsets of
X into 2n — 1 parallel classes D1, ..., Dy, _1; the i-th class D; gives us the
set of matches played at the i-th day.

Define {i,*} € D; for all i € X \ {}, and {a,b} € D;, if

a+b=2tmod2n —1
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for a,b € X \ {*}. Since 2n — 1 is odd, each 2-element subset of X belongs
to a unique D;; and the unique block in D; containing an element a € X is
{a,b} where b =2i —amod 2n — 1 if a # i, and {i,*} if a = i.

12.5.1 Affine planes

An affine plane AG(2, q) of order ¢ is a (¢2, ¢, 1) design. By (12.1), each point
of this plane belongs to r = (¢ — 1)/(¢ — 1) = ¢ + 1 lines, and by (12.2),
we have b = vr/k = ¢ + ¢ lines altogether. Put otherwise, an affine plane of
order ¢ has ¢? points and satisfies the following conditions:

- every line has ¢ points;

- any two points lie on a unique line;
- any point lies on ¢ + 1 lines;

- there are ¢ + ¢ lines.

Hence, the main difference from projective planes is that now we can have
“parallel” lines, i.e., lines which do not meet each other.

There are two basic constructions of affine planes.

Construction 1. An affine plane can be obtained from a projective plane
by removing any one of its lines. Let (X, £) be a projective plane of order
q. Fix one of its lines Ly € £ and consider the design (X', L") where X’ =
X\Lopand £'={L\Lo: L€ L, L+# Ly} (see Fig. 12.2). It is easy to verify
(Exercise 12.11) that the obtained design (X', £’) is an affine plane of order
g. The line Ly is called the line at infinity. For each line L' € £’ of the affine
plane there is a unique point x € Lo such that L’ U {z} € L; this point is
called the infinite point of L'.

) 4 7 4
1 5 @
6 6 5

Fig. 12.2 Construction 1 applied to the Fano plane; Lo = {1, 2,3} is the removed line
(the line at infinity).

Construction 2. Let ¢ be a prime power, and consider the set of points
X =F,; xF,. Let D be the set of all blocks of the form
L(a,b) :={(z,y) € X : y=ax+ b}

and
L(c) == {(c,y) : y € Fy},
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where a,b,c € F,. We will show that D is a (¢%,¢,1) design. Clearly, there
are g2 points and each block contains exactly ¢ of them. Hence, we only need
to show that every pair of points (z1, y1), (z2,¥2) € Fq x Fy is contained in a
unique block. If 1 = x5 then the unique block containing this pair is L(x1).
If 1 # xo then the system of equations y; = axy + b, yo = axs + b has a
unique solution (a, b); hence, the unique block containing that pair is L(a, b),
and we are done.

It can be shown that affine planes are resolvable designs (see Exer-
cise 12.12): the parallel classes are {L\ {z} : = € L} for = € Ly, in Construc-
tion 1, and {L(c) : ¢ € F,} together with {L(a,b) : b € F,} for all a € Fy,,
in Construction 2.

Exercises

12.1.Let D = {A1,..., A} be a (v,k,\) design over some set X with
|X| = v. Use Fisher’s inequality (Theorem 7.5) to show that |D| > v. Hint:
Consider the sets Sz = {i : € A;} and show that [Se N Sy| = A for all x # y € X.

12.2. Let D C 2% be a (v,k, \) design with b blocks, and let 7 be its repli-
cation number (i.e., each element occurs in 7 blocks). Prove that its comple-
ment D :={X\ B : B€D}isa (v,v—k,b—2r+ \) design provided that
b—2r + X > 0. Hint: A pair of elements z # y is contained in X \ B if and only if
B contains neither x nor y. The number of blocks of D containing neither x nor y is

b — 2r + X by the principle of inclusion and exclusion.

12.3. Show that the number b of blocks in a t—(v,k, \) design is given by
b = )\(i)/(lz) Hint: Count in two ways the number of pairs (T, B) where T is a
t-element set of points and B is a block.

12.4. Construct a projective plane PG(2, ¢) of order ¢ = 3.

12.5. Show that, in a projective plane of order ¢, its lines are the only blocking
sets of size ¢ + 1. Hint: See Exercise 7.7.

12.6. From the previous example we know that no set of ¢ points intersects all
the lines. We can ask the dual question: are there sets of size ¢ that intersect
every non-trivial blocking set? Show that there are no such sets and that the
only sets of size ¢ + 1 that intersect every blocking set are the lines. Sketch:
(due to Blokhuis): Take any set S of ¢ points, and start with a line Lo not intersecting
this set. Delete one (suitable) point « € Lo from that line, and add a point y; € L; \ S on
every other line L; through the deleted point . The resulting set (Lo\{z})U{y1,...,yq}
is blocking and is disjoint from S. This blocking set might be trivial (i.e., contain a line),
but it can be made non-trivial by deleting some unnecessary point of the line we started
with.
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12.7. (due to Bruen). Let S be a nontrivial blocking set in a projective plane
of order ¢q. Show that:

(i) |S] <q®— V4, and

(ii) no line contains more than |S| — ¢ points of S.

Hint: To (i): observe that the complement of S is also a nontrivial blocking set, and
apply Bruen’s theorem. To (ii): take a line L and a point = € L \ S; there are ¢ other
lines through x and these lines intersect S; argue that then |L N S|+ ¢ < |S].

12.8. Let S be a set of ¢ + 2 points in a projective plane of order g. Prove
that every line, that meets S, meets it twice.

12.9. Let S be a set of points in a projective plane of order ¢q. Suppose that
no three points of S are colinear (i.e., lie on a line). Prove that then |S| < ¢g+1
if ¢ is odd, and |S| < g 4 2 if ¢ is even. Hint: Fix a point 2 € S; for each other
point y € S the pair z,y lies on one of g + 1 lines (containing ), and these lines must
be different for different y. This proves the odd case. For the even case show that, if
|S| = g + 2 then every line that meets S, meets it twice.

12.10. Color some ¢ points of a projective plane of order ¢ in red, and the
rest in blue. Prove that, for any two different sets A # B of red points, there
is a set C' of ¢ blue points such that AU C is a blocking set but BUC' avoids
at least one line. Hint: Take a point z € A\ B, and show that some two lines L1 and
L> meet in the (red) point z and have no more red points; take C' = L1 \ {z}.

12.11. Take a projective plane of order ¢, i.e., a design satisfying the condi-
tions (P1)—(P5), and apply the first construction from Sect. 12.5.1 to it. Show
that the resulting design satisfies the conditions (A1)—(A4).

12.12. Consider a (g%, ¢, 1) design, i.e., an affine plane of order ¢q. Show that
this design is resolvable. More generally, let a parallel class be a set of mutu-
ally disjoint lines, and show the following;:

(i) each parallel class contains ¢ lines;

(ii) there are ¢ + 1 such classes;

(iii) any two lines from different classes meet in a point;
(iv) lines of each parallel class cover the whole point set.

Hint: Each parallel class contains exactly one line through any point; so, the ¢ 4 1 lines
through a point x contain representatives of all the classes.
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13. The Basic Method

The general framework for the linear algebra method in combinatorics is the
following: if we want to come up with an upper bound on the size of a set of
objects, associate them with elements in a vector space V of relatively low
dimension, and show that these elements are linearly independent; hence, we
cannot have more objects in our set than the dimension of V.

13.1 The linear algebra background

A field is a set F closed under addition, subtraction, multiplication and divi-
sion by nonzero element. By addition and multiplication, we mean commu-
tative and associative operations which obey distributive laws. The additive
identity is called zero, and the multiplicative identity is called unity. Exam-
ples of fields are reals R, rationals Q, and integers modulo a prime p. We will
be mostly concerned with finite fields. The cardinality of a finite field must
be a power of a prime and all finite fields with the same number of elements
are isomorphic. Thus, for each prime power g there is essentially one field F
with |F| = ¢. This field is usually denoted as GF(q) or F,,.

A linear space (or vector space) V over a field F is an additive Abelian
group (V,+,0) closed under (left) multiplication by elements of F (called
scalars). It is required that this multiplication is distributive with respect to
addition in both V and [, and associative with respect to multiplication in F.
Elements of V' are called vectors or points. Standard examples of vector spaces
are subsets V' C F" of vectors closed under the component-wise addition u +
v = (u1 +v1,...,u, +v,) and multiplication by scalars Av = (Av1, ..., Av,),
Ael.

A linear combination of the vectors vy,...,v,, is a vector of the form
AU+ ..o+ AU with A; € F. A subspace of V' is a nonempty subset
of V, closed under linear combinations. The span of v1,..., v, denoted by
span {v1,...,V;n}, is the set of all linear combinations of these vectors. A
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vector u depends on the vectors vi,...,v, if u € span{vi,...,v,}. The
vectors vy, ..., vy, are linearly independent if none of them is dependent on
the rest. Equivalently, the (in)dependence can be defined as follows.
A linear relation among the vectors vy, ..., vy, is a linear combination that
gives the zero vector:
AMUL + .o+ AU = 0.

This relation is nontrivial if A\; # 0 for at least one i. It is easy to see that
the vectors vq, ..., v, are linearly independent if and only if no nontrivial
relation exists between them. A basis of V is a set of independent vectors
which spans V. A fundamental fact in linear algebra says that any two bases
of V' have the same cardinality; this number is called the dimension, dim 'V,
of V.

A further basic fact is the so-called linear algebra bound (see any standard
linear algebra book for the proof):

Proposition 13.1. If vy, ..., v are linearly independent vectors in a vector
space of dimension m then k < m.

An important operation in vector spaces is the scalar product of two vec-
tors. Given two vectors u = (uq,...,u,) and v = (v1,...,v,), their scalar
product {u,v) (also called inner product and denoted u - v) is defined by:

(u,v) =u' -v:i=uv + -+ Uy,

Vectors w and v are orthogonal if (u,v) = 0; in this case one also writes u L v.
If U C V is a subspace of V' then the dual (or orthogonal complement) is the
subspace

Ut={veV: (uv)=0foraluecU}.

The following useful equality connects the dimensions of two orthogonal sub-
spaces.

Proposition 13.2. Let V' be a finite dimensional linear space, and U C V
be a subspace. Then dimU + dim U+ = dim V.

A consequence of this is that, for every linear subspace U C R" and every
vector z € U, there are uniquely defined vectors u € U and w € U+ such
that © = u 4+ w. The vector u is then called the projection of x onto U.

If A= (a;;) is an m-by-n matrix over some field F and x is a vector in F™,
then 2" - A is the vector in F™ whose j-th coordinate is the scalar product
of x with the j-th column of A. Thus, the rows of A are linearly independent
if and only if 7 - A # 0 for all x # 0. Similarly, if y € F™, then A -y is the
vector in F™ whose i-th coordinate is the scalar product of y with the i-th
row of A.

The column rank of a matrix A is the dimension of the vector space spanned
by its columns. The row rank of A is the dimension of the vector space spanned
by its rows. One of the first nontrivial results in matrix theory asserts that
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the row and column ranks are equal; this common value is the rank of A,
denoted by rk(A). There are several equivalent definitions of the rank of an
m-by-n matrix A = (a;;) over a given field F:

(a) rk(A) is the smallest r such that A = B - C for some m-by-r matrix B
and r-by-n matrix C;
(b) rk(A) is the smallest r such that A can be written as a sum of r rank-1

matrices;
(c) rk(A) is the smallest r such that A is a matrix of scalar products of
vectors in F7: there exist vectors u',...,u™ and o!,...,v" in F" such

that a;; = <ui,vj>.

Usually, the underlying field F will be clear from the context. If the field still
needs to be specified, we will write rkp(A) instead of rk(A).
The following inequalities hold for the rank:

rk(A) — rk(B) < rk(A + B) < rk(A) + rk(B); (13.1)

rk(A) + 1k(B) — n < rk(AB) < min {rk(4), rk(B)} , (13.2)

if A is an m-by-n and B an n-by-k matrix.

The determinant, det(A), of an n x n matrix A = (a;;) is the sum of n!
signed products tas;, a2, - - ani,, where (i1,42,...,4,) is a permutation of
(1,2,...,n), the sign being +1 or —1, depending on whether the number of
inversions of (i1,42,...,4,) is even or odd; an inversion occurs when i, > i
but r < s. It can be shown (do this!) that det(A) # 0 implies rk(A) = n.

If x = (z1,...,2,) denotes the vector of indeterminates, and b is a vector
in F™ then the matrix equation A-x = b is a concise form of writing a system
of m linear equations in variables x1, ..., xy:

ai1%1 + AT + -+ Ain Ty = by (i=1,...,m).

We have the following useful criterion for such a system being solvable. Let
ai,...,a, € F™ denote the columns of A. Observe that A-x = x1a1 + x2a2 +
-+ Xpan. It follows that the set {A-x : x € F"*} is a columns space of A,
i.e., the set of all vectors spanned by the columns of A. The system A-x =05
is thus solvable if and only if b € span{ay,...,a,} or, equivalently, if and
only if rk(A) = rk([A]b]), where [A]b] denotes the m X (n+ 1) matrix obtained
by adding the column b to A. A system A -x = b is homogeneous if b = 0.
The set of solutions of A -z = 0 is clearly a subspace (of all vectors that are
orthogonal to all the rows of A) and, by Proposition 13.2, its dimension is
n — rk(A). We summarize this important result:

Proposition 13.3. Let A be an m x n matrix over a field F. Then the set of
solutions of the system of linear equations A -x = 0 is a linear subspace of
dimension n — rk(A) of the space F".

This subspace is called the kernel of A.
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The norm (or length) of a vector v = (v1,...,v,) in R™ is the number
n 1/2
ol = o2 = (02)
i=1

The following basic inequality, known as the Cauchy—-Schwarz inequality,
estimates the scalar product of two vectors in terms of their norms (we have
already used it in previous sections; now we will prove it):

Proposition 13.4. For any real vectors u,v € R™,
| (w0} [ < ull - [lo]
with an equality iff uw and v are linearly dependent.
When expressed explicitly, this inequality turns to:
n 2 n n
(zu> < (zug) (Z) (133)
i=1 i=1 i=1
Proof. We may assume that u # 0. For any constant A € R we have

0 < (Au—wv, u—v) = Au, \u—v) — (v, \u —v)
= AN (u,u) — 2\ (u,v) + (v, v).

Substituting A = -2 we get

(u,u)
O R T LR T
0= <u,u>2<u’u> 2 (u,u) +(v,v) = (v,9) {u,u)

Rearranging the last inequality, we get (u, v)? < (u,u)(v,v) = ||lul|?-||v||?>. O

A scalar ) is an eigenvalue of a square real matrix A if the equation
Az = Az has a solution z € R™, x # 0, which is the case iff the characteristic
polynomial pa(z) = det (A — zI) has A as a root; here, [ is a unit matrix with
1s on the diagonal, and Os elsewhere. A non-zero x with Ax = Ax is called an
etgenvector corresponding to the eigenvalue A. Since p4 has degree n, we can
have at most n (complex) eigenvalues. If the matrix A is symmetric, that is,
AT = A, then all its eigenvalues are real numbers.

The following are standard facts about the eigenvalues of a real symmetric
n x n matrix A = (a;;):

1. A has exactly n (not necessarily distinct) real eigenvalues A; > ... > \,,.

2. There exists a set of n eigenvectors x1, . . ., z,, one for each eigenvalue, that
are normalized and mutually orthogonal, that is, ||z;|| = 1 and (z;, ;) =0
over the reals. Hence, x1,...,x, form an orthonormal basis of R".
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3. The rank of A is equal to the number of its nonzero eigenvalues, including
multiplicities: tk(A4) = [{i : A; # 0}].

4. The sum of all eigenvalues Y .- | \; is equal to the trace tr(4) = > | ai;.

The product []"_; A; of all eigenvalues is equal to det(A).

6. Perron-Frobenius theorem: If A = (a;;) is a real n X n matrix with non-
negative entries a;; > 0 and irreducible, then there is a real eigenvalue r

of A such that
min a;; <r < max A5
in Y ay < <max Y
J J

and any other eigenvalue \ satisfies |A| < r. A matrix is reducible if there
is a subset I C [n] such that a;; = 0 for all ¢ € I and j ¢ I. In particular,
an adjacency matrix of a graph is irreducible iff the graph is connected.

ot

There is also a general formula to compute eigenvalues explicitly. A weighted
average of a sequence x = (x1,...,,) of numbers is a number

n n
Z Q; T; with Z a; = 1.
i=1 i=1
We will use the following easy fact (prove it!): For every sequence z, any

weighted average of = is > min; z; and is < max; x;.

Theorem 13.5. The k-th largest eigenvalue of a symmetric n X n matriz A
18

+
.z Az
Ap = max min ——— (13.4)
dimU=kzeU X' X
x ! Ax

min max ———.
dimU=k—-1zlU x'X

(13.5)

Here, the maximum /minimum is over all subspaces U of a given dimension,
and over all nonzero vectors x in the respective subspace. In particular, (13.5)
yields:

T Az T
A= rggg e |\Iqr;1|\alex Ax (13.6)
and T
A2 = max T AT z! Az, (13.7)

T = max
zll x'x z11,||z||=1

where 1 is the all-1 vector, and the second equality follows since we can
replace x by z/||z||, since the first maximum is over all nonzero vectors x.

Proof. We only prove the first equality (13.4)—the proof of the second one
is analogous. First of all, note that the quantity (known as the Rayleigh
quotient)
-
x' Az
fale) = —= -
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is invariant under replacing x by any nonzero multiple cz. Therefore, we can

assume that z is a unit vector, that is, ||z|| = 1 and hence "2 = 1 (by
replacing z — cx with ¢ = 1/||z||, if necessary).
Consider an orthonormal basis of eigenvectors u', ..., u". Any vector z in

R"™ can be written as z = Y, a;u’, and the expression x " Az reduces to

n

n T n
2T Az = <Zaiui> A(Zaiui> = Z u A u] Za i
i=1 i=1

ij=1

where the last equality follows because the scalar product of vectors u’ and
w is 1 if i = j, and is 0 otherwise. By a similar argument, we have that
z'z =Y" a2, and for unit vector z we get Y. a? = 1. Thus, for each
unit vector x, the expression f4(x) can be interpreted as a weighted average
of the eigenvalues.

Now consider the subspace U C R" generated by the first k eigenvec-
tors u',...,uF. For any unit vector z € U, we get z' Az = Y. a2); and
Zle a? = 1. The weighted average fa(x) of the eigenvalues \; > ... > )\
is at least the smallest of the first k eigenvalues, so mingecy fa(z) > A holds
for this special k-dimensional subspace U.

On the other hand, consider any subspace U of dimension k, and a sub-
space V of dimension n — k + 1 generated by the last n — k + 1 eigenvectors
uP w1 .. u™. These two subspaces must have nontrivial intersection, that
is, there must exist a nonzero vector z € U N V. By normalization, we can
assume that » = >0, bju’ is a unit vector, 2"z = > 03 =1 and we
obtain fa(z) = ZJ & b?)\ < Ak, since fa(z) is a weighted average of the last
n —k+ 1 eigenvalues and the largest of these eigenvalues is A;. Consequently,

mingey fa(x) < fa(z) < Ag holds for any k-dimensional subspace U. a
The spectral norm of a matrix A is defined as

NAz]
o ]

IA[l =

The name “spectral norm” comes from the fact that
| Al = square root of the largest eigenvalue of AT A.

This holds because ' (AT A)x = (Ax, Az) = || Az|%. The Frobenius norm of
A is just the Euclidean norm

e = (X az) "
(2%}

of the corresponding vector of length n2. The following fact relates these two
norms with the rank over the reals.



13.2 Graph decompositions 185

Proposition 13.6. For every real matriz A,

MAle oy ap < age.
rk(A)

Proof. Observe that | Al|% is equal to the trace, that is, the sum of diagonal
elements of the matrix B = AT A. On the other hand, the trace of any real
matrix is equal to the sum of its eigenvalues. Hence, ||A||%Z = Y7 | A; where
A1 > ... > )\, are the eigenvalues of B. Since B has only rk(B) = rk(A) =r
non-zero eigenvalues, and since all eigenvalues of B are nonnegative, the
largest eigenvalue \; is bounded by [|A|2/r < A; < ||A||%. It remains to use
the fact mentioned above that || Al = /1. O

Let us now see how the linear algebra argument works in concrete situa-
tions.

13.2 Graph decompositions

A bipartite clique is a bipartite complete graph K4 p = (AU B, E) with
ANB=(and E= A X B.
Let f(n) be the smallest number ¢ such that the complete graph K, on

n vertices 1,2,...,n can be decomposed into t edge-disjoint bipartite cliques.
It is not difficult to see that f(n) < n— 1. Indeed, it is enough to remove the
vertices 1,2,...,n — 1 one-by-one, together with their incident edges. This

gives us a decomposition of K, into edge-disjoint stars, that is, bipartite
cliques K4, g, with A; = {i} and B;={i+1,...,n},i=1,...,n— L

This is, however, just one special decomposition and does not exclude
better ones. Still, a classical result of Graham and Pollak (1971) says that
the trivial decomposition is in fact the best one! This can be shown using
linear algebra.

Theorem 13.7. The edges of K,, cannot be decomposed into fewer than n—1
edge-disjoint biartite cliques.

Proof (due to Trevberg 1982). We consider a more general question: What is
the smallest number ¢ such that the sum of products

S(x) := Z ;T

1<i<j<n

in indeterminates = (x1,...,2,) can be written as the sum
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of products-of-sums with 4; N B; = @ for all 4+ = 1,...,t? To answer this
question, set T'(z) := Y . | #? and observe that

n

(Z:}:Z)Q = ixf +2inxj =T(x)+25(x),
i=1

=1 1<j
and hence,
T(z) = (ix)Z —25(z) = (ix)Q _ 9. iLi(x) “Ri(z).  (13.8)
i=1 i=1 =1

Consider now a homogeneous system of ¢ + 1 linear equations over R:
Li(z)=0, ..., Li(x) =0, a1+ -+ 2, =0

and assume that t < n—2. Then the system has more variables than equations,
implying that it must have a solution « € R™ with z # 0. From >_"" ; z; =0
and L;(x) =0 for all : = 1,...,¢ it follows that, for this vector z, the right-
hand side of (13.8) must be equal to 0. But the left-hand side is not equal
to 0, since z # 0 implies T'(z) = Y i, 22 # 0. Thus, our assumption that
t < n — 2 has led to a contradiction. O

13.3 Inclusion matrices

A celebrated result, due to Razborov (1987), says that the majority function
cannot be computed by constant depth circuits of polynomial size, even if
we allow unbounded fanin And, Or and Parity functions as gates. This result
was obtained in two steps:

(i) show that functions, computable by small circuits, can be approximated
by low degree polynomials, and

(ii) prove that the majority function is hard to approximate by such polyno-
mials.

The proof of (i) is probabilistic, and we will present it later (see Lemma 18.11).
The proof of (ii) employs the linear algebra argument, and we present it below.

The k-threshold function is a boolean function T} (z1, ..., x,) which out-
puts 1 if and only if at least k of the bits in the input vector are 1. A boolean
function g(z1,...,z,) is a polynomial of degree d over Fy if it can be written
as a sum modulo 2 of products of at most d variables.

Lemma 13.8 (Razborov 1987). Let n/2 < k < n. Every polynomial of degree
at most 2k —n — 1 over Fy differs from the k-threshold function on at least

(%) inputs.
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Proof (due to Lovasz—Shmoys—Tardos 1995). Let g be a polynomial of degree
d <2k —n—1 over Fy and let U denote the set of all vectors where it differs
from T} Let A denote the set of all 0-1 vectors of length n containing exactly
k ones. By our choice of d, the coordinate-wise And a A b of any two vectors
a,b € A must contain at least d + 1 ones.

Consider the 0-1 matrix M = (mq,,) whose rows are indexed by the mem-
bers of A, columns are indexed by the members of U, and mg,, = 1 if and
only if @ > u. For two vectors a and b we denote by a A b the coordinate-wise
And of these vectors. Our goal is to prove that the columns of M span the
whole linear space; since the dimension of this space is |A| = (Z), this will
mean that we must have |U| > (}) columns.

The fact that the columns of M span the whole linear space follows directly
from the following claim saying that every unit vector lies in the span.

Claim 13.9.Let a € A and U, = {u € U : mg, = 1}. Then, for every

be A,
Zmb :{1ifb=a;
= ’ 0 if b#a.

Proof. By the definition of U,, we have (all sums are over Fy):

Yompu= Y, 1= Y (Tr@+g@)= > Ti@+ Y g@).

ucU, u;an z<aAb z<aAb z<aAb
The second term of this last expression is 0, since a Ab has at least d+ 1 ones
(Exercise 13.10). The first term is also 0 except if @ = b.
This completes the proof of the claim, and thus, the proof of the lemma. 0O

13.4 Disjointness matrices

Let k& < n be natural numbers, and X be a set of n elements. A k-disjointness
matriz over X is a 0-1 matrix D = D(n,k) whose rows and columns are
labeled by subsets of X of size at most k; the entry D4 g in the A-th row
and B-th column is defined by:

D, ._J0 i ANBZ0,
AB=Y1  if ANB=10.

This matrix plays an important role in computational complexity. Its impor-
tance stems from the fact that it has full rank over Fa, i.e., all its 3.5 ()
rows are linearly independent.

Theorem 13.10. The k-disjointness matriz D = D(n, k) has full rank over
Fy, that is,
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rkg, (D) = Xk: (’Z)

=0

There are several proofs of this result. Usually, it is derived from more
general facts about M&bius inversion or general intersection matrices. Here
we present one particularly simple and direct proof due to Razborov (1987).
Proof. Let N = Zf:o (). We must show that the rows of D are linearly
independent over Fo, i.e., that for any nonzero vector A = (Ar,, Ary, .-y Ary)
in FYY we have AT - D # 0. For this, consider the following polynomial:

f({I,‘l,...,.’L'n) = Z )\[H{L‘l

|I|<k i€l

Since A # 0, at least one of the coefficients A; is nonzero, and we can find
some Iy such that A\;, # 0 and Iy is mazimal in that A\; = 0 for all I D Iy.
Assume w.lo.g. that Iy = {1,...,t}, and make in the polynomial f the
substitution x; := 1 for all i & Iy. After this substitution has been made, a
nonzero polynomial over the first ¢ variables z1, ..., x; remains such that the
term xyxg - - - x4 is left untouched (here we use the maximality of Ij). Hence,
after the substitution we obtain a polynomial which is 1 for some assignment

(a1,...,a:) to its variables. But this means that the polynomial f itself takes
the value 1 on the assignment b = (aq,...,as,1,...,1). Hence,
L=f0)= > A]]b
|[I|<k i€l

Let Jo := {i : a; = 0}. Then |Jy| < k and, moreover, []
if I N Jy =0, which is equivalent to Dy j, = 1. Thus,

> ADp g, =1,
1<k

ey bi = 1if and only

meaning that the Jy-th coordinate of the vector AT - D is nonzero. O

In order to apply the linear algebra method, in many situations it is par-
ticularly useful to associate sets not to their incidence vectors but to some
(multivariate) polynomials f(z1,...,x,) and show that these polynomials are
linearly independent as members of the corresponding functions space. This
idea has found many applications. All these applications are based on the
following simple and powerful lemma connecting algebra to linear algebra.

Lemma 13.11 (Independence Criterion). Fori=1,...,m let f; : 2 — T be
functions and v; € §2 elements such that

(a) fi(vi) #0 for all1 <i<m;
(b) fi(v;) =0 foralll < j<i<m.
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Then f1,..., fm are linearly independent members of the space F.

Proof. By contradiction: Suppose there is a nontrivial linear relation
AMfi+Afot o+ A fm =0

between the f;’s. Take the largest ¢ for which A; # 0. Substitute v; for the
variables. By the assumption, all but the i-th term vanish. What remains is
i fi(vi) = 0, which implies A; = 0 because f;(v;) # 0, a contradiction. a

13.5 Two-distance sets

Our first illustration of the independence criterion prepares for some surpris-
ingly powerful applications, which we will consider in Sects. 13.6 and 13.7.

Let aq,...,a,, be points in the n-dimensional Euclidean space R™. If the
pairwise distances of the a; are all equal then m < n + 1. (Show this!) But
what happens if we relax the condition and require only that the pairwise
distances between the a; take two values? Such a set is called two-distance
set.

We shall see that then m is about n?/2. Indeed, it is easy to construct a
two-distance set in R™ with (}) points (Exercise 13.13). On the other hand,
we have the following upper bound.

Theorem 13.12 (Larman—Rogers—Seidel 1977). Every two-distance set in
R™ has at most () + 3n + 2 points.

Proof. Let ay,...,a, be a two-distance set of distinct points in R™. The
distance between two points x,y in R™ is ||« — y||. Since for our set of points
ai,...,a, this distance can take only one of two values d; or ds, none of
which is zero (why?), it is natural to associate with each point a; the following
polynomial in n real variables x € R™:

fi(z) = (lz — ai]|* = d7) - (|lo — ail|* — d3).

Then fi(a;) = (did2)* # 0, but fi(a;) = 0 for every j # i. By Lemma 13.11,
these polynomials are linearly independent (as members of the space of all
functions f : R™ — R). What is a vector space in which they reside? It is
easy to see that every such polynomial is an appropriate linear combination
of the following polynomials

n n

(Zx?)Q, (fo)xj, xi%j, ©i, 1, ford,j=1,...,m

i=1 i=1

their number is 1+n+ ((3) +n)+n+1 = (}) +3n+2. Thus, the polynomials
fi,--., fm belong to a linear space of dimension at most (Z) +3n+ 2. As
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they are linearly independent, their number m cannot exceed the dimension,
completing the proof of the theorem. a

We can rewrite the upper bound in Theorem 13.12 as
2
m < <Z> +3n+2= (n—2|— ) +n+1.

A significant improvement was achieved by Blokhuis (1981) who showed
that the second term n + 1 here is redundant. His trick was to show that the
polynomials f1, ..., fn, together with the polynomials x1, ..., z,, 1 are linearly
independent. This nice idea was later employed to derive more impressing
results (cf. Exercise 13.17).

13.6 Sets with few intersection sizes

In this section we demonstrate how the polynomial technique can be used to
obtain far reaching extensions of Fisher’s inequality (see Theorem 7.5).

Let F be a family of subsets of some n-element set, and let L C {0,1,...}
be a finite set of integers. We say that F is L-intersecting if |AN B| € L for
every pair A, B of distinct members of F.

Suppose we know only the size of L. What can then be said about the
number of sets in F? Fisher’s inequality tells us that |[F| < n when |L| = 1.
In the case of uniform families, the celebrated result of Ray-Chaudhuri and
Wilson (1975) gives the upper bound |F| < (Izl)' The non-uniform version
of this result was proved by Frankl and Wilson (1981).

Theorem 13.13 (Frankl-Wilson 1981). If F is an L-intersecting family of
subsets of a set of n elements, then |F| < Z‘li‘o ™.

?

Both these results are best possible: for L = {0,1,...,s— 1} one can take
the family of all subsets of an n-element set with s elements (with at most s
elements, respectively).

The original proof of these theorems used the machinery of higher incidence
matrices. Fortunately, these results now admit conceptually simpler proofs
using linear spaces of multivariate polynomials.

Proof of Theorem 13.138 (due to Babai 1988). Let F = {A44,..., A,,} where
|A1] < ... < |An|. Let L ={l,...,ls} be the set of all possible intersection
sizes. That is, for every ¢ # j there is a k such that |4; N A;| = [. With each
set A, we associate its incidence vector v; = (v1, ..., V), where v;; = 1 if
Jj € Aj;; otherwise v;; = 0. For z,y € R", let (as before) (z,y) = > i | iy
denote their standard scalar product. Clearly, (v;,v;) = |4; N A;].

For i =1,...,m, let us define the polynomial f; in n variables by
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filw)= I (wio)-L)  (@eR").

k:lp<|A;]

Observe that f;(v;) =0foralll < j <i<m,and f;(v;) # 0foralll <i<m.
By Lemma 13.11, the polynomials f1, ..., f,, are linearly independent over R.
What is a small vector space in which these polynomials can reside? The f;’s
are polynomials of degree at most s, but we can do better. The domain being
{0,1}" implies that z? = z; for each variable z;. Thus, pure monomials of
degree < s form a basis (where a pure or multilinear monomial has at most

one occurrence of each variable), and we have only >°;_, () of them. O

Using essentially the same argument, we can also prove the following “mod-
ular” version of this theorem (we leave the proof as Exercise 13.16). Write
r € L mod p if r = mod p for at least one [ € L.

Theorem 13.14 (Deza-Frankl-Singhi 1983). Let L be a set of integers and
p be a prime number. Assume F = {A1,...,An} is a family of subsets of a
set of n elements such that

(a) |A;| € Lmod p for all 1 <i < m;

(b) |A; N Aj|l € Lmodp for all1 < j <i<m.
L| (n

hen |71 < 12, ().

?

These theorems and their modifications have found many striking applica-
tions in combinatorics and geometry. An excellent exposition is given in the
book by Babai and Frankl (1992).

13.7 Constructive Ramsey graphs

Roughly, the main idea of these applications is the following. If we identify
the members of our family F with vertices and join two members if and only
if their intersection has a particular size, then the theorems above ensure that
the graph cannot have a large clique or a large independent set (or both). To
demonstrate the idea, we use it to construct so-called Ramsey graphs.

Recall that a clique of size t in a graph is a set of ¢ of its vertices, each pair
of which is joined by an edge. Similarly, an independent set of size t is a set
of t vertices with no edge between them. A graph is a Ramsey graph (with
respect to t) if it has no clique and no independent set of size t.

Given t, we are interested in the largest possible number n for which such a
graph (on n vertices) exists. The existence of Ramsey graphs of size n = 2t/2
is known: this was proved by Erd6s (1947) using the probabilistic method (see
Theorem 4.17). The theorem states only the mere existence of a graph, and
gives no way to find it.

For many years, only an easy construction of a Ramsey graph of size
n = (t — 1)* was known: take the disjoint union of ¢ — 1 cliques of size
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t — 1 each. The first non-trivial construction of Ramsey graphs on n = 02(t3)
vertices was given by Zsigmond Nagy in 1972 (see Exercise 13.15).

Substantial progress in that direction was made by Frankl (1977) who was
able to construct Ramsey graphs of super-polynomial size

n— tQ(lnt/ Inlnt)

Subsequently, a simpler proof was found by Frankl and Wilson (1981), using
their result about families with one missing intersection size modulo a prime
power. To be self-contained, here we present a slightly weaker version whose
proof relies only on Theorems 13.13 and 13.14.

The desired graph is defined as follows. Let p be a prime number, and v =
p3. Let G, be a graph whose vertices are subsets of {1,...,v} of cardinality
p? — 1, and where two vertices A and B are joined by an edge if and only if

|ANB| # —1modp.

Theorem 13.15 (Frankl 1977, Frankl-Wilson 1981). The graph G, has n =
(pzv_l) vertices and has neither a clique nor an independent set on more than

t =300 (V) wertices.

Proof. If Ai,..., A, is a clique in G, then |4; N Aj| # —1 mod p for every
1 <i<j <r,implying that |4, N Aj| € Lmod p for L = {0,1,...,p — 2}.
On the other hand, each of the sets A; has size p> —1 = —1 mod p, and hence,
|A;| ¢ L mod p. Theorem 13.14 implies that in this case r < ¢.

Now suppose that the sets Ay, ..., A, form an independent set in G,,. Then
|A;NA;| € L, forevery 1 <i < j <r,where L={p—1,2p—1,...,p>—p—1}.
Theorem 13.13 again yields that in this case r < ¢. a

To get the desired lower bound n > ¢?(nt/Inlnt) “we just have to select p
appropriately. The exact computation is somewhat tedious, and we leave it
as an exercise. We only sketch the way these computations should proceed.
By the density of primes, there is always a prime between N and 2N, for
any positive integer IV; so we may pretend that p is an integer rather than
a prime. Since v = p3, t = Zf;ol (V) < p°P) whereas n = (p;il) > p®)
which is at least ¢t?(nt/nInt) for 5 — Q(Int/Inlnt).

13.8 Zero-patterns of polynomials

Let f = {fi(z1,...,2,) : ¢ =1,...,m} be a sequence of polynomials over
some field F. A subset S C [m] is a zero-pattern of f if there exists a vector,
a witness for this zero-pattern, v € F™ such that S = {i : f;(v) # 0}. Let
Zr(f) denote the number of distinct zero-patterns of f as v ranges over F™.
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The following upper bound was proved by Rényai, Babai, and Ganapathy
(2001).

Theorem 13.16. Let d; denote the degree of f;, and D =" d;. Then
Ze(f) < <”+D> :
n

Proof. Assume that f has M different zero-patterns, and let vy,..., vy be
witnesses to these zero-patterns. Let S; = {k : fix(v:) # 0} be a zero-pattern
witnessed by the i-th vector v;, and consider the polynomials g; := [ ] s, Jr-
We claim that these polynomials are linearly independent over F. This claim
completes the proof of the theorem since each g; has degree at most D and
the dimension of the space of polynomials of degree at most D is exactly
("'ED) (see Exercise 13.22).

To prove the claim, it is enough to note that g;(v;) # 0 if and only if
S; C Sj. Indeed, gi(rUj) 75 0 iff fk(Uj) 7é 0 for all k € S; iff fk(vl) 75 0 implies
fk(Uj) 7é 0 iff Sl g Sj.

Assume now, for the sake of contradiction, that a nontrivial linear relation
Zi]\il Xigi = 0 exists (A\; € F). Let j be a subscript such that |S;| is minimal
among the S; with A; # 0. Substitute v; in the relation. While A;g;(v;) # 0,
we have A;g;(v;) = 0 for all ¢ # j, a contradiction. O

If all polynomials f1,..., fm are of degree at most d, and if we have m > n
polynomials, then the upper bound Zg(f) < (™*"™) can be improved to

Zp(f) < (md> < (My . (13.9)

n n

The assumption m > n is justified by the observation that for m < n, the
trivial upper bound Zg(f) < 2™ can be attained even for d = 1, over every
field: just take f; = x;.

It is also shown by Roényai, Babai, and Ganapathy (2001) that, for m > nd,
d > 1 and any sufficiently large field F (including infinite fields), the upper
bound (13.9) is almost optimal: There exists a constant € > 0 and a sequence
f of m polynomials of degree at most d in n variables such that

Ze(8) > (M> .

n

Exercises

13.1. Prove the Pythagoras theorem: if the vectors x,y are orthogonal, then
2+ gl = =] + [lylI*.
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13.2. Let x € Fy be a nonzero vector. Show that it is orthogonal to exactly
half of vectors in F%. Hint: Take an i for which z; = 1 and split the space F3 into 2"
pairs y,y that differ only in their i-th coordinate. For each of these pairs, (z,y) # (z,y ).

13.3. Let F be a family of subsets of an n-element set such that: (i) every
set of F has an even number of elements, and (ii) each pair of sets shares an
even number of elements. Construct such a family with at least 21"/2) sets.

13.4. (Babai-Frankl 1992). Show that the upper bound 21"/2] in the previous
exercise cannot be improved. Hint: Let S be the set of incidence vectors of all sets
in F, and let U the span of this set (over F2). Argue that the rules (i) and (ii) imply
that U is a subspace of U , and apply Proposition 13.2.

13.5. Prove the following “Oddtown Theorem” (see Babai and Frankl (1992)
for the explanation of this name). Let F be a family of subsets of an n-
element set such that: (i) every set of F has an odd number of elements,
and (ii) each pair of sets share an even number of elements. Prove that then
|F| < n. Compare this with Exercise 13.3. Hint: The incidence vectors of sets in
F are linearly independent over Fo.

13.6. The Hamming distance between two vectors of the same length is just
the number of positions in which these two strings differ. Show that the
Euclidean distance between any two 0-1 vectors is the square root of their
Hamming distance.

13.7. Show that the pairwise orthogonality of (+1, —1)-vectors implies their
linear independence (over the reals).

13.8. Using the Cauchy—Schwarz inequality show that if u = (u1,...,u,) is
a vector in R™ then |u| < /n - ||u||, where |u| := |ui|+ ... + |u,| and |u;] is
the absolute value of u;. Hint: Take a vector v = (v1,...,v,) with v; = 1 if u; >0
and v; = —1, otherwise. Observe that |u| = (u,v) and ||v|| = v/n.

13.9. Let f(z1,...,2n) be a polynomial over Fy of degree d < n which is not
identically 1. Show that then f(v) = 0 for at least one nonzero vector v with
at most d + 1 ones.

13.10. Let h = [],c g #; be a monomial of degree d = |S| < n—1, and let a be
a 0-1 vector with at least d+ 1 ones. Show that then, over 2, >, ., h(b) = 0.

Hint: There are only two possibilities: either a; = 1 for all i € S, or not.

13.11. Suppose A C Z% has the property that for all distinct vectors a,b € A,
there is a coordinate i € [n] such that a; — b; = 1 (subtraction in Zs =
{0,1,2}). Show that |A| < 2™. Hint: Consider polynomials fa(z) = [}, (zi—ai—1)

over Z3.

13.12. (Babai et al. 1991). Let F be a field, Hy,...,H,, € F and H =
Hy X -+« x Hp,. Prove that, for any function f : H — F there exists a
polynomial f in m variables over F such that:
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(i) f has degree < |H;| in its i-th variable, and
(ii) f, restricted to H, agrees with f.

Is such a polynomial unique? Hint: Associate with each vector u = (u1, ..., um) in

H a polynomial
m
wer-T1 TI
i=1h H\{u;}
and show that every function f : H — T is a linear combination of the g,’s, restricted
to H.

13.13. Construct a two-distance set in R™ of size (Z) Hint: What about 0-1
vectors with two 1s in each?

13.14. Prove the following generalization of Theorem 13.12 for s-distance
sets. Let aq, ..., a,, be vectors in R™ and suppose that the pairwise distances
between them take at most s values. Prove that m < (”*j*l). Hint: Let
d1,...,ds be the distances permitted, and consider the polynomials f;(z) = Hj=1(||x —
ai||?> — d2). To estimate the dimension of the subspace containing all of them, expand
the norm-square expression in each factor, replace the sum Z:;l :cf by a new variable
z, and multiply the constant terms by a new variable ¢. Observe that then each f;
becomes a homogeneous polynomial of degree s in n + 2 variables x1,...,zn, 2,t, and
apply Proposition 1.5.

13.15. (Nagy 1972). Let G be a graph whose vertices are 3-element subsets
of {1,...,t}, and where two vertices A and B are joined by an edge if and
only if |AN B| = 1. Use Exercise 13.5 and Fisher’s inequality to show that
this graph has neither a clique nor an independent set of size ¢t + 1.

13.16. Write down a complete proof of Theorem 13.14. Hint: Work in the finite
field F,, instead of that of real numbers R. This time, due to the condition |A4;| ¢ L mod p,
we can take f;(z) = Hl 1, ((vi,z) — 1), i.e., we do not need the condition I < |A;].

13.17. (Ray-Chaudhuri-Wilson 1975). Prove the following uniform version of
Theorem 13.13: if Ay,..., A,, is a k-uniform L-intersecting family of subsets

of an n-element set, then m < (7), where s = |L|. Sketch: (Alon-Babai-Suzuki
1991): Start as in the proof of Theorem 13.13 and define the same polynomials f1,..., fm
of degree at most s. Associate with each subset I of {1,...,n} of cardinality |I| < s—1
the following polynomial of degree at most s:

n

g,) = (Y w) = #) [

j=1 i1

and observe that for any subset S C {1,...,n}, g,(S) # 0 if and only if |S| # k and
S D I. Use this property to show that the polynomials g; together with the polynomials
fi are linearly independent. For this, assume

Z)\ifi-i- Z w9, =0
i=1

| I|=s—1
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for some A;, u, € R. Substitute A;’s for the variables in this equation to show that
A;j = 0 for every j = 1,...,m. What remains is a relation among the g,. To show
that this relation must be also trivial, assume the opposite and re-write this relation as
pag,, + -+ peg,, = 0 with all y; # 0 and |[I1] > |I;| for all j > 1. Substitute the first
set I for the variables and observe that all but the first function vanish.

13.18. Let Ay,..., A, and By, ..., B,, be subsets of an n-element set such
that |A; N B, is odd for all 1 <4 < m, and |4; N By| is even for all 1 <i <
j < m. Show that then m < n.

13.19. (Frankl-Wilson 1981). Let p be a prime, and n = 4p — 1. Consider
the graph G = (V, FE) whose vertex set V consists of all 0-1 vectors of length
n with precisely 2p — 1 ones each; two vectors are adjacent if and only if the
Euclidean distance between them is y/2p. Show that G has no independent
set of size larger than Zf;ol (?) . Hint: Use Exercise 13.6 to show that two vectors
from V are adjacent in G precisely when they share p — 1 ones in common, and apply
Theorem 13.14.

Comment: This construction was used by Frankl and Wilson (1981) to resolve an old
problem proposed by H. Hadwiger in 1944: how many colors do we need in order to color
the points of the n-dimensional Euclidean space R™ so that each monochromatic set of
points misses some distance? A set is said to miss distance d if no two of its points are
at distance d apart from each other. Larman and Rogers (1972) proved that Hadwiger’s
problem reduces to the estimating the minimum number of colors x(n) necessary to
color the points of R™ such that pairs of points of unit distance are colored differently.
The graph G we just constructed shows that x(n) > 22 (see the next exercise). Kahn
and Kalai (1993) used a similar construction to disprove another 60 years old and widely
believed conjecture of K. Borsuk (1933) that every set of diameter one in n-dimensional
real space R™ can be partitioned in at most n 4+ 1 disjoint pieces of smaller diameter.
Kahn and Kalai presented an infinite sequence of examples where the minimum number
of pieces grew as an exponential function of y/n, rather than just as a linear function
n + 1, as conjectured. The interested reader can find these surprising solutions in the
book of Babai and Frankl (1992).

13.20. The unit distance graph on R™ has the infinite set R™ as its vertex set,
and two points are adjacent if their (Euclidean) distance is 1. Let x(n) be
the minimum number of colors necessary to color the points of the Euclidean
space R™ such that pairs of points of unit distance are colored differently. Use
the graph from the previous exercise to show that y(n) > 22(™). Hint: Observe
that x(G) > |V]/a(G) and replace each 0-1 vector v by the vector ev, where € = 1/4/2p.
How does this change the distance?

13.21. Let 21,...,z, be real numbers, and o : [n] — [n] a permutation of
[n] = {1,...,n}. Show that then > !, ;- 2, < >.i_, 7. Hint: Use the

= 7

Cauchy—Schwarz inequality.

13.22. Use Proposition 1.3 and Exercise 1.7 to show that the number of

distinct monomials of degree at most d is ("zd).



14. Orthogonality and Rank Arguments

Linear independence is one of the most basic concepts in linear algebra. No
less important are the concepts of orthogonality and rank. In this chapter we
consider some combinatorial applications of these two concepts.

14.1 Orthogonal coding

Linear independence is not the only way to obtain good upper bounds. If
the members of a family F can be injectively associated with the elements
of Fy, then |F| < ¢™. If we are lucky, the associated “code-vectors” will be
orthogonal to some subspace of dimension d, which (due to Proposition 13.2)
immediately improves our bound to |F| < ¢™~%. We demonstrate this idea
by the following result. Recall that two vectors w,v are orthogonal if their
scalar product is zero, (u,v) = 0.

Given two families A and B of subsets of an n-element set, satisfying some
conditions, we are interested in how large |A|- |B| can be. If we know nothing
about the families, then this number can be as large as 22. If we know that
both families are monotone increasing (or monotone decreasing), Kleitman’s
theorem (Theorem 10.6) gives a non-trivial upper bound:

A Bl < 2" - |ANB.

If we know that all the intersections AN B with A € A and B € B, have the
same size modulo 2, then we can get an even better bound.

Theorem 14.1 (Ahlswede-El Gamal-Pang 1984). Let A and B be two fam-
ilies of subsets of an n-element set with the property that |AN B| is even for
all Ae A and B € B. Then |A|-|B|] <2".

Proof (due to Delsarte and Piret 1985). With each subset of X associate its
incidence vector, and look at these vectors as elements of the n-dimensional

S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. 197
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vector space Fy. Let U and V' be the sets of incidence vectors of A and B,
respectively. Fix a vector vo € V and let Vp := {vg+v : v € V'}. Moreover,
let U’ and V{ be the subspaces spanned by U and Vj, respectively. Then

JA[-1B] = [U| - [V| = U] - [Vol < |U"| - [Vg] < 28 &dm¥o 0 (14.1)

The key point is that (in F2) (u,w) =0 for all w € U and w € V. This (with
w =g + v, v € V) follows from the fact that (u,v) is exactly the parity of
points in the intersection of the corresponding sets, and from our assumption
that all these intersections have the same parity: (u, w) = (u,vo) + (u, v) = 0.
Therefore, by Proposition 13.2, we obtain that dimU’ < n — dimVj.
Putting this estimate in (14.1) we get the desired upper bound |A|-|B| < 2".
O

The same holds also with “even” replaced by “odd.” In this case the bound
is slightly better: |A] - |B| < 277! (see Exercise 14.1).

14.2 Balanced pairs

Given a family Ay,..., A, of distinct sets, a balanced pair in it is a pair of
disjoint non-empty subsets of indices I, J C [m] such that

U Az = U Aj and m A, = n A]‘. (142)

iel jeJ iel jeJ

Theorem 14.2 (Lindstrom 1993). Fvery family of m > n+2 distinct subsets
of an n-element set contains a balanced pair.

Proof. With each subset A of {1, ..., n} we can associate the incidence vector
v = (T1,Y1,%2,Y2, .., Tn,Yn) of the pair (A, A) in the usual way: z; = 1 iff
i € A, and y; := 1 — x;. These vectors belong to the vector space V' (over R)
of all vectors v for which 1 + y1 =+ = &, + Yn-

Claim 14.3. The dimension of V is n + 1.

To prove the claim, observe that for any vector v = (z1, y1, T2, Y2, - - -, Tn, Yn)
in V, the knowledge of n+1 coordinates x1, . .., ., y1 is enough to reconstruct
the whole vector v; namely y; = z1 + y1 — x;. So, our space V is the set of
solutions v € R?" of the system of linear equations M - v = 0, where M is
the (n — 1) X (2n) matrix

117-1-1 0 O0--- 0 O
1170 0-1-1--- 0 O

110 0 0 0---—-1-1
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By Proposition 13.3, dimV = 2n —rk(M) = 2n — (n — 1) = n+ 1, as desired.
Now let v; = (vi1,...,vi2n) be the vector corresponding to the i-th set
A;, 1 =1,...,m. By the assumption, the vectors vy, ...,v,, are distinct and
all belong to the subspace V. Since m > n+ 2 > n+ 1 = dim V, there must
be a nontrivial linear relation between these vectors, which we can write as

d Jaivi = By,
iel jed

where I and J are non-empty, I NJ = 0, and «;,3; > 0 for all ¢ € I and
7 € J. When interpreted in combinatorial terms, the equality means that the
sets of nonzero coordinates of the vectors on both sides must be the same,
implying that Uje;A; = UjesA; and Uier A; = Uje]A_j. Using the identity
AUB = AN B, the last equality is equivalent to Nie;A; = NjesA;. O

With a similar argument one can prove the following useful fact.

Proposition 14.4. Among any n + 2 distinct vectors in R™ there must be
two whose scalar product is non-negative.

Proof. Suppose v1,...,vn42 € R™, but (v;,v;) < 0 for all i # j. Let v; :=
(vi, 1), that is, append a 1 to each vector. Since the number n + 2 of these
vectors exceeds the dimension n 4 1 of the vector space R**! they lie in, the
vectors must be linearly dependent. Choose coefficients «;, not all zero, so
that Zl a;U; = 0. In other words, the «; satisfy

n+2 n+2

Zaivizo and Zaizo.
i=1 i=1

Since the «; are not all zero, some of them are positive and some are negative.
Let
P={i: a;>0} and N={i: a; <0}.

Note that P and N are disjoint and both nonempty. Consider the vector
Y= Zaivi = Z —QV; .
icP JEN
Then
0<(y,y) = (Zawi) (Z —Oéﬂfj) =D > —aiay(vi,vy).
i€P JEN i€P jEN

But the right-hand side is < 0, because —a;a; > 0 and (v;,v;) < 0, a
contradiction. O
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14.3 Hadamard matrices

A Hadamard matrix is a square n x n matrix H with entries in {—1,+1}
and with row vectors mutually orthogonal over the reals (and hence with
column vectors mutually orthogonal). Such matrices have many interesting
properties and arise in many applications.

Lemma 14.5 (Lindsey’s Lemma). The absolute value of the sum of all en-
tries in any a X b submatriz of an n x n Hadamard matrix does not exceed

vabn.

Proof (due to Babai, Frankl and Simon 1986). Let H be an n x n Hadamard
matrix, and A one of its a x b submatrices. Assume for simplicity that A
consists of its first @ rows and b columns. Let o be the sum of all entries of
A. We want to prove that a < vabn.

Let v1,...,v, be the first a rows of H, and y = > 7, v;. If we take the
vector = (1°0"7?), then o? = (x,y)? < ||=||?||y||* = b ||y||*>. On the other
hand, the conditions (v;,v;) = n and (v;,v;) = 0 for all ¢ # j imply that
lyll* = szﬂ(m,vj) = > (vi,v;) = an. Thus, a? < b - ||y||* = abn, as
desired. O

Another interesting property of every Hadamard matrix is that each of its
k x n submatrices maps each(!) nonzero vector z € R¥ to a vector with at
least n/k nonzero entries.

Lemma 14.6 (Alon 1990a). Every non-trivial linear combination of any k
rows of a Hadamard matriz has at least n/k nonzero entries.

Proof. Let A be a k x n submatrix of an n x n Hadamard matrix with

rows a' = (a1,...,0im), i = 1,...,k. Let y = T A for some nonzero vector
r=(x1,...,2;) in R* S ={i: y; #0} and s = |S|. We have to show that
s>n/k.
Assume, without loss of generality, that |z1] = maxi<;<g |2;|. Since the
vectors a', ..., a* are mutually orthogonal, we have
k k k ok _
kxin > fon = Z(xiaz,xid} = <inal,zxial> =(v,y)
i=1 i=1 i=1 i=1
n 1 1 2
=S =k = () (S wt) = (S ml)
Jj=1 JES jES jES jE€S

where the last inequality follows from the Cauchy—Schwarz inequality (13.3).
On the other hand, since a' is orthogonal to all the vectors a?,. .., a"

)
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n n n k
Z ly;| > Zyjalj = Z inaijalj
j=1 j=1 j=1i=1
k
S
i=1

Substituting this estimate into the previous one we obtain s > n/k, as desired.
O

n

k
Zaijalj = Zaji<ai,al> =x1(a",a") =21 -n.
i=1

i
J=1

If H is an n x n Hadamard matrix, then H" H = nl,, where I, is the n xn
identity matrix. Hence, all n eigenvalues of H' H are equal to n, implying
that H has spectral norm ||H|| = y/n. Combining this with Proposition 13.6,
we can show that all large enough submatrices of H have large rank over the
reals.

Lemma 14.7. Let H be an n X n Hadamard matriz, and A one of its a X b
submatrices. Then tk(A) > ab/n.

Proof. Since A is a submatrix of H, we have that ||A]| < |H||. So, by Propo-
sition 13.6, we obtain

)
ST
IS
S

JAIz _ Al
rk(A) > > ,
@232 2 17E = w

where the last equality follows because || A||% is precisely the number of entries
in A. O

We can always reduce the rank of a real-valued matrix by changing some
of its entries. The rigidity of a matrix M is a function Ry;(r) equal to the
minimum number of entries of M that one needs to change in order to reduce
the rank to r or less.

Matrix rigidity is an important measure in boolean circuit complexity. In
particular, an explicit boolean n xn matrix M having rigidity Ry (en) > n'*?
over [Fo for some constants €,§ > 0 would give us the first super-linear lower
bound on log-depth linear circuits computing the linear transformation y =
Mz. This was shown by Valiant (1977).

Due to its importance, the rigidity of Hadamard matrices merits particular
attention. For an n x n Hadamard matrix H, Pudldk, Razborov, and Savicky
(1988) proved that Rg(r) > n?/r3logr. It can be also shown that Alon’s
lemma yields Ry (r) > n?/r? (Exercise 14.6). Kashin and Razborov (1998)
improved this to Ry (r) > n?/256r. De Wolf (2006) later re-derived this
bound using a spectral argument, with a better constant.

Theorem 14.8. Let H be an n x n Hadamard matriz. If r < n/2 then
Ry (r) > n?/4r.
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The condition r < n/2 is important here. If H is symmetric then its
eigenvalues are all +4/n, so we can reduce the rank to n/2 by adding or
subtracting the diagonal matrix \/nl,. This shows that Ry (n/2) < n.

Proof (due to Ronald de Wolf 2006). Let R be the minimum number of
changes that brought the rank of H down to r. By a simple averaging ar-
gument, we can find 2r rows of H that contain a total of at most 2rR/n
changes. If n < 2rR/n, then R > n2/2r and we are done. Hence, we can
assume that n — 2rR/n > 0. Consider the n — 2rR/n columns that contain
no changes in the above set of rows. We thus get a 2r x (n—2rR/n) submatrix
B that contains no changes and hence is a submatrix of H. By definition of
R, this submatrix must have rank at most r. Applying Lemma 14.7, we get
r > 1k(B) > 2r(n—2rR/n)/n. Rearranging this inequality, we get R > n?/4r.

O

We can multiply any rows and columns of a Hadamard matrix by —1 to
obtain other Hadamard matrices. In particular, starting from an arbitrary
Hadamard matrix, we can reduce it to the form where the first row or the
first column (or both) consist entirely of 1s. In this case the matrix is called
normalized. Such matrices have additional structural properties.

Theorem 14.9. If H is a Hadamard matriz of order n and its first row
consists entirely of 1s, then every other row has n/2 positive and n/2 negative
entries. If n > 2 then any two rows other than the first have exactly n/4 1s
mn common.

Proof. The first statement immediately follows from the fact that the scalar
product of any row with the first row is 0.

To prove the second statement, let v and v be two rows other than the
first, and let a (resp. b) be the number of places where they both have 1s
(resp. —1s). Because u has the same number n/2 of 1s and —1s, we get the
following picture:

v +1+1...+41 +1+1...+41 -1-1...—-1 —-1-1...-1
v +1+1...41 -1-1...—-1 +1+1...4+41 -1-1...-1
a n/2—a n/2—1>b b

Since the total number of +1’s in v is n/2, we have a + (n/2 — b) = n/2,
and hence, a = b. The orthogonality of u and v then implies that a — (n/2 —
a)—(n/2—=0)+b=0,ie., that a = n/4. O

Let H be a Hadamard matrix of order n. Take all the rows of H and —H,
and change all —1’s to 0. This way we obtain a set of 2n binary vectors of
length n called the Hadamard code C,.

Theorem 14.10. Every two codewords in C,, differ in at least n/2 coordi-
nates.
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Proof. Take any x,y € Cy,, © # y. If these two vectors have been obtained
from the i-th rows of H and —H respectively, then they disagree in all n
coordinates. Otherwise, there are two different rows u and v in H such that
x is obtained (by changing —1s to 0s) from u or —u, and y from v or —v. In all
cases, z and y differ in n/2 coordinates, because +u and +v are orthogonal.

O

Hadamard matrices can also be used to construct combinatorial designs
with good parameters. Recall that a (v,k,\) design is a k-uniform family of
subsets (also called blocks) of a v-element set such that every pair of distinct
points is contained in exactly A of these subsets; if the number of blocks is the
same as the number v of points, then the design is symmetric (see Chap. 12).

By Theorem 14.9, we have that, if there is a Hadamard matrix of order n,
then n = 2 or n is divisible by 4. It is conjectured that Hadamard matrices
exist for all orders that are divisible by 4.

Theorem 14.11. Fvery Hadamard matrixz of order 4n gives a symmetric
(4n—1,2n—1,n — 1) design.

Proof. Let H be a Hadamard matrix of order 4n, and assume that it is
normalized, i.e., the first row and the first column consist entirely of 1s. Form
a (4n —1) x (4n — 1) 0-1 matrix M by deleting the first column and the first
row in H, and changing —1s to 0s. This is the incidence matrix of a symmetric
(4n —1,2n — 1,n — 1) design, because by Theorem 14.9, each row of M has
2n—1 ones and any two columns of M have exactly n—1 ones in common. O

14.4 Matrix rank and Ramsey graphs

A matrix A = (as;) is lower co-triangular if a; = 0 and a;; # 0 for all
1 < j < i < n. That is, such a matrix has zeroes on the diagonal and nonzero
entries below the diagonal; the entries above the diagonal may be arbitrary.

Lemma 14.12. Let p be a prime number, and A an n xXn lower co-triangular
matriz over F, of rank r. Then

9
"= <r+p1 >+1§(7‘+p)”‘1~
b

Proof. Let r = rkg,(A) and A = B - C be the corresponding decomposition
of A. For i = 1,...,n consider the polynomials fi(x) = 1 — g;(z)?~! in r
variables = (z1,...,z,) over F,, where g;(z) is the scalar product of x with
the i-th row of B. Let ¢1,..., ¢, be the columns of C. Then g;(¢;) = 0 and
9i(cj) # 0 for every ¢ > j. Since p is a prime, Fermat’s Little Theorem (see
Exercise 1.15) implies that a?~! =1 for every a # 0 in F,,. Hence, f;(c;) #0
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and g;(c;) = 0 for every ¢ > j. By Lemma 13.11, the polynomials fi,..., fn
are linear independent elements of a vector space V of all polynomials over
F, of degree p — 1, all of whose monomials []}_, z}* satisfy S°/_, t; =p — 1
and t; > 0. By Proposition 1.5, the number of such monomials is (H(ﬁj)_l).
Since the polynomials can also have a constant term (which accounts for the
“4+1” in the final equation), we have that
. r+p—2 1

n<d1mV<<p_1 >+1<(r+p)p . O

Let R be a ring and A = (a;;) an n X n matrix with entries from R. The
rank rkp(A) of A over R is defined as the minimum number r for which there
exists an n X r matrix B and an r X n matrix C over R such that A = B-C;
if all entries of A are zeroes then rkr(A) = 0. If R = F is a field, then rkr(A)
is the usual rank over F, that is, the largest number of linear independent
rOwWs.

By Lemma 14.12, lower co-triangular matrices over R = Z,, have large
rank, if m is a prime number. But what about R = Z,, for non-prime m, say,
for m = 67 In this case R is no longer a field—it is just a ring (division is not
defined). Still one can extend the notion of rank also to rings.

Let R be a ring and A = (a;;) an n X n matrix with entries from R. The
rank rkp(A) of A over R is defined as the minimum number r for which there
exists an n X r matrix B and an r x n matrix C over R such that A = B-C;
if all entries of A are zeroes then rkg(A) = 0. If R = F is a field, then rkr(A)
is the usual rank over F, that is, the largest number of linear independent
rOwWs.

It turns out that explicit low rank matrices over the ring R = Zg of integers
modulo 6 would give us explicit graphs with good Ramsey properties, that
is, graphs without any large clique or large independent set.

Let A = (a;;) be an n x n lower co-triangular matrix over Zg. Associate
with A the graph G4 = (V, E) with V = {1,...,n}, where two vertices i > j
are adjacent iff a;; is odd.

Lemma 14.13 (Grolmusz 2000). If r = rkg, (A) then the graph G 4 contains

neither a clique on r + 2 vertices nor an independent set of size (T'gl) + 2.

Proof. Tt is clear that rkg,(A) < r for p € {2,3}. Let S C V be a clique in
Ga of size |S| = s, and B = (b;;) be the corresponding s X s submatrix of
A; hence, b;; = 0 and b;; € {1,3,5} for all ¢ > j. Then B mod 2 is a lower
co-triangular matrix over Fa, and Lemma 14.12 (with p = 2) implies that
|S| <r+1.

Now let T'C V be an independent set in G 4 of size |T'| = ¢, and C' = (¢;5)
be the corresponding ¢ x ¢t submatrix of A; hence, ¢;; = 0 and ¢;; € {2,4}
for all ¢ > j. Then C'mod 3 is a lower co-triangular matrix over F3, and
Lemma 14.12 (with p = 3) implies that [T'| < ("3') + 1. O
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In Sect. 13.7 (Theorem 13.15) we have shown how to construct explicit
n-vertex graphs with no clique or independent set larger than

t= 2cvlnnlnlnn

for an absolute constant ¢. Grolmusz (2000) constructed a co-triangular n x n
matrix A over R = Zg with rkg, (A) < ¢. Together with Lemma 14.13, this
gives an alternative construction of a graph G4 with no clique or independent
set larger than t.

14.5 Lower bounds for boolean formulas

Boolean formulas (or De Morgan formulas) are defined inductively as follows:

- Every boolean variable z; and its negation T; is a formula of size 1 (these
formulas are called leaves).

- If I} and F5 are formulas of size [; and Iy, then both Fy A Fy and Fy V Fs
are formulas of size I; + 5.

Note that the size of F' is exactly the number of leaves in F.

Often one uses an equivalent definition of a formula as a circuit with And,
Or, and Not gates, whose underlying graph is a tree. That is, now negation is
allowed not only at the leaves. But using De Morgan rules =(zVy) = ~zA-y
and =(zAy) = —zV-y one can move all negations to leaves without increasing
the formula size.

Given a boolean function f, how it can be shown that it is hard, i.e., that
it cannot be computed by a formula of small size? Easy counting shows that
almost all boolean functions in n variables require formulas of size exponential
in n. Still, for a concrete boolean function f, the largest remains the lower
bound n3~°(1) proved by Hastad (1993).

The main difficulty here is that we allow negated variables T; as leaves.
It is therefore natural to look at what happens if we forbid this and require
that our formulas are monotone in that they do not have negated leaves. Of
course, not every boolean function f(z1,...,2,) can be computed by such
a formula — the function itself must be also monotone: if f(x1,...,z,) =1
and z; < y; for all ¢, then f(y1,...,y») = 1. Under this restriction progress
is substantial: we are able to prove that some explicit monotone functions
require monotone formulas of super-polynomial size.

14.5.1 Reduction to set-covering

Let A and B be two disjoint subsets of {0, 1}™. A boolean formula F separates
Aand Bif F(a)=1for all a € A and F(b) =0 for all b € B. A rectangle is
a subset R C A x B of the form R=5 xT for some S C Aand T C B. A
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rectangle is monochromatic if there exist an € € {0,1} and a position i € [n]
such that a; = eand b; =1 —e for all a € S and b € T. That is, the rectangle
R = 5 xT is monochromatic if S and T" can be separated by a single variable
x; or by its negation T;. If we have a stronger condition that a; = 1 and
bi=0foralla € S and b € T (i.e. if we do not allow negations ;) then the
rectangle is monotone monochromatic.

The following simple lemma reduces the (computational) problem of prov-
ing a lower bound on the size of a formulas separating a pair A, B to a
(combinatorial) problem of proving a lower bound on the number of mutually
disjoint rectangles covering the Cartesian product A x B.

Lemma 14.14 (Rychkov 1985). If A and B can be separated by a (monotone)
formula of size t then the set A x B can be covered by t mutually disjoint
(monotone) monochromatic rectangles.

Proof. Let I be an optimal formula which separates the pair A, B, i.e., A C
F~1(1) and B C F~1(0). Let t = size(F). We argue by induction on ¢.

Base case. If size(F') = 1 then F is just a single variable z; or its negation.
In that case the Cartesian product A x B is a monochromatic rectangle itself,
and we are done.

Induction step. Assume that the theorem holds for all formulas smaller
than F, and suppose that F' = F; A Fy (the case F = F; V F» is similar).
Let ¢; = size(F;), hence t = t1 + to. Define By := {b € B : Fi(b) = 0} and
By := B\ By. Notice that F; separates A and B; for i = 1,2. Applying the
induction hypothesis to the subformula F; yields that the product A x B;
can be covered by ¢; mutually disjoint monochromatic rectangles, for both
1 =1,2. Since A x By and A x By form a partition of A x B, we have that
the set A x B can be covered by t; 4+ to = ¢t monochromatic rectangles, as
desired. O

We can use Rychkov’s lemma to derive the well-known lower bound due to
Khrapchenko (1971). Given two disjoint subsets A and B of {0,1}", define
the set

A® B={(a,b) : a€ Aand b€ B and a ~ b},

where a ~ b means that inputs a and b differ on exactly one bit. Intuitively, if
A® B is large, then every formula separating A and B should be large, since
the formula must distinguish many pairs of adjacent inputs. Just how large
the formulas must be says the following theorem. Viewing A ® B as the set
of edges of a bipartite graph with parts A and B, it states that the size of
any formula separating A and B must be at least the product of the average
degrees of these two parts.

Theorem 14.15 (Khrapchenko 1971). Fvery formula separating a pair of
non-empty disjoint subsets A, B C {0, 1}"™ must have size at least

|A® BJ?

Al 1B]
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Proof. The main property of the set A ® B is accumulated in the following

Claim 14.16. No monochromatic s x t rectangle can cover more than Vst
elements of A ® B.

To prove the claim, let S x T be a monochromatic s x t subrectangle
of A x B. Since the rectangle is monochromatic, each element of S differs
from each element in T in one particular position j, whereas (a,b) is in
A ® B only if a and b differ in exactly one position. Hence, for any given
a € S, the only possible b € T for which a ~ b is one which differs from
a exactly in position j. As a result, we have that S x T can cover at most
min{|S|,|T|} = min{s, ¢} < /st entries of A ® B.

Now suppose we have a decomposition of A x B into » monochromatic
rectangles of dimensions s; Xt;, 7 = 1,...,r. Let ¢; be the number of elements
of A ® B in the i-th of these rectangles. By Claim 14.16, we know that
¢? < a;b;. Since the rectangles are disjoint and cover the whole rectangle
A x B, we also have that [A® B| = >._;¢ and |A x B| = YI_; a;b;.
Applying the Cauchy—Schwarz inequality (3 x;y;)? < (3-22) - (3. y?) with
x; = ¢; and y; = 1, we obtain

T

2 r T
|A®B|2:(Zci) Sch?Sr-Zaibi:r~|AxB|. O
i=1 i=1

i=1

Khrapchenko’s theorem can be used to show that some explicit boolean
functions require formulas of quadratic size. Consider, for example, the parity
function f =21 @ --- @ x,,. Taking A = f~!(1) and B = f~'(0) we see that
|A ® B| = n|A| = n|B|, and hence, f requires formulas of size at least n2.

Unfortunately, this (quadratic) lower bound is the best that we can achieve
using this theorem (Exercise 14.12).

14.5.2 The rank lower bound

In order to apply Ryckov’s lemma, we must be able to show that, for some
explicit disjoint subsets A, B C {0,1}", the rectangle A x B cannot be de-
composed into few disjoint monochromatic rectangles. In general, this is a
very difficult task: no explicit pair A, B requiring, say, n® monochromatic
rectangles is known.

Fortunately, in the monotone case—when rectangles in a decomposition
are required to be monotone—the situation is much better: here we can prove
even super-polynomial lower bounds of the form n?(°€™)  And this can be
done using rank arguments.

Fix an arbitrary field F. Given a monotone boolean function f, we can
associate with every pair of subsets A C f=1(1) and B C f~1(0) a matrix
M:AxB —F.If RC AXx B is a set of its entries, then we denote by
Mp, the matrix which is obtained from the matrix M by changing to 0 all its
entries outside R. Define
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rk(M)

HM) = maxp rk(Mpg)

(14.3)

where the maximum is over all monotone monochromatic rectangles R C
A x B. For a monotone boolean function f, let u(f) be the maximum of
(M) over all pairs A, B separated by f and all matrices M : A x B — F.

Lemma 14.17 (Razborov 1990). Any monotone formula computing a monotone
boolean function f must have size at least u(f).

Proof. Suppose that f can be computed by a monotone formula of size t.
Take an arbitrary pair A, B of sets separated by f, and an arbitrary matrix
M : A x B — F. By Rychkov’s lemma we know that the rectangle A x B
can be covered by at most ¢ mutually disjoint monotone monochromatic
rectangles Ri,...,R;. Let M; = Mp, be the matrix corresponding to R;.
Since the rectangles are mutually disjoint, we have that M = 22:1 M;. The
sub-additivity of the rank (see (13.1)) implies that

rk(M) = rk( 3 Mi) < 3 rk(M;) < t- maxtk(M;). 0
=1

= i=1

It is clear that Lemma 14.17 also holds for non-monotone formulas if we
allow non-monotone monochromatic rectangles. However, Razborov (1992)
has proved that in this case the result is useless: for any boolean function f
in n variables, the fraction on the right-hand side of (14.3) does not exceed
O(n). Fortunately, in the monotone case, Lemma 14.17 can give non-trivial
lower bounds.

Let us consider bipartite graphs G = (V1, V5, E) with V1] = |Va| = n.
With any such graph we can associate a monotone boolean function fg \ as
follows. The function has 2n variables, one for each node of G, and accepts
a set of nodes X C V3 U V4 if and only if X contains some subset S C V; of
size at most k, together with the set of its common neighbors

N(S):={jeVa: (i,j) € Eforalliec S}

That is, fg k is the Or of all Zf:o (") monomials /\iGSUN(S) x; where S C V3

and |S| < k. By N(S) we will denote the set of all common non-neighbors of
S, that is, o
N(S):={jeVa: (i,j) € Efornoiec S}

By its definition, every function fg, can be computed by a monotone for-
mula of size at most 2n Zf:o (") It turns out that, for graphs satisfying

the isolated neighbor condition (Zsee Definition 10.18), this trivial formula is
almost optimal.
Recall that a bipartite graph G = (V1, Vi, E) satisfies the isolated neighbor

condition for k if for any two disjoint subsets S, T" C Vi such that |S|+|T| = k,
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there is a node v € V5 which is a common neighbor of all the nodes in S and
is isolated from all the nodes in T', i.e., if N(S)NN(T) # 0.

Lemma 14.18 (G4l 1998). If G satisfies the isolated neighbor condition for
2k, then the function fgr does not have a monotone DeMorgan formula of

size smaller than Zf:o M.

Proof. Associate with each subset S C Vi of |S| < k vertices the following
two vectors ag and bg in {0,1}?™

as(i) =1 if and only if i € SUN(S)

and o
bs(i) =0 if and only if i € SUN(S).

Let A denote the set of all vectors ag, and B the set of all vectors bg where
S ranges over all subsets of V; of size at most k.

By the definition of the function f = fg , we have that f(x) = 1 if and
only if z > ag for some S. Hence, f(a) = 1 for all a € A. We claim that
f(b) = 0 for all b € B. To show this, we use the fact that the graph G
satisfies the isolated neighbor condition for 2k. This condition implies that,
for any two subsets S,T C V; of size at most k,

SNT =0 if and only if N(S)NN(T) # 0. (14.4)

Now take an arbitrary vector by in B. To show that f(bp) = 0, it is enough
to show that, for every ag € A there is a position ¢ such that br(i) = 0 and
as(i) = 1. If SNT # 0 then every position ¢ in the intersection S N T has
this property. If S NT = () then (14.4) implies that N(S) N N(T) # 0, and
again, every position 7 in the intersection N(S) N N(T') has this property.

Thus, we have shown that the function f separates the pair A, B. Now
define the matrix M : A x B — Fs by

Mlag,br] =1if and only if SNT = 0.

This is a disjointness matrix D(n, k), considered in Sect. 13.4, and we already
know (see Theorem 13.10) that it has full rank over Fy:

rkp, (M) = Xk: (7;)

=0

Thus, by Lemma 14.17, it remains to show that rky,(R) < 1 for every
monotone monochromatic rectangle R C A x B.

Since R is monotone monochromatic, there must exist a position ¢ such
that vs(i) = 1 and up(i) = 0 for all (vg,vr) € R. If i € V; then the
corresponding entry of the intersection matrix M is 0 because then SNT # ;
if i € V5 then this entry is 1 because then N(S) N N(T) # 0, and by (14.4),
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SNT = (). Thus, depending on whether ¢ € V; or i € Vs, the matrix My is
either the all-0 matrix or a matrix consisting of 1s in all entries in R and 0s
elsewhere; in this last case, Mg is a matrix of rank 1. a

Explicit bipartite graphs, satisfying the isolated neighbor condition for
k = f2(logn) are known. Such are, for example, Paley graphs G,, constructed
in Sect. 10.6. By Lemma 14.18, the corresponding boolean function fg,
requires monotone formula of size at least (}) = n®(e™),

Exercises

14.1. Let A and B be families of subsets of an n-element set with the property
that |AN B| is odd for all A € A and B € B. Prove that then |A|-|B] < 2"~
Hint: Replace A in the proof of Theorem 14.1 by a larger set A = A U Ap where
Ao ={uo+u : u€ A} for some fixed up € A. Show that AN Ag = 0, and argue as in
that proof with A instead of A.

14.2. Define the matrices Ho,,, m = 1,2,4,8, ..., inductively as follows:

11 H, Hpn
H2:<1—1)’ HQm:(Hm—Hm>‘

Show that these matrices are Hadamard.

14.3. (Due to Gatis Midrijanis) Let H,, be a matrix from the previous exer-
cise. Give a direct proof that its rigidity is Ry, (r) > n?/4rforall1l <r < n/2.
Hint: Divide H, uniformly into (n/2r)? submatrices of size 2r x 2r, and observe that
each of them is +=Ho,.

14.4. Let n = 2™. The n x n Sylvester £1-matrix S,, = (s;,) by labeling the
rows and columns by m-bit vectors x,y € F3' and letting s,y = (—1)(@w),
where the scalar product is over Fs. Show that S, is a Hadamard matrix.

14.5. Show that Alon’s lemma (Lemma 14.6) is sharp, at least whenever k
divides n and there exists a k x k Hadamard matrix H. Hint: Take n/k copies
of H.

14.6. Use Lemma 14.6 to show that if ¢ > (1 — 1/r)n, then every r x t
sub-matrix H' of an n x n Hadamard matrix H has rank r (over the reals).

14.7. Take an n X n matrix over some field F and suppose that all of its rows
are different. Prove the following: if some column is linearly dependent on
the others then after the deletion of this column, all the rows in the resulting
n by n — 1 matrix are still different.
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14.8. (Babai-Frankl 1992). Give a linear algebra proof of Bondy’s theorem
(Theorem 11.1): In any n x n 0-1 matrix M with all rows being different,
there is a column, after deletion of which the resulting n by n — 1 matrix still
has no equal rows. Hint: Consider two cases depending on what is the determinant
of M. If det(M) = 0 then some column is linearly dependent on the others, and we are
in the situation of the previous exercise. If det(M) # 0 then take a row v; of M with
the minimal number of 1s, and expand the determinant by this row. Conclude that for
some j, the term v;; - det M;; # 0, where M;; is the (n—1) by (n — 1) minor obtained by
deleting the i-th row and the j-th column. Hence, v;; = 1 and no two rows of the minor
are identical. Use this to prove that deleting the j-th column from the whole matrix M
leaves no equal rows.

14.9.For n > 1, d > 0, n = d mod 2, let K(n,d) denote the minimal cardi-
nality of a family V' of £1 vectors of length n, such that for any +1 vector w
of length n, there is a v € V such that the value of the scalar product (v, w)
(over the reals) lies between —d and d. Prove that:

(i) K(n,0) < n (Knuth 1986). Hint: Consider +1 vectors vo,v1, ..., v, of length n,
where the i-th vector v; has first ¢ coordinates equal to —1 and the rest equal to
+1; hence, vo has no —1’s at all whereas v, consists entirely of —1’s. Observe that

(w,v0) = —(w, vn), while (w,v;) = (w,vi+1) £2 for each ¢ =0,1,...,n — 1.
(ii) K(n,d) < [n/(d+1)] (Alon et al. 1988). Hint: Consider the same vec-
tors as before, and select only the vectors u; := vj.(g+1)+1 for j = 0,1,...,7;

r = [n/(d+1)] — 1. Observe that for any +1 vector w and any j, 0 < j < 7,
(w,uj) = (w,uj+1) £ (2d+2). Note: Alon et al. (1988) have also proved that
this upper bound is tight.

14.10. (Alon et al. 1988). Let V be the set of all 1 vectors of length n.
A vector is even if it has an even number of —1’s, otherwise it is odd. Let
f(z1,...,2,) be a multilinear polynomial of degree less than n/2 over the

reals, i.e.,
f = E ag H L,

|S|<n/2 €S

where ag € R. Suppose that f(v) = 0 for every even vector v € V. Prove
that then f = 0, i.e., ag = 0 for all S. Does the same hold if f(v) = 0 for
every odd vector v € V7 Hint: By the hypothesis, for every even subset T C N we

have
Y as(-nirT =

|Sl<n/2

It thus suffices (why?) to show that the rows of the matrix
A= {(—l)ISﬁTI ¢ |T| even and |S| < n/2}

are linearly independent (over the reals). For this, show that the matrix M = AT A has
non-zero determinant. The (S1, S2)-th entry of M is the sum

Z(_l)lslﬂTl"'ISzﬂTl _ Z(_1)|(51 S2)nT|
T

T
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over all even T. If S; = S2, then this sum is LI [ # Sz, then 0 < [S1 @ S2| < m;
use this to show that in this case the sum is 0.

14.11. Let n = 2m+1, and consider the majority function MAJ, (z1,. .., Zy),
which outputs 1 iff z1 + ...+ z, > m + 1. The best known upper bound
O(n*57) for the formula size of MAJ,, is due to Valiant. Use Khrapchenko’s
theorem to show that this function requires formulas of size £2(n?). Hint: Take
A={a: la]=m+1} and B={b : |b| =m}.

14.12. Show that Khrapchenko’s theorem cannot yield larger than quadratic
lower bounds. Hint: Each vector in {0,1}" has only n neighbors.

14.13. Research problem: It is not known if the converse of Rychkov’s lemma
(Lemma 14.14) holds. Suppose that A x B can be covered by t mutually
disjoint rectangles. Does there then exist a formula which separates A, B and
has size at most t¢ for some absolute constant c¢?

14.14. Let V C F% be a linear space and y € F4 be a vector. Assume that
y & VL. Show that then v -y = 0 for precisely one-half of the vectors v in V.
Hint: Split V into Vp and Vi according to whether v-y = 0 or v-y = 1. Take x € V such
that = -y = 1; hence, € V1. Show that then x + Vo C Vi, z + V1 C Vo, |z + Vo| = |Vo|
and |z + V1| = |V4|.

14.15. The general disjointness matriz D, is a 2™ x 2™ 0-1 matrix whose rows
and columns are labeled by the subsets of an n-element set, and the (A, B)-th
entry is 1 if and only if AN B = (). Prove that this matrix has full rank, i.e.,
that rk(D,,) = 2™. Hint: Use the induction on n together with the following recursive

construction of D,,:
_ 11 _ Dn—l Dn—l
D1<10>7 Dn<Dn_l 0 )

14.16. The intersection matriz Q,, is a (2" — 1) x (2™ — 1) 0-1 matrix whose
rows and columns are labeled by the non-empty subsets of an n-element set,
and the (A, B)-th entry is 1 if and only if A N B # (). Prove that this matrix
also has full rank over any field. Hint: If we subtract D,, from the all-1 matrix I,
then we get a matrix @, with one additional null column and row. Combine this fact
with (13.1) and the previous exercise.



15. Eigenvalues and Graph Expansion

A very important class of sparse graphs consists of expander graphs. Among
other things, they are the model for a good network. They are also used to
derandomize algorithms as well as to construct good error-correcting codes.
Basically, an expander has the property that every subset of its vertices has
a large set of neighbors. This particularly implies that any pair of vertices is
connected by a short path.

In general, it is difficult to decide whether a given graph is a good ex-
pander: One must test whether all subsets of vertices have many neighbors.
Fortunately, linear algebra can help us in this situation. Namely, it turns out
that a graph is a good expander if it has large spectral gap, that is, if the dif-
ference between the first and the second largest eigenvalues of its adjacency
matrix is large.

15.1 Expander graphs

For a graph G = (V,E) and a vertex u € V, let I'(u) denote the set of
neighbors of w, that is, the set of all vertices adjacent to u. For a subset
S C V, its neighborhood is defined as the set

I'(S)={veV\S: visadjacent to some vertex u € S}

of all proper neighbors of S.

An (n,d, c)-expander is a d-regular graph G = (V, FE) on n vertices such
that every subset S C V with |S| < n/2 is connected by edges of G to at
least ¢|S| vertices outside the set S, that is,

|'(S)] > ¢|S| for all S C V with |S| < n/2.

The smaller the degree d and the larger the expansion constant ¢ > 0 is, the
better the expander we have.
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To see that a small degree expander makes a good network, suppose we
want to route a message from a vertex x to another vertex y in an (n,d, c)-
expander G. Every vertex has degree d. By the property of an expander,
there are at least (1 + d)(1 4 ¢) vertices at distance < 2 from z. Working
outwards from there, there will be at least (14 d)(1+c)* vertices at distance
< k+1 from x. We can continue expanding from z until the reachable set
V.. of vertices has |V,| > n/2 vertices. The vertex y may not be among them.
But if we expand from y in the same way, we eventually obtain a set V, of
|Vy| > n/2 vertices reachable from y. Since both sets V, and V,, have more
than n/2 vertices, they must overlap. The overlap contains vertices on a path
from z to y.

In this way, we have shown that any two vertices z and y are connected
by a path of length at most 2(k 4 1), as long as

n
k>log . 20 +d)
If ¢ > 0 is a constant, then any two vertices are connected by a path of length
logarithmic in the total number n of vertices.

15.2 Spectral gap and the expansion

The basic question about expanders is: If A is the adjacency matrix of a
graph G, what properties of A ensure that G is a good expander? All graphs
considered in this chapter are undirected. Recall that the adjacency matrix
of a graph G on vertices {1,2,...,n} is an n x n 0-1 matrix A = (a;;) with
a;; = 1 iff ¢ and j are adjacent in G. Note that A is symmetric, that is,
A5 = Qg for all Z,j

Of course, there is a trivial combinatorial property of A ensuring that G
is an (n, d, c¢)-expander: For every subset S C [n] of |S| < n/2 rows, at least
¢|S| columns outside S must have at least one 1 in these rows. This answer
is, however, not satisfactory because the property must hold for all subsets S
and it is difficult to test all these 2(") possibilities. What we would like to
have is an algebraic condition on A ensuring good expansion of G. It turns
out that this property is captured by the two largest eigenvalues of A.

By eigenvalues of a graph G = ([n], F) we will mean the eigenvalues A\; >
A2 > ... > A, of its adjacency matrix A = (a;;) with a;; = 1 iff ¢ and j
are adjacent in G. Since A has zeroes on the diagonal, its trace is equal to 0.
Hence, we always have that A\ +--- 4+ A\, = 0.

Ezample 15.1. The complete graph K, has an adjacency matrix equal to
A =J—1I, where J is the all-1 matrix and [ is the identity matrix. The rank
of J is 1, i.e. there is one nonzero eigenvalue equal to n, with an eigenvector
1=(1,1,...,,1). All the remaining eigenvalues are 0. Subtracting the identity
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shifts all eigenvalues by —1, because Az = (J — I)x = Jx — x. Therefore the
eigenvalues of K, are \y =n—land A\ =... =\, = —1

If G is d-regular, then 1 = (1,1, ...,1) is an eigenvector. We get A1 = d1,
and hence d is an eigenvalue. It is easy to show that no eigenvalue can be
larger than d (see Exercises 15.7 and 15.8).

Interestingly, already the difference d — Ay (known as the spectral gap) be-
tween the degree d of a d-regular graph and its second-largest eigenvalue Ao
gives us a lot of information about the expansion properties of the correspond-
ing graphs. The larger this difference is, the better expansion properties the
graph has.

For two not necessarily disjoint subsets S,T C V of vertices, let e(S,T)
denote the number of edges of G with one endpoint in .S and the other in 7.
If SNT =0, then 0 < e(S,T) < |S|-|T|. In this case, (S, T) is the number of
“crossing edges” between the sets S and T'. Also, let e(S) denote the number
of edges, both endpoints of which lie in S.

Lemma 15.2 (Expander Crossing Lemma). Let G = (V, E) be a d-regular
graph on n vertices V.= {1,...,n}, and let X\ = Ay be the second largest
eigenvalue of its adjacency matriz A. Then, for every partition V. =SUT,

¢(S,T) > w. (15.1)
Proof. By Lemma 13.5, we know that A = A9 is the maximum of the Rayleigh
quotient 2" Az /||x||? over all vectors x such that (x,1) = 0. So, to get a lower
bound on A we can plug any vector L 1 into the Rayleigh quotient. For this
purpose, we take the following vector z related to our partition V= SUT.
Let s = |S| and t = |T| = n—s. We can assume w.l.o.g. that S = {1,2,...,s}
and T = {s+1,...,n}. Consider the vector z = (x1,...,2,) with z; = —t
for i € S and x; = s for i € T. That is,

|S| times |T| times
x=(—t,—t,...,—t,5,8,...,9).
Then
(z,1) = Z(—t) + Zs =s(—t)+ts=0
i€s €T
Also
z]|* = (z,z) = Z:(—lf)2 + 252 = st? +ts? = st(s +t) = stn.
€S €T
By (13.7),
T Az < M|z||? = Astn. (15.2)

Our goal now is to show that 2" Az = stdn — e(S,T)n?, from which the
desired lower bound on e(S,T) follows.
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Letting I'(7) denote the set of all neighbors of vertex i, we have

TAx—Zln( Z xj)—Q Z Tikj

JEL () {i,j}€E
=2t% . e(S) + 257 - e(T) — 2st - (S, T). (15.3)

To eliminate e(S) and e(T'), observe that the sum of degrees } , g d; of
vertices in S is equal to d|S| = ds, since the graph is d-regular, and is equal
to 2e(S) +e(S,T), since each edge with both endpoints in S is counted twice.
This gives 2e(S) = ds — e(S,T). Similarly, 2e(T") = dt — e(S, T'). Substituting
this in (15.3) we obtain

" Az = (ds — e(S, T))t? + (dt — e(S,T))s> — 2st - (S, T)
= (dst® 4 dts®) — (s* + 2st +t?) - e(S,T)
= std(s + t) (s+1)%-¢e(S,T)
= stdn —n?-e(S,T).

Together with (15.2), this implies

e(S,T) > )\stn—zstdn _ (d— )\)st. -
n n

In particular, this lemma implies that if A < d, then for any partition of
the vertices, there is a “crossing edge” going from one part to another. That
is, A < d implies that the graph is connected. In fact, the converse holds as
well.

Proposition 15.3. A d-reqular graph with second-largest eigenvalue Ao is
connected if and only if Ao < d.

Proof. Let G be connected and d-regular. Suppose on the contrary that there
is a vector z € R™, x # 0 such that (x,1) = 0 and Az = dz. Let x; be the
smallest and z; the largest entry of z. Since (x,1) = 0 and = # 0, we have that
z; < 0and z; > 0. Take ¢ := —1/x; and consider the vector y := 1+cx. Then
y > 0. Moreover, y; =14+cx; =1—-1=0andy; =1+cx; =1—x;/z; > 1.
But

Ay = Al + cAx = d1 + cdx = dy,

and hence, Aly = dty for all t. In particular,
AT, Uyr + -+ Ay dly; + -+ Aiynlyn, = dy; = 0.

Together with y > 0 and y; > 0, this implies that A*[i, j] = 0 for any ¢, that
is, there is no walk joining ¢ and j, a contradiction with the connectedness
of G. a
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An important consequence of the Expander Crossing Lemma is that every
d-regular graph whose second-largest eigenvalue is strictly smaller than d, is
a good enough expander.

Theorem 15.4. If A = )y is the second-largest eigenvalue of the incidence
matriz of a d-reqular graph G on n wvertices, then G is an (n,d, c)-expander

for c=(d—\)/2d.

Proof. Let S be a subset of |\S| < n/2 vertices, and let I'(S) be the set of all
neighbors of S in the complement S of S. An edge can lie between S and S
only if one its endpoint belongs to S and the other to I'(S). Since every vertex
in I'(S) has at most d neighbors in S, this implies that e(S,S) < d|I'(S)|.
Together with Lemma 15.2 this implies

(d = V)|8|(n —|S])  d—A

>
(8)| 2 > =,

where the last inequality follows since n — |[S| > n/2. O

For not necessarily disjoint subsets of vertices S and T, we have a slightly
worse lower bound on e(S,T).

Lemma 15.5 (Expander Mixing Lemma). If G is a d-regular graph on n
vertices and A = )Xo is the second-largest eigenvalue of its adjacency matriz
then, for every two subsets S and T of vertices,

es.1) - WL < 3 s

The left-hand side measures the deviation between two quantities: one is
e(S,T), the number of edges between the two sets; the other is the expected
number of edges between S and T in a random graph of edge density d/n,
namely d|S||T|/n. A small A (or large spectral gap) implies that this deviation
(or discrepancy as it is sometimes called) is small, so the graph behaves like
a random graph in this sense!

Proof. Let \y > Ay > ... > )\, be the eigenvalues of the adjacency matrix A

of G, and let z',..., 2" be the corresponding orthonormal basis; here z! is

Ln times the all-1 vector 1. Let vg and vy be the characteristic vectors of S
and T'. Expand these two vectors as linear combinations

n n
vg = g a;x* and v = E b;x"
i=1 i=1

of the basis vectors. Since the 2° are orthonormal eigenvectors,

e(S,T) = ngvT = (zn:aixi>TA<zn: bixi> = z”: Aia;b; . (15.4)
i=1 i=1 i=1
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Since the graph G is d-regular, we have A\; = d. The first two coefficients a;
and b; are scalar products of z! = ﬁl with vg and vr; hence, a; = |S|//n
and by = |T'|/+/n. Thus, the first term Aja;b; in the sum (15.4) is precisely
d|S||T|/n. Since A = Ay is the second largest eigenvalue, the absolute value of
the sum of the remaining n—1 terms in this sum does not exceed A >"7"_, |a;b;|

which, by the Cauchy—Schwarz inequality, does not exceed

Allall - 18] = Allvs]| - llor]l = Av/1S] - [T O

There are several explicit constructions of constant degree expanders with
a constant expansion factor ¢ > 0. We mention just two of them:

1. Vertices are pairs of integers z € Z,, = {0,1,...,m — 1}, and each vertex
(x,y) is connected to four vertices (z+y,v), (x —y,y), (z,y+v), (z,z—y),
where all operations are modulo m.

2. Vertices are elements of the field Z, (for p a prime number), and every
vertex x # 0 is connected to three vertices 4+ 1,2 — 1,271, where again,
x £ 1 is computed modulo p and ™! is the multiplicative inverse of x in
Z,. The vertex = 0 is connected to 0, 1 and p — 1.

15.2.1 Ramanujan graphs

The second-largest-eigenvalue A of d-regular graphs lies roughly between v/d
and d. More precisely, it is known that the second eigenvalue is always at
least 24/d — 1—0(1). Graphs achieving this lower bound are called Ramanujan
graphs. That is, a Ramanugjan graph is a d-regular graph whose second-largest
eigenvalue A\ satisfies A < 2v/d — 1.

Example 15.1 shows that the complete graph K,, is a Ramanujan graph
for any n. The problem, however is, that K, has huge degree. In applications
we need an explicit sequence G, n = 1,2,... of graphs such that infinitely
many of them have some (fixed) constant degree d and are Ramanujan (or
“nearly” Ramanujan) graphs.

Explicit constructions of (p + 1)-regular Ramanujan graphs on n vertices
for every prime p = 1 mod 4 and infinitely many values of n were given
in Margulis (1973), Lubotzky, Phillips and Sarnak (1988); these were later
extended to the case where p is an arbitrary prime power in Morgenstern
(1994) and Jordan and Livné (1997).

Most important in these (rather non-trivial) constructions is that the de-
gree p—+ 1 of constructed n-vertex graphs is constant, it does not grow with n.
On the other hand, Ramanujan n-vertex graphs of degree about /n can be
constructed quite easily.

In Sect. 2.2 we described explicit n-vertex graphs with no 4-cycles and
almost maximal number 2(n/2) of edges (see Exercise 2.5). Now we will
show that these graphs are Ramanujan graphs. Later, in Sect. 25.4, we will
combine this fact with the expander mixing lemma to prove an important
result in extremal number theory about sum-product sets.
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Let n = p(p — 1), where p is a prime number. The vertices of our graph G
are pairs (a,b) of elements of a finite field Z, with a # 0, and two vertices
(a,b) and (¢, d) are joined by an edge iff ac = b+ d (all operations modulo p).
We have already shown that this graph is (p—1)-regular, that is, every vertex
has p—1 incident edges (some edges may be loops). We have also shown that
any two vertices (a,b) and (¢, d) have

(i) no common neighbor, if a = ¢ or b = d;
(ii) exactly one common neighbor, if a # ¢ and b # d.

Now we will show that, for any prime number p > 5, the graph G is
a Ramanujan graph. Let A\ = A(G) be the second-largest eigenvalue of the
adjacency matrix of G.

Lemma 15.6. |A| < /3p.

Proof. Let M be the adjacency matrix of G. The (u,v)-entry of M? is the
number of walks from u to v of length 2. If u = v, this number is the degree
p — 1, while if u # v, with u = (a,b) and v = (¢, d), then properties (i) and
(ii) tell us that this number is 1 if @ # ¢ and b # d, and is 0 otherwise. It
follows that

M?*=J+(p-2)I—-F, (15.5)

where J is the all-1 matrix, I is the identity matrix, and E is the “error
matrix,” the adjacency matrix of the graph G whose vertex set is the same
as that of G, and in which two vertices (a,b) and (¢, d) are connected by an
edge if a = cor b =d. It is easy to see that Gg is a (2p — 3)-regular graph.

Since G is regular and its adjacency matrix M is symmetric, we know
that the all-1 vector is an eigenvector of M and all other eigenvectors are
orthogonal to it. It is easy to check that G is connected and not bipartite, so
that the eigenvalue p — 1 has multiplicity 1, and for any other eigenvalue 6
we have |0] <p—1.

Given such an eigenvalue 0, let x be a corresponding eigenvector. Then by
equation (15.5),

0?z = (p — 2)z — Ex,

since Jx is the all-0 vector. Therefore p — 2 — 62 is an eigenvalue of E.
Now, the degree 2p — 3 of G g is an upper bound on the absolute value of
every eigenvalue of E (see Exercise 15.8). It follows that

p—2—0>>—-2p+3

which implies 0| < 1/3p, as desired. 0
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15.3 Expanders and derandomization

Random algorithms use random bits (results of coin-flips) during the compu-
tation and are allowed to produce a wrong answer with some small probability.
Such algorithms are usually much faster than known deterministic algorithms.
But we must pay for this: we must expect errors and it is time consuming to
produce random bits. It turns out that expander graphs can help to decrease
the error-probability as well as to reduce the number of required random bits.

Suppose we have a boolean function f : {0,1}"™ — {0,1} and a probabilis-
tic polynomial time algorithm A that approximates f in the sense that, for
random r € {0,1}™ we have:

Pr, [A(z,r) # f(z)] < for every z € {0, 1}". (15.6)

> =

We could reduce the error to 4~ by running the algorithm 2¢ + 1 times and
taking the majority of its outputs as the result. But this requires (2t + 1)m
coin tosses. We want to reduce errors while using a small number of coin
tosses. (A general procedure, when we reduce the number of random bits by
modifying a probabilistic algorithm, is called derandomization.)

Take a d-regular graph G = (V| E) on |V| = 2™ vertices, and let A = Ay
be the second-largest eigenvalue of its adjacency matrix. Let us consider the
following algorithm B that uses only m coin tosses. For a given input z, it
picks a vertex v € V uniformly at random, and outputs

B(z,v) := Majority,, ¢ p¢,y Az, v) .

Claim 15.7. For every x € {0,1}",

A\ 2
Pr, (B £ f) <4(5) -

Proof. Fix an input z. Let S = {v € V: B(z,v) # f(z)} be the set of

vertices on which B errs, and T = {v € V: A(z,v) # f(z)} be the set of

vertices on which A errs. Observe that every vertex u € S must be adjacent

to at least d/2 vertices v € T, implying that e(S,T) > d|S|/2. Moreover,
|T| <|V|/4=n/4, by (15.6). The Expander Mixing Lemma yields:

e(S,T) — d|S| < M8 T
%S' < XV/|S|n/4

from which
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Pr, [B(x,v) # f(@)] = | < 4(3)

follows. a

So, taking Ramanujan graphs the error probability can be reduced to
4(2/+/d)? without any increase of the number of random bits!

We will present yet another application of expander graphs to reduce the
number of random bits in Sect. 23.3. More applications of expanders as well
as their constructions can be found in a beautiful survey paper by Hoory,
Linial and Wigderson (2006).

Exercises

15.1 (Unique neighbors). Let G = (V, E) and S C V. A unique neighbor of S
is a vertex in I'(S) connected by an edge to only one vertex in S. Suppose that
G is an (n,d, c)-expander. Show that then every subset S of size |S| < n/2
has at least (¢ — d/2)|S| unique neighbors. Hint: Let T C I'(S) be the set of
non-unique neighbors and count the number of edges between S and 7" in two ways.

15.2. Let A be a square symmetric matrix, and A one of its eigenvalues. Show
that, for every integer k > 1, A\¥ is an eigenvalue of A*.

15.3. Let G be a d-regular graph on n vertices, and A its adjacency matrix.
Let A1 > Ay > ... > A, be the eigenvalues of A. Show that the eigenvalues of
the adjacency matrix of the complement graph G are n — 1 —d and —1 — \;
for s = 2, ..., n. Hint: The adjacency matrix of G is J —I — A. If vector  is orthogonal
to 1, then Jx = 0.

15.4. Let G be a bipartite d-regular graph on n vertices, and A its adjacency

matrix. Show that —d is also an eigenvalue of A. Hint: If G is bipartite with parts
of size p and ¢ with p + ¢ = n, then

=[5 3]

for a p X ¢ matrix B. Take the vector

z=(1,...,1,-1,...,—1).
—— ———
P q
15.5. Let d > 1 be a constant, and A be the adjacency matrix of a d-regular
graph on n vertices. Let Ay > Ay > ... > ), be the eigenvalues of A; hence,
A1 = d. Let A = max;; [\;|. Show that A\ > (1 — o(1))v/d as n — oo. Hint:
Use the fact that A1 + ...+ \n is the trace of A to estimate the trace of A2.

15.6. Let A be a square 0-1 matrix with exactly d ones in each row and in
each column. Show that then 2T Az < d holds for every vector x € R” with
||33H = 1. Hint: The Birkhoff-Von Neumann theorem and Exercise 13.21.
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15.7. Let G be a graph, and A its adjacency matrix. Let § be the average
degree and A the maximum degree of G. Let A\p,q; be the largest eigenvalue
of A. Show that § < Apax < A. Hint: Let A = Anas, take a vector z with Az = Az
and give an upper bound on |A| max; |z;|. For the lower bound apply Theorem 13.5 with

rz=1.

15.8. Use the previous exercise to show that A\; = d is the largest eigenvalue
of the adjacency matrix of every d-regular graph.

15.9. Show that a scalar A is an eigenvalue for A with eigenvector z if and
only if |27 Az| = || Az|| - ||z]|.

15.10. Let A = (a;;) be an upper triangular matrix, that is, a;; = 0 for
all i > j. Show that then the diagonal elements a1, a9s,...,a,, are the
eigenvalues of A. Hint: Recall that eigenvalues of A are the roots of the characteristic
polynomial p4(z) = det (A — zI) of A, where I is a unit matrix with 1s on the diagonal,

and Os elsewhere.

15.11. Let A be a symmetric n X n 0-1 matrix with 1s on the diagonal, and
let |A| be the total number of 1-entries in A. Show that then rk(A) > n?/|A].
Hint: Consider the trace of A2, and recall that rk(A) is the number of (not necessarily

distinct) nonzero eigenvalues of A.

15.12. Let A be a real n X n matrix with eigenvalues A1,..., A, and corre-
sponding eigenvectors 21, ..., z,. Let I C [n] be such that all eigenvalues \;
with ¢ € I are distinct.

1. Show that the vectors x; with ¢ € I are linearly independent.

2. Let A be symmetric. Show that the eigenvectors corresponding to different
eigenvalues are mutually orthogonal, that is, (z;,z;) = 0 for all i # j € I.
Hint: Show that y Ax =x Ay holds for all vectors z, y.

15.13. Let G = (X UY, E) be the point-line incidence graph of the projective
plane PG(2,q) (see Sect. 12.4). That is, vertices in X correspond to points,
vertices in Y to lines of PG(2,¢), and a point z is joined to a line y by an
edge iff x € y. The graph has |X| = |Y| = n := ¢®> + ¢ + 1 vertices on each
side, and each vertex has degree ¢ + 1. The most important property of this
graph is that it contains no copies of K3 o, that is, it contains no cycle on four
vertices. Show that every subset S C X has at least (1 — ¢/|S|)n neighbors
in Y. Hint: Corradi’s lemma, Lemma 2.1).



16. The Polynomial Method

This method is based on various extensions of the following basic fact about
univariate (single-variable) polynomials —known as the “factor theorem”—to
the case of multivariate polynomials, that is, polynomials on many variables:

(i) Every nonzero polynomial of degree d has at most d roots.
(ii) For every set S of points there exists a nonzero polynomial f of degree
at most |S| such that f(x) =0 for all x € S.

Thus, to obtain an upper bound on the size of a given set S, it is enough
to exhibit a nonzero low-degree polynomial that vanishes on S; conversely,
to lower bound the size of S, it is enough to show that the only low-degree
polynomial that vanishes on S is the zero polynomial.

16.1 DeMillo-Lipton—Schwartz—Zippel lemma

Let @1, ..., x, be variables. A monomial of degree t is a product z}{' % - - - xin

with integers ¢; > 0 such that t; + t2 + --- + ¢, = t. Hence, constant 1 is
the only monomial of degree 0. For a fixed field F, let F[zy,...,x,] denote
the ring of all multivariate polynomials over F. Each such polynomial is a
linear combination of monomials with coefficients taken from FF. The degree,
deg(f), of f is the maximum degree among its monomials with a nonzero
coefficient. A (multivariate) polynomial is homogeneous if all its monomials
with nonzero coefficients have the same degree. A polynomial f vanishes on
a subset E C F" if f(x) = 0 for all x € E. A point x € F" with f(z) =0
is a root of f. A polynomial f(x) is the zero polynomial if all its coefficients
are 0.

The following lemma extends the second claim (ii) of the factor theorem
to multivariate polynomials.

Lemma 16.1. Given a set E C F" of size |E| < (”;d), there exists a nonzero
polynomial f € Flay,...,x,] of degree at most d that vanishes on E.
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Proof. Let Vy be the vector space of polynomials in F[z1,. .., z,] of degree at
most d. It is not difficult to show (see Exercise 13.22) that V; has dimension
(”:d). On the other hand, the vector space F¥ of all functions g : £ — F has
dimension |E| < ("}9). Hence the evaluation map f — (f(a))sep from Vj to
F¥ is non-injective. So, at least two polynomials f; and f, in Vy are mapped
to the same string in F¥. But then the polynomial f = f; — f belongs to Vy

and is mapped to the all-0 string, meaning that f vanishes on E. a

The first claim (i) of the factor theorem can be also extended to the case of
multivariate polynomials by analyzing the behavior of polynomials on lines.

Lemma 16.2. Fvery nonzero polynomial f(x1,...,x,) of degree d over a
finite field with q elements has at most dg™ ' roots.

Proof (due to Dvir 2009 and Moshkovitz 2010). Let us assumen > 2,1 < d <
q, where ¢ = |F|. The proof is by reduction to the case n = 1. Write f = g+h,
where ¢ is homogeneous of degree d, and h contains only monomials of degree
strictly smaller than d. Since f is a nonzero polynomial, g(w) # 0 for some
w € F" w # 0. Associate with each vector u € F™ the line

L,={u+tw:teF}

in direction w through . Then L, N L, = 0 as long as v & L,. Since w #
0, each line L, contains |L,| = ¢ points. Hence, we can partition F™ into
q"/q = ¢" ! lines. It remains therefore to show that the number of zeros of
f on each of the lines L, is at most d.

To show this, observe that, for every u € F™, the function p,(t) = f(u+tw)
is a univariate polynomial in ¢ of degree at most d. Moreover, this polynomial
is not identically zero, because the coefficient of t? in p,,(t) is g(w) # 0. Thus,
pu(t) can have at most d roots, implying that the polynomial f can vanish on
at most d points of the line L,, Since we have only ¢"~! lines in a partition
of F™, the total number of roots of f cannot exceed dg¢™ !, as claimed. O

A more general result was proved by DeMillo and Lipton (1978), Zip-
pel (1979) and Schwartz (1980). The lemma bounds the probability that a
nonzero multivariate polynomial will have roots at randomly selected test
points.

Lemma 16.3 (DeMillo-Lipton—Schwartz—Zippel lemma). For every set S C
F of |S| > d field elements, every nonzero polynomial f € Flay, ..., x,] of
degree d can have at most d|S|"~! roots in S™.

Proof. Suppose that f is a nonzero polynomial. We proceed by induction on
n, the number of variables of f. The statement is true for n = 1 since the
number of roots of f does not exceed its degree. Now let n > 2 and arrange
f according to the powers of x,:

f=fo+ fizn+ f222 + -+ fral,



16.1 DeMillo-Lipton—Schwartz—Zippel lemma 225

where fo, ..., f; are polynomials of the n — 1 variables z1, ..., z,_1, the term
ft is not identically 0, and ¢ < d. Our goal is to estimate for how many of
the points (a,b) € S"~ ! x S, f(a,b) = 0. We distinguish between two cases:

Case 1. fi(a) = 0. Since f; is nonzero and has total degree < d —t, we have
by the induction hypothesis, that it can vanish on at most (d — t)|S|" 2
points in S"~!. Therefore, in this case, there are at most (d — t)|S|"*
points (a,b) € S"~! x S for which f(a,b) =0 and fi(a) = 0.

Case 2. fi(a) # 0. For every (fixed) point a € S"~! for which f;(a) # 0,
the polynomial f(a,z,) is a polynomial in one variable of degree ¢, and
it is not identically zero. Therefore it has at most ¢ roots. Since there are
at most |S|"~! such points a, the number of points (a,b) € S"~* x S for
which f(a,b) =0 and fi(a) # 0, does not exceed ¢ - |S|" 1.

Thus, there are at most (d—t)|S|"~1+¢-|S|"~! = d-|S|"~! points (a,b) € S™
for which f(a,b) =0. O

The DeMillo-Lipton—Schwartz—Zippel lemma can be used to design effi-
cient randomized algorithms, that is, algorithms that are allowed to flip a
coin during their computation.

The fundamental question of identity testing is: given a polynomial f of
degree d on n variables, how hard is it to tell whether or not the polynomial
is identically equal to zero? Note that we can only evaluate the polynomial
at points of our choice, and do not have access to the coefficients of the
polynomial. It is not hard to see that a deterministic algorithm that can only
evaluate the polynomial, could need as many as (d + 1) points in total.

The basic idea of what is known as a randomized algorithm is that we
write random numbers in place of the variables and compute the value of the
polynomial. Now if the value computed is not zero then we know the answer:
f # 0. But what happens if we get zero? Well, we just hit a root of f and
try again. Another root? Try once more. After a number of runs we are tired
and would like to stop and conclude the answer is f = 0. How big will the
error probability of such a decision be?

To answer this question, it is helpful to reformulate Lemma 16.3 in prob-
abilistic terms.

Lemma 16.4. Suppose that f(x1,...,2,) is a nonzero polynomial of degree
d over a field F and S CF is a non-empty subset of the field elements. Then

d

Prif(ri,...,rn) =0] < @,

where r1,...,T, are random elements selected uniformly and independently
from S.

Thus, if we take |S| = 2d elements of the field then, assuming f # 0, the
algorithm will not discover this in one iteration with probability at most 1/2.
With 100 experiments repeated independently of each other, the probability
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that this occurs every time is at most 27190, So, if the algorithm does not
prove that f # 0, we can be pretty certain that actually f = 0. Not 100%
certain, but if we lose the bet, we would know that an experiment that had
only two possible outcomes ended with the one that had probability 27190,
This should compensate for our trouble: we found a needle in a haystack!

As our next example, consider the following situation. We have two friends,
Alice and Bob. Alice maintains a large database of information. Bob main-
tains a second copy of the database. Periodically, they must compare their
databases for consistency. Because the transmission between Alice and Bob
is expensive, they would like to discover the presence of inconsistency with-
out transmitting the entire database between them. Denote Alice’s data by
the sequence a = ag - --a,—1 and Bob’s data by the sequence b = by - - b, _1
where a;,b; € {0, 1}. Tt is clear that any deterministic consistency check that
transmits fewer than n bits will fail (just because an adversary can modify the
unsent bits). Using randomness it is possible to design a strategy that detects
an inconsistency with high probability (at least 1 — n~1) while transmitting
many fewer than n bits, namely only O(logn) bits.

Think of the strings a and b as (strings of coefficients of) univariate polyno-
mials over the field F,, where p is a prime such that n? < p < 2n? (theorems
regarding the density of primes guarantee the existence of such p). That is,
consider polynomials

Alx) =ao+aix+ ...+ 12"t (mod p),
B(z) =bg+biz+ ...+ bp_12""  (mod p).

In order to detect whether a = b, Alice and Bob use the following strategy:

Alice picks uniformly at random a number = in F and sends to Bob the
numbers r and A(r). Bob responds with 1 if A(r) = B(r) and with 0
otherwise. The number of bits transmitted is 1 + 2logp = O(logn).

If a = b then A(r) = B(r) for all r, so the output is always 1. If a # b we
have two distinct polynomials A(z) and B(x) of degree at most n — 1. By
Lemma 16.4, the probability of error is

n—1 mn-1

Pr(A(r) = B(r)] < " = "= <

S|

16.2 Solution of Kakeya’s problem in finite fields

A famous unsolved problem in mathematics is the Kakeya conjecture in geo-
metric measure theory. This conjecture is descended from the following ques-
tion asked in 1917 by Japanese mathematician Soichi Kakeya: What is the
smallest set in the plane in which one can rotate a needle around completely?
He likened this to a samurai turning his lance around in a small toilet. For
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Fig. 16.1 As the middle (flexible) point moves around the smaller circle, the needle
rotates through 360°.

instance, one can rotate a unit needle inside a unit disk, which has area /4.
By using a deltoid one requires only 7/8 area (see Fig. 16.1).

The Kakeya conjecture in more dimensions states that any subset of R™
that contains a unit line segment in every direction has Hausdorff dimension
equal to n. This conjecture remains open in dimensions three and higher, and
gets more difficult as the dimension increases.

To approach this question, Wolff (1999) proposed a simpler finite field
analogue of the Kakeya conjecture. If F” is a vector space over a finite field
F, define a Kakeya set to be a subset K C F™ which contains a line in every
direction, namely for any v € F” there exists a vector w € F" such that the
line {w + tv : t € F} is contained in K; here, vector w is the origin and
vector v the direction of the line. The finite field Kakeya conjecture stated
that there exists a constant ¢ > 0 depending only on the dimension n such
that every Kakeya set K C F" has cardinality |K| > ¢|F|".

This finite field version of the conjecture has had a significant influence
on the subject, in particular inspiring work on the sum-product phenomenon
in finite fields, which has since proved to have many applications in number
theory and computer science. Modulo minor technicalities, the progress on
the finite field Kakeya conjecture was, however, essentially the same as that
of the original “Euclidean” Kakeya conjecture.

Recently Dvir (2009) used a surprisingly simple application of the polyno-
mial method to prove the finite field Kakeya conjecture.

Lemma 16.5. Let f € F[xy,...,x,] be a polynomial of degree at most ¢ — 1
over a finite field with q = |F| elements. If f vanishes on a Kakeya set K,
then f is the zero polynomial.

Proof. The argument is similar to that in the proof of Lemma 16.2. Suppose
for a contradiction that f is nonzero. We can write f = Z?:o fi, where
0 <d < q—1is the degree of f and f; is the i-th homogeneous component;
thus fg; is nonzero. Since f vanishes on K, d cannot be zero. Hence, f; is a
nonzero polynomial.
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Let v € F™ \ {0} be an arbitrary direction. As K is a Kakeya set, K
contains a line {w + tv : t € F} for some w € F™, thus f(w + tv) = 0 for
all t € F. The left-hand side is a polynomial g, (t) in ¢ of degree at most
q — 1, and must be the zero polynomial by the factor theorem, that is, all its
coefficients are zero. In particular, the coefficient of +?, which is fz(v), must
be zero. Since v was arbitrary, it follows that the polynomial f;(z) vanishes
on all points in F”. But since dg" ! < (¢—1)¢" ! < ¢", Lemma 16.2 implies
that f; must be a zero polynomial. O

Theorem 16.6 (Dvir 2009). Let K C F™ be a Kakeya set. Then

K| > |F|+n—1 Zﬂ~
n n!

Proof. Let ¢ = |F| and suppose that |K| < ("ﬁfl). Then, by Lemma 16.1,
there exists a nonzero polynomial f € Flzq,...,z,] of degree at most ¢ — 1
that vanishes on K, which contradicts Lemma 16.5. a

16.3 Combinatorial Nullstellensatz

The following special case of Hilbert’s Nullstellensatz has found numerous
applications in combinatorics.

Theorem 16.7 (Nullstellensatz). Let f € Flxy,...,2,], and let Sy,...,S,
be nonempty subsets of F. If f(x) =0 for all x € S1 x --- x Sy, then there
are polynomials hy, ..., hy € Flzy,...,x,] such that deg(h;) < deg(f) — |S:]

and
n

flze, ... zp) :Zhi(xl,...,xn) H(xi—s).

i=1 s€eS;

Proof (due to Alon 1999). Define d; = |S;| — 1 for all 4, and consider polyno-
mials

d;
gl(xl) = H (371 - 5) = l'?rH — Zaijxg.
sES; j=0

Observe that if z; € S; then g;(x;) = 0, that is,
d; )
ahitt = Zaijxf . (16.1)
=0

Let f be the polynomial obtained by writing f as a linear combination of
monomials and replacing, repeatedly, each occurrence of xf‘ (1 <i<n),
where t; > d;, by a linear combination of smaller powers of xz;, using the
relations (16.1). The resulting polynomial f is clearly of degree at most d; in
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x; for each 1 <4 < n, and is obtained from f by subtracting from it products
of the form h;g;, where deg(h;) < deg(f) — deg(g;) = deg(f) — |Si|- So,

Fl@) = fla) =) hi(x)gi(zi). (16.2)
i=1

Moreover, f(z) = f(z) for all 2 € Sy x - - - x S, since the relations (16.1) hold
for these values of z. Since, by our assumption, f(z) = 0 for all these values,
we obtain that f(x) = 0 for all z € S; x --- x S,, as well, and Exercise 16.5
implies that f(z) = 0 for all z € F™. Together with (16.2), this implies that
[ =" higi, as desired. 0

Using the Nullstellensatz we can derive the following generalization of the
DeMillo-Lipton—Schwartz—Zippel lemma.

Theorem 16.8 (Combinatorial Nullstellensatz). Let f(z1,...,zy) be a poly-
nomial of degree d over a field F. Suppose that the coefficient of the monomial
xil - xfl" in f is nonzero and t1+---+t, =d. If S1,...,S, are finite subsets
of F with |S;| > t; + 1, then there are exists a point x in S1 X --- x S, for
which f(x) # 0.

Proof. We may assume that |S;| = ¢; + 1 for all 4. Suppose the result is
false, and define g;(v;) = [[,cg, (zi — s). Let hi,...,h, be the polynomials
guaranteed by the Nullstellensatz. Hence,

deg(hi) < deg(f) — deg(g:) = deg(f) — (t: +1) (16.3)

and f(z) = > i, hi(x)g;(z;), that is,
f(z) = Z 2l hy(x) + (terms of degree < deg(f)).
i=1
By assumption, the coefficient of []_, xfl on the left-hand side is nonzero,
while it is impossible to have such a monomial on the right-hand side, a
contradiction. O

In a similar vein is the following result.

Theorem 16.9 (Chevalley—Warning). Let p be a prime, and fi1,. .., fm poly-
nomials in Fplxq,...,x,]. If Yo~ deg(fi) < n then the number of common
zeros of fi,..., fm is divisible by p. In particular, if there is one common
zero, then there is another one.

Although this theorem can be derived from the Combinatorial Nullstellen-
satz, we give a slightly more direct proof due to Alon (1995).
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Proof. By Fermat’s Little Theorem (see Exercise 1.15), a?~! = 1 mod p for
all @ € Fp, a # 0. Hence, the number N of common zeros of fi,..., fm
satisfies

N= > JIO-fi@,....2)") . (nF) (16.4)

T1,..,Tn€Fp j=1

By expanding the right-hand side we get a linear combination of monomials
of the form

Hxﬁ with Zti <(p- 1)Zdeg(fj) <(p—1n.
i=1 j=1

i=1
Hence, in each such monomial there is an ¢ with ¢; < p — 1. But then (see
Exercise 16.1)
Z i =0 (inT,),

i EIFP

implying that the contribution of each monomial to the sum (16.4) is 0 mod-
ulo p, completing the proof of the theorem. a

We illustrate the potential applications of the Combinatorial Nullstellen-
satz on several examples.

16.3.1 The permanent lemma

Let A = (a;;) be an n x n matrix over a field F. The permanent Per(A) of
A is the sum

Per(A) = Z a].,’h a‘2,i2 e anﬂ:n

(21,8250 s0n)

of n! products, where (i1,142,...,4,) is a permutation of (1,2,...,n).

Theorem 16.10. If Per(A) # 0, then for any vector b € F™, there is a subset
of columns of A whose sum differs from b in all coordinates.

This is just a special case of the following lemma for all S; = {0,1}.

Lemma 16.11 (Permanent Lemma). Let b € F™ and Si,...,S, be subsets
of F, each of cardinality at least 2. If Per(A) # 0, then there exists a vector
x €51 X -+ xS, such that Az differs from b in all coordinates.

Proof. The polynomial

f=

i

(Z Qi Tj — bi)

n n
=1 j=1
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is of degree n and the coefficient of zixs---x, in it is Per(4) # 0. The
result now follows directly from the Combinatorial Nullstellensatz with all
t; =1. a

16.3.2 Covering cube by affine hyperplanes

An affine hyperplane is a set of vectors H = {x € R": {a,x) = b} with
a € R™ and b € R. How many such hyperplanes do we need to cover {0,1}"?
If we have no further restrictions on the covering, then just two hyperplanes
Hy = {z € R": (e1,z) = 0} and H; = {x € R™: (eg,z) = 1} are enough,
where e; = (1,0,...,0) is the first unit vector. But what if we, say, require
that the all-0 vector 0 remains uncovered? In this case n hyperplanes H; =
{x € R": {e;,z) =1}, =1,...,n are still enough. It turns out that this is
already optimal.

Theorem 16.12. Suppose that the hyperplanes Hy, Ha, ..., Hp, in R™ avoid 0,
but otherwise cover all 2™ — 1 vertices of the cube {0,1}"™. Then m > n.

Proof. As 0 is not con‘pained in H;, we have that each hyperplane is of the
form H; = {x € R": {a’,z) = 1} for some o’ € R"™. Assume that m < n, and
consider the polynomial

m

fla) =10~ (a",2)) = [[(1 =)

=1 i=1

The degree of this polynomial is clearly n (since we assumed that m < n) and
the coefficient at xy---x, is (—1)"T! # 0. When applied with S; = {0,1}
and t; = 1, the Combinatorial Nullstellensatz implies that there must be a
point z € {0,1}" for which f(z) # 0. We have z # 0, as f(0) =1—-1 = 0.
But then (a’,2) = 1 for some i (as = is covered by some H;), implying that
f vanishes at this point, a contradiction. a

16.3.3 Regular subgraphs

A graph is p-regular if all its vertices have degree p. The following sufficient
condition for a graph to contain a regular subgraph was derived by Alon,
Friedland and Kalai (1984) using the Combinatorial Nullstellensatz.

Theorem 16.13. Let G = (V, E) be a graph. Assume that G has no self-loops
but multiple edges are allowed. Let p be a prime number. If G has average
degree bigger than 2p—2 and mazimum degree at most 2p—1, then G contains
a spanning p-reqular subgraph.

Proof. Associate each edge e of G with a variable z. and consider the poly-

nomial
=11 [1 - (Zav,exe)p ] -T2

veV ecE
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over GF(p), where a,. = 1 if v € e and a,. = 0 otherwise. Note that
deg(f) = |E|, since the degree of the first product is at most (p — 1)|V| <
|E|, by the assumption on the average degree 2|E|/|V| of G. Moreover, the
coefficient of [, ze in f is (—1)IEI+1 £ 0.

We can therefore apply the Combinatorial Nullstellensatz with S, = {0,1}
and t. = 1 for all e € F and obtain a (0, 1)-vector x = (z.: e € E) such that
f(x) # 0. Consider the spanning subgraph H consisting of all edges e € F for
which z. = 1. As f(0) = 0, we conclude that  # 0 and H is non-empty. The
second summand in f(x) is therefore zero and it follows from Fermat’s Little
Theorem (Exercise 1.15) that )" payeze = 0modp for every vertex v.
Therefore, in the subgraph H all degrees are divisible by p, and since the
maximum degree is smaller than 2p, all positive degrees are precisely p, as
needed. a

16.3.4 Sum-sets

The Cauchy-Davenport Theorem, which has numerous applications in Addi-
tive Number Theory, is the following. Given two sets A and B of elements of
some field F, their sum-set is the set A+ B={a+b: a € Abe B}.

Theorem 16.14 (Cauchy-Davenport). If p is a prime, and A, B are two
non-empty subsets of Z,, then

A+ B| > min{p, |A] +|B| - 1}.

We will see in Sect. 25.3.1 that this theorem is just a special case of Kneser’s
theorem. Here we show how to derive this theorem from the Combinatorial
Nullstellensatz.

Proof. It |A| 4 |B| > p the result is trivial, since in this case for every = € Z,
the two sets A and z — B intersect, implying that A + B = Z,. Assume,
therefore, that |A| 4+ |B| < p and suppose that |[A + B| < |A| 4+ |B| — 2. Let
C be a subset of Z, satisfying A+ B C C and |C| = |A| + |B| — 2. Define
a polynomial f(x,y) = [[.co(® +y — ¢) and observe that by the definition
of C,

f(a,b) =0 for all (a,b) € A x B. (16.5)

Put t; = |A] — 1, t2 = |B| — 1 and note that the coefficient of 'y in f is
the binomial coeflicient

t1+1t2) |A| +|B| — 2
th ) |A] -1
which is nonzero in Z,, since |A| + |B| — 2 < p (see Exercise 1.14). We can
therefore apply the Combinatorial Nullstellensatz (with n =2, S; = A and

Sy = B) and obtain a poinr (a,b) € Ax B for which f(a,b) # 0, contradicting
(16.5) and completing the proof. O
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The Cauchy—Davenport theorem was extended in many ways. Let us men-
tion one important result in that direction. For a subset A C Z,, and a natural
number 1 < k < |A], let s;(A) be the number of elements b € Z, that can be
represented as a sum b = aj + - - 4+ a of k distinct elements of A.

Theorem 16.15 (Dias da Silva and Hamidoune 1994). If p is a prime then,
for every subset A C Z, and every 1 < k < |A|,

sp(A) > min{p, k|A] — k* 4+ 1}.

16.3.5 Zero-sum sets

Using the pigeonhole principle, one can show that any sequence aq,...,a, of
n integers contains a non-empty consecutive subsequence a;, . . ., @+, whose
sum is divisible by n.
To show this, make n pigeonholes labeled from 0 up to n —1 and place the
n sequences
(a1), (a1,a2),...,(a1,a2,...,a,)

into the pigeonholes corresponding to the remainder when the sum is divided
by n. If any of these sequences is in the pigeonhole 0 then the sum of its
numbers is divisible by n. If not, then the n sequences are in the other n — 1
pigeonholes. By the pigeonhole principle some two of them, (a1, as,...,a;)
and (a1, as,...,as) with r < s, must lie in the same pigeonhole, meaning that
the sum a,41 + ay42 + - - - + as is divisible by n.

A question of a similar flavor is the following one. Given a natural number
n, what is the smallest N such that any sequence of N integers contains a
subsequence of n (not necessarily consecutive) numbers whose sum is divisible
by n? That is, this time we want to find a subsequence of a given length n.
The sequence 0"~ 11"~ of n — 1 copies of 0 and n — 1 copies of 1 shows that
N > 2n — 1. It turns out that this lower bound is also an upper bound for
the sequence length N.

Theorem 16.16 (Erdés—Ginzburg—Ziv 1961). Any sequence of 2n — 1 inte-
gers contains a subsequence of cardinality n, the sum of whose elements is
divisible by n.

There are several different proofs of this theorem — the interested reader
can find them, as well as some interesting extensions of this result to higher
dimensions, in the paper of Alon and Dubiner (1993). The original proof was
based on the Cauchy—Davenport theorem.

First proof of Theorem 16.16. We will first prove the theorem only for the
case when n = p is a prime number, and then show how the general case
reduces to it.

Let a1 <ao < ... < agp—1 be integers. If a; = a;4p—1 for some ¢ < p —1,
then a; + ait1 + -+ + @iqp—1 = pa; = 0 (in Z,) and the desired result
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follows. Otherwise, define A; := {a;,a;yp—1} fori =1,...,p—1. By repeated
application of the Cauchy-Davenport theorem, we conclude that

[A1 + Az + -+ + Apy| > min{p, [Ay + -+ Ap ] + 1}
> min{p, [Az + -+ Ap_1] + 2}

2 min{p7 ‘Ap—l‘ +p - 2} =P,

and hence, every number from Z, is a sum of precisely p—1 of the first 2p —2
elements of our sequence. In particular, the number —as,_; is such a sum,
supplying the required p-element subset whose sum is 0 in Z,,.

The general case may be proved by induction on the number of primes
in the prime factorization of n. Put n = pm where p is a prime, and let
ai,-...,a2,—1 be the given sequence. By the result for the prime case, each
subset of 2p — 1 members of the sequence contains a p-element subset whose
sum is 0 modulo p. Therefore, we can find pairwise disjoint p-element subsets
Ii,.... Iy of {1,...,2n — 1}, where

Z a; = 0 mod p
JEL

foreachi =1,...,£. Moreover, £ > 2m — 1 since otherwise the number of left
elements would still be 2pm — 1 — (2m — 2)p = 2p — 1, and we could choose
the next subset I;11. Now define a sequence by, ..., bs,,—1 where

=Y Y

JjeL p

(recall that each of these sums is divisible by p). By the induction hypothesis
this new sequence has a subset {b; : i € J} of |J| = m elements whose sum
is divisible by m, and the union of the corresponding sets {a; : j € I;} with
1 € J supplies the desired n-element subset of our original sequence, whose
sum is divisible by n = pm. O

Theorem 16.16 can also be derived using the Chevalley—Warning theorem
about the zeroes of multivariate polynomials (see Theorem 16.9).

Second proof of Theorem 16.16 (Alon 1995). We will prove the theorem only
for a prime n = p; the general case reduces to it (see the first proof of
Theorem 16.16).

Let a1, as,...,a2—1 be integers, and consider the following system of two
polynomials in 2p — 1 variables of degree p — 1 over F:

2p—1 2p—1

-1 -1
E aiz?™ =0, g 270 =0.
=1 =1
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Since 2(p — 1) < 2p—1 and 1 = 22 = -+ = Tg9p—1 = 0 is a common
solution, Theorem 16.9 implies the existence of a nontrivial common solution
(Y1, ..., Y2p—1). Since p is a prime, Fermat’s Little Theorem (see Exercise 1.15)
tells us that P~ = 1 in F,, for every = € Fp, x # 0. So, if we take [ = {i: y; #
0} then the first equation ensures that ), ; a; = 0, while the second ensures
that [I| = 0 mod p, and hence, that |I| = p because |I| < 2p — 1. This
completes the proof of the theorem for prime n. |

Exercises

16.1. Let p > 2 be a prime and consider the field F;,. From Algebra we know
that there is an a € F, such that F,,\ {0} = {a’: i = 0,1,...,p — 2}. Use this
fact together with Fermat’s Little Theorem to prove that, for every t < p — 2,

P, ' =0in Fp. Hint: Y1 2 = ("™ —1)/(z - 1).

16.2 (Low local degree polynomials). Let f be a nonzero polynomial in n
variables over a field F. Suppose that the maximum exponent of each of its
variables in f does not exceed d. (Hence, the degree of f may be up to dn
which makes the bound given by Lemma 16.3 trivial, if |S| < n.) Show that
we still have the following upper bound: For any subset S C F of size |S| > d,

{z e S": f(z) # 0} = (IS] —ad)".

Hint: Argue by induction on n. In the induction step take a point (a1, ...,an) € F” on
which f(a1,...,an) # 0, and consider two polynomials:
fo(w1,...,xn—1) = f(@1,...,Tn—1,an)

fi(zn) == f(a1,...,an—1,Tn).

16.3. Show that the bound in Exercise 16.2 is the best possible. Hint: Consider
the polynomial f(z1,...,z,) = H;izl(ml —q)--- szl(:cn —1i).

16.4. Use Exercise 16.2 to show the following: If S a subset of F that has
d+ 1 elements, then any nonzero polynomial of local degree d has a nonzero
point in S”.

16.5. Prove the following “granulated” version of the result established in
Exercise 16.2. Let f € Flxy,...,z,] be a polynomial, and let ¢; be the maxi-
mum degree of z; in f. Let S; C F with |S;| > ¢;. If f(z) = 0 for all n-tuples
x €81 X -+ xSy, then f(z) =0 for all x € F".

16.6. Let f(x1,...,x,) be a multivariate polynomial over a field F with the
degree sequence (dy,...,d,), which is defined as follows: let d; be the maxi-
mum exponent of z; in f, and let fi(z2, ..., x,) be the coefficient of z{* in f;
then, let d2 be the maximum exponent of x5 in f1, and fa(zs,...,z,) be the
coefficient of gch in f1; and so on. Suppose that f is not the zero polynomial,
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and let Sy, ...,5, C I be arbitrary subsets. For r; € S; chosen independently
and uniformly at random, show that
dy ds dy
Pr(f(ri,...,7n) O]S‘Sl|+|52|+ +|Sn|.

16.7. (R. Freivalds 1977). Suppose that somebody gives us three n x n ma-
trices A, B, C with real entries and claims that C' = A - B. We are too busy
to verify this claim exactly and do the following. We take a random vector
r of length n whose entries are integers chosen uniformly from the interval
{0,1,..., N — 1}, and check whether A - (B -r) = C - r. If this is true we
accept the claim, otherwise we reject it. How large must N be set to make the
probability of false acceptance smaller than 1/1007 Hint: Consider the matrix
X=A-B-—C.If C # A- B then X has a row  # 0. Take a scalar product of this
row with the random vector 7, observe that Pr[X -r =0] < Pr[z-r = 0], and apply
Exercise 16.2.



17. Combinatorics of Codes

In this chapter we will discuss some extremal properties of error-correcting
codes. We will also use expander graphs to construct very easily decodable
codes.

17.1 Error-correcting codes

Error-correcting codes enable one to store or transmit a message in such a
way that one can later recover the message even if it is partially corrupted,
that is, up to some number t of bits are flipped by noise. Messages are strings
of some fixed length k over some alphabet A. In order to be able to recover
corrupted messages, we encode our messages by strings of length n > k over
A (or some other alphabet). That is, we take a particular subset C C A™
(called a code) and assign to each message w its own codeword =z = x,, € C.

During the transmission some bits may be flipped (by noise, by an ad-
versary or whatever). So, the receiver is presented with a corrupted version
x' € A™ of the original codeword z € C. The receiver knows the set of all
codewords C, as well as the encoding algorithm. He also knows that the re-
ceived vector 2’ can differ from the original x codeword in at most ¢ bits.
What conditions must the code C' fulfill in order that we may recover the
original codeword z?

Here the notion of Hamming distance comes into the play. The Hamming
distance dist(x,y) between two strings x and y of the same length is just
the number of positions in which these two strings differ. The minimum
distance, dist(C), of a subset C C A™ is the minimal Hamming distance
dist(C) between any pair of distinct strings in C.

The key observation is that, if dist(C) > 2t + 1, then the receiver can
(at least in principle) reconstruct the original codeword x from the received,
possibly corrupted vector x’. The point is that z is the only codeword in the
Hamming ball By(a') = {y € A™ : dist(2',y) < t} of radius t around the
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corrupted vector z’: were another codeword y € C' also to lie in B;(z") then
we would have that dist(z,y) < dist(z,2’) + dist(z’,y) < 2t, contradicting
dist(C) > 2t + 1.

Thus, the larger dist(C) is, the better, the more errors we can correct.
Another important parameter of codes is their size, that is, the total number
of codewords the sender has in his disposal. The larger |C] is, the better, the
more distinct messages can be encoded.

Of course, if each two codewords must differ in many positions, then we
cannot have many codewords. In particular, we have the following general
upper bound.

Theorem 17.1 (Singleton bound). If C' C A™ and d = dist(C) then
|C‘ < ‘A|n—d+1 )

Proof. Clearly, all codewords in C' are distinct. If we delete the first d — 1
letters of each codeword, then all resulting codewords must still be pairwise
different, since all original codewords in C' have Hamming distance at least
d from each other. Thus the size of the code remains unchanged. The newly
obtained codewords each have length n — (d — 1) = n — d + 1 and thus there
can be at most |A|" "9+ of them. O

We now construct codes achieving this upper bound. These codes were
proposed by Reed and Solomon (1960). Let k < n < ¢, where ¢ is a power of
a prime. As our alphabet we take a field A :=F, with |A| = ¢ elements. Fix
n distinct elements oy, ..., ay of Fy; here we need that ¢ > n. Messages are
strings w = (w1, ..., wy) of elements of F,. We identify each such message
with the polynomial p,(z) = w; + wez + -+ + wiz"~! of degree at most
k — 1 over F,. The codeword of the message w is then the string z,, =
(Pw(), ..., pwl(om)) of the evaluation of the polynomial p,,(z) at all n fixed
points. Let C = {x,, : w € A*} be the resulting code.

Since, by the factor theorem, no two distinct polynomials of degree at most
k —1 can agree on k or more points, we have that dist(C') > n—k+ 1. In this
way we have constructed a code C C A™ of minimum distance d =n —k+ 1
and size |C| = |A]F = |A|n—d+L

Thus, Reed—Solomon codes meet the Singleton bound. The drawback of
these codes is the condition that ¢ > n. The problem is that we need each
coordinate of a codeword to correspond to a distinct element of F,.

There are different ways to reduce the alphabet size. A trivial one is just
to encode all ¢ elements of F, by binary strings of length [log, ¢]. Then one
obtains a binary code C' C {0,1}™ with codeword length n = g[log, ¢], size
|C| > ¢* and minimum distance dist(C) > n — k + 1. Although binary codes
with better parameters are known, the binary Reed—Solomon codes are one of
the most commonly used codes in practical applications. In particular, they
are used to store information, music, and video on compact discs (CDs) and
digital video discs (DVDs).
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Another way to reduce the field size ¢ is to use multivariate polynomials.
In particular, using bivariate polynomials, ¢ only needs to be y/n. For this,
let the message length be k = (/2 + 1)? and look at messages w € IF’; as
(t/2+1)x (t/2+41) matrices w = (w;;) over Fy. Each such message determines
a bivariate polynomial

t/2

puw(y,2) = Y wiy's’

1,7=0

of degree at most t over IF;. The codeword of the message w is then the string
Ty = (pw (,B) : a,B€ Fq) of the values of the polynomial p,, on all points
of F, x F,. Thus we only require that ¢g* > n, instead of ¢ > n. As before, the
resulting code C' = {z,, : w € F¥} has |C| = ¢* codewords. Further, since
the polynomials are of degree at most ¢, the DeMillo-Lipton—Schwartz—Zippel
lemma implies that dist(C) > (1 —t/q)n.

Extending this idea to multivariate polynomials, we arrive at Reed—Muller
codes. In this case we identify messages with polynomials of degree at most
t in m variables 21, ..., z,,. The codeword length in this case is n = ¢™. The
number of codewords is the number of monomials of degree at most ¢ in m
variables which, by Exercise 13.22, is equal to (mt“). Finally, the DeMillo—
Lipton—Schwartz—Zippel lemma implies that dist(C') > (1 — t/q)n.

A binary Reed—Muller code C' C {0,1}" corresponds to the case when
q = 2 and t = 1. That is, messages are multilinear polynomials in m variables
over Fy. In this case we have that |C| = ("F') =m + 1 codewords of length
n = 2™, and the minimum distance is at least n/2. Note that these codes have
exactly the same parameters as Hadamard codes constructed in Sect. 14.3
(see Theorem 14.10).

17.2 Bounds on code size

If the minimum distance d is given, how large can |C| then be? To answer this
question, let Vol(n,r) be the number of vectors in the Hamming ball B,.(0)
of radius r around the all-0 vector. Since this ball consists of all vectors with
at most r ones, we have that

2n-H(r/n)—O(logn) < VO](TL,T) — Z <7’l> < 2"H(T/”) ,
2
=0

where H(z) = —zlogyx — (1 — z)logy(1 — z) is the binary entropy function;
the estimates in terms of this function are proved in Exercises 1.16 and 1.17.

Theorem 17.2 (Gilbert—Varshamov and Hamming bounds). Codes C C
{0,1}™ of minimal distance d and size
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2"7.

Cl>——— 17.1
€l = Vol(n, d) ( )
exist, and for any such code with d > 2t + 1, we have that
Cl< 2 (17.2)
~ Vol(n,t) ’

The lower bound (17.1) is known as the Gilbert—Varshamov bound, and
the upper bound (17.2) as the Hamming bound.

Proof. The lower bound can be obtained by a simple algorithm: Pick any
vector z € {0,1}", include it in C, remove the whole ball B4(z) around this
vector, and do the same in the set of the remaining vectors.

To show the upper bound, let C' C {0,1}" be a code of minimum distance
d > 2t+1. Draw a ball of radius ¢ around each of the vectors in C. If the balls
around some two codewords were to intersect, then the Hamming distance
between these two codewords would be at most 2t < d, a contradiction.
Therefore, the balls are disjoint, and their number is limited by the overall
volume divided by the volume of each ball. a

More upper bounds on the size of codes can be obtained using linear
algebra. For this, we first embed the Hamming spaces (binary cubes) into
Euclidean spaces over the reals. We embed a vector v € {0,1}" as the vector
x, € R™ by changing its coordinates by the rules 0 — +1 and 1 — —1. Thus,
T, is a £1 vector.

The following relations between the Hamming and Euclidean distances are
easy to verify (do this!).

Proposition 17.3. For u,v € {0,1}" with Hamming distance dist(u,v) = d,
we have that (T, x,) =n — 2d, ||z.||* =n and ||z, — 2, ||* = 4d.

Our first goal is to prove a geometric fact: In n dimensions there exist at
most 2n vectors that pairwise subtend an angle of at least 7/2 at the origin
(that is, their pairwise scalar products are < 0).

Lemma 17.4 (Obtuse angles).

(i) Let x1,...,Zm be vectors in R™, and « a positive number. If ||z;|| = 1
and (x;,x;) < —c« for all i # j, thenm <1 +a L

(i) Ify,z1,...,2m € R™ satisfy (x;,x;) <0 for all i # j, while (y,z;) >0
for all i, then m <mn.

(iil) If z1,...,2m € R™ are nonzero and satisfy (x;,x;) < 0 for all i # j,
then m < 2n.

Proof. (i) Let z = x1 + + -+ + Zy,- On the one hand, we have (z,z) > 0. On
the other hand, we have
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(z,2) = Z<$l,$1> + Z (@i, )
i=1 i#j€[m]
<m-l14+mim-1)(—a)
=m(l—a(m-1)).

Putting the two inequalities together, we have 1 — a(m — 1) > 0, implying
m<141/a.

(ii) Assume for the sake of contradiction that m > n + 1. Then there
must exist a linearly dependent set of vectors among the z;’s. Specifically,
there exist disjoint sets S, T C [m] and positive A;, for i € SUT, such that
D oies AiTi = ZjeT Ajzj. It is not necessary that both S and 7' be non-empty,
but at least one, say S, is non-empty. Let 2 = >, g \izi = 3 e Ajz;. Our
analysis divides into two cases depending on whether or not z = 0.

If z # 0, then we obtain a contradiction as follows:

0<(zz2) = <Z)‘ixivz)‘jxj> = ZZAM“@,:@) <o,

€S JET i€S jeT

where the last inequality uses the fact that S and T are disjoint and so
(i, ;) <0foreveryie SandjeT.

If z = 0, then we use the existence of the vector y to obtain a contradiction
as follows:

0= (9.0) = (5,2) = (3, Y N ) = D" Ailywi) > 0.

icS €S

The last inequality is strict since S # (0, A; > 0 and (y,z;) > 0.

(iii) Pick a vector y such that (y,z;) # 0 for all i € [m]. At least half of the
vectors x; must have a positive scalar product with either y or —y. Assume
w.lo.g. that z1,..., %[, 21 have a positive scalar product with y. Applying
part (ii) to these vectors and y, we get [m/2] < n. O

Theorem 17.5 (Plotkin bound). If C C {0,1}" and d = dist(C), then
‘C‘ < d2n72d+2 )

Proof. We first prove the following claim: If d > n/2 then |C| < 2n. Let
c1,...,cm be the codewords of C, and let z1,...,z,, be their &1 versions.
Since d > n/2, Proposition 17.3 implies that (z;,z;) < n —2d < 0 for all
i # 7, and Lemma 17.4(iii) implies that m < 2n, as claimed.

To derive the theorem from this claim, write n = 2d + k. By restricting
C to the most commonly occurring pattern in the first £ coordinates and
deleting these coordinates, we get a set C' C {0,1}2¢ of size |C'| > |C|/2F
and minimum distance d. By the claim we just proved, this implies
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O] < |C']-2F < 2(2d) - 2% < d2k+? = qan—2+2, 0
One of the best upper bounds is the following one.

Theorem 17.6 (Johnson bound). If C C {0,1}"™ and dist(C) > dn then

n2"
Cl< ——2 < o-H(m)n
€] = Vol(n,™m — 1) —

where T = (1 — /1 —2§)/2.

Proof. For a set of strings C' C {0,1}" and a positive integer ¢, let deg,(C)
denote the maximum number of vectors from C' in a Hamming ball of radius
t. If dist(C) > 2t 4 1, then clearly deg,(C) < 1. Hence, the following claim
generalizes the Hamming bound (17.2).

Claim 17.7. For every subset C C {0,1}", and every positive integer t, we
have that
2" . deg,(C)

C| <
€] = Vol(n, t)

Proof of Claim 17.7. If we consider the balls of radius ¢ around the strings
in C, then any string in {0,1}" is considered at most deg,(C) times. Thus
the sum of volumes of these balls is at most 2" - deg,(C'). O

Now let ¢y, ..., ¢y, be the codewords of a code of minimum distance d = dn
that are within a Hamming ball of radius ¢t = 7n — 1 from some string
b € {0,1}™. By the claim above, it is enough to show that m < n.

For i € [m], let z; be the £1 version of ¢; scaled (i.e., multiplied) by
1/4/n, and let y be the +1 version of b scaled by 1/4/n. We scale the vectors
just to achieve ||z;|| = 1 and |ly|| = 1. By Proposition 17.3, we have that
(@i, z;) <1—20 forall i # j, and (y, ;) > 1— 27 for all . Note the syntactic
similarity of these conditions to those in Part (ii) of Lemma 17.4. In fact we
can reduce our problem to exactly this case. We will just shift our origin to a
new vector v := ay so that from this vector, the vectors x; mutually subtend
an angle at least m/2.

Claim 17.8. There exists an 0 < a < 1 such that for v := ay we have that
(x; —v,z; —v) <0 and (z; — v,y —v) > 0 for all i # j.

Together with Lemma 17.4(ii), this claim gives the desired upper bound
m < n. So, it remains to prove the claim.

Proof of Claim 17.8. We will not specify « yet, only that it will lie in the
interval 0 < v < 1. Since (z;,z;) <1 — 26 and (y,z;) > 1 — 27, for such an
« we have that

(i —ay,zj —ay) <1—20 —2a(1 —27) +a® = (1 — a)? + daT — 26.
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The right-hand side is minimized at o := 1 — 27, and for this setting, it
is equal to 47 — 472 — 2§. Since 7 = (1 — /1 —20)/2 (by our choice), we
have that (1 — 27)? = 1 — 2§, which in turn implies 2§ = 1 — (1 — 27)? =
47 — 472, and hence, 47 — 472 — 26 = 0. We conclude that for this setting
(i —ay,z; —ay) <0, as desired. Since (y, z;) > 1 — 27, for the same setting
a =1— 27, we also have that

(2 — ay, (1 - a)y) = (1-a) (@i y) — ol — ) yl* = (1 - )[(zi,y) —a] >0,

which yields the other part of the claim. O

17.3 Linear codes

If C C {0,1}™ forms a linear subspace over Fy, then C' is called a linear code.
Being a linear subspace over Fsy just means that x @y € C for all z,y € C.
It can easily be verified (do this!) that the Reed—Solomon and Reed-Muller
codes we constructed above using polynomials are linear.

If C has dimension k, then |C] = 2¥ and the code C' can be described
using its generator matriz. This is a k X n matrix G whose rows form a basis
of C; hence, C = {u"G : u € F§}. Dually, the parity-check matriz of C is
the generator matrix H of the dual code

Ct={yecFy: (z,y)=0foralzecC}.

That is, H is an (n — k) x n matrix H such that C = {z : Hz = 0}.

A general scenario is then as follows. Messages we want to send to our
friend are vectors u in F5. We encode such a message as a vector z = u' G
and send it. Our friend receives some vector =’ which may differ from z on
up to t bits. He then searches for the unique vector x such that Hx = 0 and
dist(x, ') < t. In fact, it is enough to search for a unique vector a € B¢(0)
for which Ha = Hx'; then x = 2’ & a because H (2’ ® a) = 0. This decoding
procedure is known as syndrome decoding, because a gives us the locations
of the errors.

The first important property of a linear code C' (not shared by arbitrary
codes) is the following fact. By a weight |x| of a vector x we mean the number
of its nonzero coordinates.

Proposition 17.9. Fvery linear code has minimum distance equal to the
minimum weight of its nonzero codewords.

Proof. Let C C {0,1}" be a linear code, and let w(C) be the minimum
weight of a nonzero codeword. Take vectors x # y and z # 0 in C such
that dist(z,y) = dist(C) and |z| = w(C). Then dist(C) = |z ® y| > w(C),
since x @ y belongs to C. On the other hand, we have that w(C) = |z| =
dist(z,0) > dist(C), since vector 0 belongs to C. O
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The next important property of linear codes is that their minimum dis-
tance is related to linear independence of the columns of their parity-check
matrices.

Theorem 17.10. Let C' be a linear code with parity-check matriz H. Then
the minimum distance of C is d if and only if every set of d — 1 columns of
H are linearly independent but some d columns are linearly dependent.

Proof. We already know that the minimum distance of C is equal to the
smallest of the weights of the nonzero codewords. On the other hand, Hx = 0
for a nonzero vector x # 0 means that the columns of H corresponding to
the 1-positions of z are linearly dependent. Thus, if d = dist(C') then some
d columns of H must be linearly dependent (since C' contains a codeword of
weight d), and no d — 1 columns can be linearly dependent, for otherwise C'
would contain a codeword of weight smaller than d. a

This fact can be used to show that linear codes with minimum distance d
and about 2" /n? codewords exist.

Theorem 17.11. A linear code C C {0,1}"™ of dimension k and minimum
distance d exists provided that

di (” . 1) <onk (17.3)

=0

That is, linear codes of size |C| > 2™ /Vol(n — 1,d — 2) exist. This is almost
the same bound as for arbitrary codes given in (17.1).

Proof. We shall construct an (n — k) x n matrix H over Fy with the property
that no d — 1 columns are linearly dependent. Put r = n — k. Choose the
first column of H to be any nonzero r-tuple in F} Then choose the second
column to be any nonzero r-tuple different from the first. Continue choosing
successive columns so that each new column is not a linear combination of
any d — 2 or fewer previous columns. When we come to try to choose the
i-th column, those r-tuples not available to us will be the N (i) = Z?;g (131)
linear combinations of d — 2 or fewer columns from the ¢ — 1 columns already
chosen. Not all of these linear combinations need be distinct vectors, but
even in the worst case, where they are distinct, provided N () is less than
the total number 2" of all r-tuples, then an i-th column can be added to the
matrix. Thus, since (17.3) holds, we will reach a matrix H having n columns,
as required. a

We are not going to sink into different constructions of explicit codes: there
are so many of them. We just mention that so-called BCH codes, constructed
by Bose, Chaudhuri and Hocquenghem, are linear codes with quite good
parameters: for every integers m > 3 and ¢t < 2! there is an explicit linear
code C' C {0,1}™ with n = 2™ — 1, |C| > 2"~ ™ and dist(C') > 2t + 1. See
the book by MacWilliams and Sloane (1977) for more constructions.
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17.4 Universal sets from linear codes

Recall that a set of 0-1 strings A C {0,1}" is (n, k)-universal if, for any
subset S C [n] of |S| = k coordinates, the projection of A onto the indices in
S contains all possible 2¥ configurations.

In Sect. 10.5 we have shown how to construct explicit (n, k)-universal sets
of size about n, when k < (logn)/3. This construction was based on Paley
graphs. Here we will show how to construct such sets of size n?*) for arbitrary
k. The construction is based on some elementary properties of linear codes.

We already know that the minimal distance of C' coincides with the min-
imum weight of (i.e., the number of 1s in) a nonzero vector from C. This
simple property of linear codes implies that their duals are universal.

Proposition 17.12. If C is a linear code of length n and its dual C+ has
minimal distance at least k + 1 then the code itself is (n, k)-universal.

Since a parity-check matrix of C is a generator matrix of C*, an equivalent
condition on C'is that any k columns of its generator matrix must be linearly
independent.

Proof. Take a set S C {1,...,n} with |S| = k. The set of all projections of
vectors in C' onto S forms a linear subspace in {0,1}/5 of dimension k. If
this subspace were proper then, by Proposition 13.2, some nonzero vector x,
whose support {i : x; # 0} lies in S, would belong to C*, implying that
dist(C+) < |S| = k, which contradicts our assumption. O

It is known (see, for example, MacWilliams and Sloane (1977)) that the
dual of a binary BCH code of minimal distance k has only O(nl*/2]) vec-
tors. By Proposition 17.12, these codes give us explicit (n, k)-universal sets
consisting of only so many vectors.

One of the best known explicit constructions of (n, k)-universal sets of
size only 20" logn is due to Alon (1986a). His construction is based on a
Justesen-type code constructed by Friedman (1984).

17.5 Spanning diameter

So far, we have used algebraic properties of linear spaces to derive some
results in combinatorics. But these spaces themselves have some interesting
combinatorial properties as well.

Let A be a set of vectors in {0,1}™ and consider its span over the field Fs.
Each vector in span A is a linear combination of some vectors from A. Some
of these combinations may be short, but some may be long. Given A, we are
interested in the smallest number &k such that every vector from span A is a
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sum (over Fz) of at most k vectors of A; we call this k the spanning diameter
of A.

Of course, the answer depends on how large the span is, compared with
the set itself. It is easy to show that if |A| > |span A|/2, then the spanning
diameter of A is at most 2 (see Exercise 17.3). But what if A is a smaller
fraction of span A, say, an a-fraction for some o > 1/47? It turns out that then
the spanning diameter does not exceed 4. In general, we have the following
upper bound on k.

Theorem 17.13. Let A C {0,1}". If |A| > « - [span A for some 0 < o < 1,
then every vector from span A is a sum of at most k vectors from A, where
k is the maximal number satisfying the inequality

kE—|logy k] —1 <logy(1/a) (17.4)

Theorem 17.13 can be derived from known bounds on the covering radius
of binary linear codes (see, for example, Cohen et al. 1997; Theorem 8.1.21).
Here we present a direct argument due to Pavel Pudldk.

Proof. Take a maximal set of vectors a',a?,...,a” in A such that the vector
v=a'"4+a*+---+ad, (17.5)

cannot be represented as a sum of fewer than &k vectors from A. (Here and
throughout the proof all the sums are over Fa.) Our goal is to show that then
k must satisfy (17.4). Since @ < 1, the cases k = 1 and k = 2 are trivial. So,
assume that k > 3.

We will need a lower bound on the size of distance-3 codes. Such codes can
be obtained by shortening the Hamming code (see, for example, MacWilliams
and Sloane (1977)); Exercise 17.6 sketches a way to do this.

Claim 17.14. There exists a set C C IF’QC such that any two vectors of C'
differ in at least 3 coordinates and log, |C| > k — |log, k| — 1.

Fix such a set C', and let B be the set of all those vectors b from span A
which can be represented in the form b = cia' + coa? + -+ + cpa® for ¢ =
(c1,...,¢k) € C. The key point is that all the translates

b+A:={b+a:acA}
with b € B, are mutually disjoint.

Claim 17.15. For every pair b, b of distinct vectors from B, the sets b+ A
and b’ + A are disjoint.

Proof of Claim 17.15. Suppose not. Then for some a,a’ € A we have b+a =
b +a’, and hence, a +a’ = b+ b'. Let ¢, ¢’ be the vectors from C for which
b=cial + - +cga® and b’ = ¢jat + - + ¢}.a*. Then
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ata =b+b =(c1+c))a' + (ca+ch)a® + -+ (e + cf)a”.
Since vectors ¢ and ¢’ differ in at least three coordinates, we have on the
right-hand side the sum of at least three vectors, say a** + - 4+ a", with
[ > 3. But then in the equation (17.5) we can replace these three (or more)
vectors a™, ..., a" by two vectors a, a’, which contradicts the minimality of k.
O

The same argument also implies that no two distinct vectors ¢, ¢ € C
can lead to one and the same vector b € B, that is, ¢ # ¢ € C implies
>, ciat # 3, cla’. This means that |B| = |C|.

This, together with Claim 17.15, implies

Al ICI =14l |Bl = b+ A= | | b+ A)| < |span A].

beB beB

Hence, log, |C| < logy(1/a) which, together with Claim 17.14, yields the
desired upper bound (17.4) on k. O

17.6 Expander codes

If ¢ C {0,1}" is a linear code with a k x n generator matrix G, then the
encoding of messages w € {0,1}* is very easy: just encode w by the codeword
r = w' G. However, the decoding—that is, given a vector y € {0,1}" find
a codeword =z € C closest to y—is in general linear codes a very difficult
problem (it is “NP-hard”).

We now show how using expander graphs one can construct linear codes
for which decoding is almost trivial—it can be done in linear time! Moreover,
if the expansion of the graph is good enough then the resulting codes achieve
very good rate (log, |C|)/n and minimal distance (both these parameters are
then absolute positive constants).

Let G = (LU R, E) be a bipartite graph with |L| = n, |R| = m and
E C L x R. Each such graph defines a linear code C' C {0,1}" as follows.
Associate with each vertex u € L a boolean variable z,. Given a vector
x € {0,1}", say that a vertex v € R is satisfied by this vector if

Z T, mod2=0,

uwel'(v)

where I'(v) = {u € L : uv € E} is the set of all neighbors of v on the left
side (see Fig. 17.1). The code defined by the graph G is the set of vectors

C ={x€{0,1}" : all vertices in R are satisfied by z} .



248 17 Combinatorics of Codes

v1

U2

0

Fig. 17.1 Vertex vo is satisfied whereas vy is not satisfied by the vector = (1010).

That is, C is just the set of all solutions of m linear equations in n variables.
Therefore, C' is linear and |C| > 2™,

Let dist(C') be the minimal Hamming distance between two different vec-
tors in C. A graph G = (LU R, E) is left d-regular if each vertex in L has
degree d. Such a graph is an («,c)-expander if every subset I C L with
|I| < an has |I'(I)| > c|I| neighbors on the right side.

Lemma 17.16. If C C {0,1}" is a code of a left d-regular («, ¢)-expander
with ¢ > d/2, then
dist(C) > an .

Proof. Assume that dist(C') < an. Then C must contain a vector x with at
most an ones. Hence, if we take the set ] = {u € L : =z, = 1}, then |I]| <
dist(C) < an. Since G is an («, d/2)-expander, this implies |I'(I)| > d|I|/2.

We claim that there must exist a vertex vy € I'(I) with exactly one neigh-
bor in I, that is, [I"(vg) N I| = 1. Indeed, otherwise every vertex v € I'(I)
would have at least two neighbors in I. Therefore the number of edges leav-
ing I would be at least 2- I'(I) > 2 - (d|I|/2) = d|I|, contradicting the left
d-regularity of G.

Since x,, = 0 for all u & I, this implies that ezactly one of the bits x,, of
with u € I'(vp) is equal to 1. So, Zuef(vo) x, = 1, and the vertex vy cannot
be satisfied by the vector x, a contradiction with x € C. O

By Lemma 17.16, expander codes can correct relatively many errors, up
to an/2. Much more important, however, is that the decoding algorithm for
such codes is very efficient. The decoding problem is the following one: given
a vector y € {0,1}" of Hamming distance < an/2 from some (unknown)
codeword x € C, find this codeword x. The decoding algorithm for expander
codes is amazingly simple:

While there exists a variable such that most of its neighbors are not satisfied

by the current vector, flip it.

Lemma 17.17 (Sipser—Spielman 1996). If C is a code of a left d-regular
(o, ¢)-expander with ¢ > %d, then the algorithm solves the decoding problem
in a linear number of steps.
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Proof. Let y € {0,1}" be a vector of Hamming distance < an/2 from some
(unknown) codeword x € C. Our goal is to find this codeword x. Let

I={uel: yu#zu}

be the set of errors in y. If I is empty, we are done. Otherwise, assume
that |I| < an. We need this assumption to guarantee the expansion, and we
will prove later that this assumption holds throughout the running of the
algorithm.

Partition the set I'(1) = SUU into the set S of neighbors satisfied by y
and the set U of neighbors not satisfied by y. Since ¢ > 3d/4, we have that

U+ S| = [I(D)] > Zdl1]. (17.6)

Now, count the edges between I and I'(I). At least |U| of these edges must
leave U. Moreover, at least 2|S| of them must leave S because every vertex
v € S must have at least two neighbors in I: If v had only one such neighbor,
then y would not satisfy the vertex v since y # x, = satisfies v and y coincides
with = outside I. Since the total number of edges between I and I'(T) is d|I|,
this implies |U| 4 2|S| < d|I|. Combining this with (17.6) we get that

dlI| —|U[ = 2|S| > 2 (3d|I| - |U])

and therefore
|U| > id|I]|. (17.7)

So, more than d|I|/2 neighbors of the |I| vertices in I are unsatisfied. There-
fore there is a variable in I that has more than d/2 unsatisfied neighbors. We
have therefore shown the following claim:

If I # 0 and |I| < an then there is a variable with > d/2 unsatisfied
neighbors.

This implies that as long as there are errors and |I| < an holds, some variable
will be flipped by the algorithm. Since we flip a vertex with more unsatisfied
neighbors than satisfied ones, |U| decreases with every step (flipping x,, can
only affect the satisfiability of neighbors of u). We deduce that if the distance
|I| of the actual vector y from = does not exceed an/2 throughout the run
of the algorithm, then the algorithm will halt with the codeword z after a
linear number of iterations.

To show that |I| can never exceed an, recall that |I| < an/2, and hence,

U| < |I(I)] < Ladn (17.8)

hold in the beginning. Moreover, |U| decreases after each iteration. Hence, if
at some step we had that |I| > an, then (17.7) would imply |U| > adn/2,
contradicting (17.8). O
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In general, every linear code C' C {0,1}" is defined by its parity-check
matrix H such that x € C iff Hx = 0. Note that, if C' is a code defined by
a bipartite graph G, then H is just the transpose of the adjacency matrix of
G. If G is left d-regular, then every row of H has exactly d ones. If G is an
(o, ¢)-expander, then every subset I of |I| < an columns of H has ones in at
least ¢|I| rows. The decoding algorithm above is, given a vector y € {0,1}™
such that Hy # 0, to flip its i-th bit provided that vector H(y®e;) has fewer
ones than vector Hy.

17.7 Expansion of random graphs

Explicit constructions of bipartite left d-regular («, c)-expanders with o =
£2(1) and ¢ > 3d/4 are known. These constructions are however too involved
to be presented here. Instead of that, we will show that random bipartite
left-regular graphs have good expansion properties.

Let d > 3 be a constant. We construct a random bipartite left d-regular
n x n graph Gp.q = (LU R, E) as follows: For each vertex u € L choose its
d neighbors independently at random, each with the same probability 1/n.
The graph obtained may have multi-edges, that is, some pairs of vertices may
be joined by several edges.

Theorem 17.18. For every constant d > 3, there is a constant a > 0 such
that for all sufficiently large n, the graph G, q is an (a,d — 2) expander with
probability at least 1/2.

Proof. Set (with foresight) a := 1/(e3d*). Fix any s < an, and take any
set S C L of size |S| = s. We want to upper bound the probability that
S does not expand by d — 2. This means that the ds neighbors (including
multiplicities) of the vertices in S hit fewer than (d — 2)s distinct vertices on
the right side, that is, some 2s of these ds neighbors land on previously picked
vertices. Each neighbor lands on a previously picked vertex with probability
at most ds/n, so

2s
Pr[S does not expand by (d — 2)] < (;18) (@) )
s n

By the union bound, the probability that at least one subset S of size s does
not expand by (d — 2) is at most

n\ (ds\ [ ds\*® en\® feds\ > (ds\** e3d*\” 1\°
Z) o< (=) (= =) o< (=) <(=),
s/ \2s n s 2s n ~\ 4n —\4
by the choice of a. Thus, the probability that some set S of size |S| < an
does not expand by (d — 2) does not exceed
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47% < 47% < =,
D AT AT
s=1 s=1

Hence, the graph G,, 4 is an (o, d — 2) expander with probability at least 1/2.
O

Exercises

17.1. Prove the following stronger version of Proposition 17.12. Let C be a
linear code of length 7 and minimal distance at least k4 1 and let C* be its
dual. Then for every subset S of [ < k coordinates, every 0-1 string of length
[ appears as a projection of C* onto S the same number of times. Hint: Take
a matrix whose rows form a basis of C' , observe that every k columns of this matrix
are linearly independent and use Proposition 13.3.

17.2. Let V C F} be a subspace of dimension d. Show that |V| = 27.

17.3. Let A C F} and suppose that |A| > |span A|/2. Prove that every vector
in span A is the sum of at most 2 vectors from A. Hint: Show that, for every
v € span A, the set AN (v + A) has at least one vector.

17.4. Theorem 17.13 gives an upper bound on the spanning diameter of sets
A in terms of their density o = |A|/|span A|. Show that for infinitely many
values of k, the bound (17.4) is optimal, that is, exhibit sets A whose spanning
diameter is the maximal number satisfying (17.4). Hint: Consider the set consist-
ing of the all-0 vector and k vectors with precisely one 1; its density is o = (k + 1)/2".

17.5. (Hamming code). Let r be a positive integer, and let k = 2"—1. Consider
the r x k matrix H whose columns are all the distinct nonzero vectors of
{0,1}". Let C C F% be the set of vectors, each of which is orthogonal (over
F3) to all the rows of H. Prove that C is a linear code of minimal distance 3
and has precisely 25~ code words. Hint: Show that no vector of weight 1 or 2 can
be orthogonal to all the rows of H, and use Proposition 17.9.

17.6. Prove Claim 17.14. Hint: If k has the form k = 2" — 1, then we can take C to
be a Hamming code (see previous exercise). Otherwise, take r such that k = 2" + z for
some integer 0 < = < 2" — 1, and let C' be a Hamming code of length K = 2771 — 1.
By fixing the last K — k of coordinates to appropriate constants, it is possible to obtain
from C a set of vectors C' C {0,1}" of size |C | > |C|/25 7% = 27771 such that any
two of its vectors still differ in at least 3 coordinates. The code C' obtained may be not
linear, but we do not require that.

17.7. Prove that among any 2"~ + 1 vectors in F} some k of them must be
linearly independent. Hint: Take a maximal subset of linearly independent vectors
and form all possible sums (over F2).
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18. Linearity of Expectation

Let X1,...,X,, be random variables, and X = c; X7 + - - + ¢, X,,. Linearity
of expectation states that

E[X] = 1B [X1] + - + B [X,)].

The power of this principle comes from there being no restrictions on the
dependence or independence of the X;’s. In applications we often use the
fact that there must be a point in the probability space for which X > E [X]
and a point for which X < E[X]. This principle (known as the pigeonhole
property of the expectation) is used in most arguments.

18.1 Hamilton paths in tournaments

A tournament is an oriented graph T" = (V, E) such that (z,z) ¢ F for all
x €V, and for any two vertices x # y exactly one of (z,y) and (y, z) belongs
to E. The vertices are players, each pair of which participates in a single
match, and (z,y) € E if and only if = beats y. Given such a tournament, a
Hamiltonian path in it is defined as a permutation (x1, za,...,x,) of players
such that, for every i, z; beats z;1.

It is easy to show (see Exercise 18.5) that every tournament contains
a Hamiltonian path. On the other hand, there are tournaments with only
one Hamiltonian path (the path itself). Are there tournaments with many
Hamiltonian paths? The existence of such “rich” tournaments was proved by
T. Szele in 1943. His proof is considered to be the first application of the
probabilistic method in combinatorics.

Theorem 18.1 (Szele 1943). There is a tournament T with n players and
at least n!/2"~1 Hamiltonian paths.

Proof. Take a random tournament T (where the outcome of each game is
determined by the flip of fair coin), and let X be the number of Hamiltonian
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paths in it. For each permutation 7 = (x1,x2,...,x,) of players, let X,
denote the indicator random variable for the event “m is a Hamiltonian path
inT” Then X = Y X, the summation being over all n! permutations 7. For
a given 7, E[X,] = 2~ (™1 since that is the probability that the n—1 games
x; versus x;+1 all have the desired outcome. By the linearity of expectation,

E[X] =) E[X.] =nl2"".

Since (by the pigeonhole property of the expectation) a random variable
cannot always be smaller than its expectation, at least one tournament must
have at least E [X] Hamiltonian paths. O

In the same paper, Szele also established an upper bound O(n!/2%"/%) on
the maximal possible number of Hamiltonian paths in any tournament with n
players. Based on the solution of the well-known conjecture of H. Minc about
the permanent of 0-1 matrices (found by Bregman in 1973), Alon (1990b) has
essentially improved this upper bound to

en®?nl/2n—1 (18.1)

where c is a positive constant independent of n.

18.2 Sum-free sets

Suppose we are given a finite set of nonzero integers, and are asked to mark
an as large as possible subset of them under the restriction that the sum of
any two marked integers cannot be marked. It turns out that (independent of
what the given integers actually are!) we can always mark at least one-third
of them.

A subset B of an additive group is called sum-free if © +y ¢ B for all
x,y € B (x = y is allowed). For example, the set of all odd integers is
sum-free, and the subset B ={n+1,n+2,,...,2n} is a sum-free subset of
A={1,...,2n}. We are interested in the case when A is an arbitrary set of
numbers: can we also then choose large sum-free subsets?

Theorem 18.2 (Erdds 1965). Let A C Z be a set of N nonzero integers.
Then there is a sum-free subset B of A with |B| > N/3.

Proof. Let p = 3k + 2 be a prime, which satisfies p > 2max,c4 |a|. Such a
prime exists by Dirichlet’s prime number theorem, stating that for any two
positive co-prime integers a and d, there are infinitely many primes of the
form a + nd, where n > 0. In other words: there are infinitely many primes
which are congruent to a modulo d.
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Write S = {k+1,k+2,...,k+ (k+1)}, and observe that S is a sum-free
subset of the group Z, (the integers modulo p), because, by the choice of p,
the sum of any two numbers from S, taken modulo p, does not belong to S.
Indeed, the sum (k+ 1)+ (k+1) = 2k +2 > 2k + 1 is too large, whereas the
sum (2k+ 1)+ (2k+1)=4k+2=kmodp==Fk < k+1 is too small.

We choose a subset of A as follows. Pick a random element ¢t € Z, \ {0},
and let

Ay ={a€ A: atmodpe S}.

Note that A; is sum-free, because for any a,b € Ay, the residues of at and bt
modulo p belong to S (by definition of A¢) whereas the residue of (a + b)t =
at+bt cannot belong to S, by sum-freeness of S. It remains to show that A; is
large for some t. To do this, observe that for any fixed a # 0, as t ranges over
all numbers 1,2, ..., p—1, the residues of a-¢ modulo p range over all nonzero
elements of Z,,. Thus, Pr[at mod p € S] = |S|/(p—1) = (k+1)/(3k+1) > 1/3,
for every a € A. By the linearity of expectation, we have that

E[|A:]] = ZPr[aeAt} = ZPr[at mod p € S] > %|A],

a€A a€A

By the pigeonhole property of expectation, there is a value of ¢ for which
|A:| > |A]/3. O

It is not clear what is the largest constant that works in place of 1/3 in
the previous theorem. It is only known (see Alon and Kleitman 1990) that it
must be smaller than 12/29.

18.3 Dominating sets

A dominating set of vertices in a graph G = (V, E) is a set S C V such that
every vertex of G belongs to S or has a neighbor in S.

Theorem 18.3 (Alon 1990c). If G = (V, E) is an n-vertex graph with min-

imum degree d > 1, then G has a dominating set with at most n%

vertices.

Proof. Form a random vertex subset S C V by including each vertex inde-
pendently with probability p := In(d + 1)/(d + 1). Given S, let T be the
set of vertices outside S having no neighbor in S; adding T to S yields a
dominating set. So, it remains to estimate the expected size of this union.
Since each vertex appears in S with probability p, E[|S|] = np.

The random variable |T'| is the sum ) ., X, of n indicator variables X,
for whether individual vertices v belong to T'. We have X, = 1 if and only
if v and its neighbors all fail to be in .S, the probability of which is bounded
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by (1 —p)@*!, since v has degree at least d. Hence, E[|T|] =
n(1—p)™t As (1 —p)¥tt < e P+ we have

veV E [X”] S

1+In(d+1)
n— T

IS UT] < np+ne @D = n—7"

By the pigeonhole property of the expectation, there must be some S for
which SUT is a dominating set of size no larger than this. O

18.4 The independence number

The independence number «(G) of a graph G is the maximum number of
vertices with no edges between them. The following result is due to Caro
(unpublished) and Wei (1981).

Theorem 18.4. Let G be a graph on n vertices and let d; denote the degree
of the i-th vertex. Then

"1
o(G) > ; 1 (18.2)

Proof. (Alon-Spencer 1992). Let V = {1,...,n} and let 7 : V. — V be
a random permutation taking its values uniformly and independently with
probability 1/n!. This permutation corresponds to a random ordering of ver-
tices in V. Let A; be the event that all neighbors j of ¢ in G are greater
than ¢ in the ordering, i.e., that w(j) > n(¢) for all d; neighbors j of i. There
are ( d,:jrl) possibilities to choose a (d; 4+ 1)-element set S C V of possible
m-images of i and all its d; neighbors. After that there are (|S] — 1)! = d;!
possibilities to arrange the m-images of neighbors of ¢ within S (the place of
m(i) is fixed — it must come first), and (n — |S|)! = (n — d; — 1)! possibilities
to arrange the vertices outside S. Thus,

B n di'(n—d; —1)! 1
Prldi] = (di+1) nl T+l

Let U be the set of those vertices i for which A; holds. By linearity of expec-

tation
n

E(U[] =) PrlA]=) 1/(d+1).
i=1 i=1
Thus, for some specific ordering, |U| > >""" | 1/(d; + 1). Now let {i, j} be an
edge of G. Then either 7(i) < 7(j) or m(j) < (). In the first case j &€ U,
and in the second case i € U. That is, U is an independent set. a
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The celebrated theorem due to P. Turdn (1941) states: if a graph G has
n vertices and has no k-clique then it has at most (1 — 1/(k — 1)) n?/2 edges
(see Theorem 4.8). Its dual form states (see Exercise 4.8):

If G has n vertices and nk/2 edges, then a(G) > n/(k +1).

This dual form of Turan’s theorem also follows from Theorem 18.4: fixing the
total number of edges, the sum > . 1/(d; + 1) is minimized when the d;’s
are as nearly equal as possible, and, by Theorem 1.8, 1 ?:1 d; is exactly the
number of edges in G.

18.5 Crossings and incidences

Given a set P of n points and a set L of m lines in the plane, the point-line
incidence graph is a bipartite n x m graph with parts P and L, where p € P
and [ € L are adjacent iff the point p lies on the line [ (see Fig. 18.1). How
many edges can such a graph have?

ok B B g
1 p2 12
Py
P
B, p3 Iy
4

Fig. 18.1 We have four points and three lines. The number of incidences (edges in the
point-line incidence graph on the right) is 7.

Since any two points can lie on at most one common line, and two lines
intersect in at most one point, each point-line incidence graph is Cy-free, that
is, contains no cycles on four vertices. We already know (see Exercise 2.6)
that the number of edges in such graphs cannot exceed either nm!/2 +m
or mn'/? 4 n. For n = m this is about n®/2. Szemerédi and Trotter (1983)
obtained a much better upper bound which, for n = m, is about n*/? <« n3/2.
We will derive this theorem from another (seemingly unrelated) result about
the number of crossings when a graph is drawn on the plane.

18.5.1 Crossing number

Given a graph G, the crossing number of the graph, denoted cr(G), is the min-
imum number of edge-crossings possible amongst all drawings of the graph
with edges as straight line segments and vertices as points in the plane. Thus
a graph G is planar if and only if c¢r(G) = 0. A natural question is: given a
graph with e edges and n vertices, how large is its crossing number?
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The well-known Euler’s polyhedron formula states that if a finite, con-
nected, planar graph is drawn in the plane without any edge intersections,
and n is the number of vertices, e is the number of edges and f is the num-
ber of faces (regions bounded by edges, including the outer, infinitely-large
region), then n — e+ f = 2. If e > 3 then every face is adjacent to at least
three edges, whereas every edge is adjacent to exactly two faces. By double
counting the edge-face incidences, we get 3f < 2e. Eliminating f, we conclude
that e < 3n — 6 for all planar graphs.

If a graph G can be drawn with only cr(G) crossings, then we can delete
one of the crossings by removing an edge associated with that crossing, and
so we can remove all the crossings by deleting at most cr(G) edges, leaving
at least e — cr(G) edges (and v vertices). Since the graph obtained is planar,
we obtain the following lower bound on the crossing number of any graph G:

cr(G) >e—3n+6>e—3n. (18.3)

By applying this inequality to random induced subgraphs of G, Ajtai,
Chvéatal, Newborn, and Szemerédi (1982), and Leighton (1984) were able to
improve this lower bound.

Theorem 18.5 (The crossing number inequality). Let G be a graph with n
vertices and e > 4n. Then

3
cr(G) > R
Proof. Let G be embedded in the plane and suppose the crossing number
of the drawing is x. Independently select vertices of G with probability p,
and let H be the (induced) subgraph of edges between selected vertices. By
the linearity of expectation, H is expected to have pn vertices and p?e edges.
(The events that each edge ends up in H are not quite independent, but
the great thing about linearity of expectation is that it works even without
assuming any independence.) Observe that each crossing involves two edges
and four vertices. Thus, the probability that the crossing survives in this
drawing is only p*. By one last application of linearity of expectation, the
expected number of crossings of this drawing that survive for H is p*z. This
particular drawing may not be the optimal one for H, so we end up with an
inequality E[cr(H)] < p*z. By (18.3), the number of crossings in any graph
H is always at least the number of edges minus three times the number of
vertices of H. Consequently

p'r > Eler(H)] > p’e — 3pn.

Taking p := 4n/e gives the desired lower bound on z = cr(G). O
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18.5.2 The Szemerédi—Trotter theorem

From the above result on crossing numbers one deduces a short proof of the
Szemerédi-Trotter theorem in combinatorial geometry. It gives an almost
tight upper bound on the number of incidences, that is, on the number of
point-line pairs such that the point lies on the line.

Theorem 18.6 (Szemerédi-Trotter 1983). Let P be a set of n distinct points
in the plane, and let L be a set of m distinct lines. Then the number of
incidences between P and the lines in L is at most 4(mn)?/® +m + 4n.

The original proof of this theorem was somewhat complicated, using a
combinatorial technique known as cell decomposition. Later, Székely (1997)
discovered a much simpler proof using crossing numbers of graphs.

Proof (due to Székely 1997). Let « = |{(p,l) € Px L : p € l}| be the number
of incidences. Let G be the graph whose vertex set is P and whose vertices
are adjacent if they are consecutive on some line in L. A line [ € L which
is incident to k; points in P will thus contain k; — 1 line segments between
points in P. Since the sum of all the k; over all lines [ € L is exactly the total
number z of incidences, the graph G has x — m edges. Clearly cr(G) < m?
since two lines cross at no more than one point. By the result on crossing
numbers, we deduce

o (z—m)®
64n?

(we put “—n” just to eliminate the condition e > 4n) and therefore x <

4(mn)?/3 4+ m + 4n. O

m

To see that the theorem is tight up to a constant factor, take the grid
P = [k] x [4k?] together with the set L of all straight lines y = ax + b with
slope a € [k] and intercept b € [2k?]. Then for x € [k] one has az + b <
ak +b < k? + 2k% < 4k2. So, for each z =1, ...,k each line contains a point
(z,y) of P. We get a total of roughly 2k* incidences, as compared to the
upper bound of roughly 4k*.

In applications the following corollary of this theorem is often used (we
will also use it in Sect. 25.4). We will say that a function f “is at most about”
another function g if f = O(g).

Theorem 18.7. For n points in the plane, the number of lines, each contain-
ing at least k of them, is at most about n?/k> +n/k.

Proof. Let P be a set of n points, and L a set of m lines, each of which contains
at least k points of P. Then these lines generate at least mk incidences and
s0, by Theorem 18.6, we have that m(k — 1) < 4(mn)?/3 +4n. If n < (nm)?/3
then the right-hand side is at most 8(mn)?/3, from which m = O(n?/k%)
follows. If n > (nm)?/® then the right hand side is at most 8n, from which
m = O(n/k) follows. O
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The importance of Theorem 18.7 lies in the fact that the exponent of k
in the denominator is strictly larger than 2. A bound of m < (%)/(%), which
is about n?/k?, is trivial by just double-counting the pairs of points. (Prove
this!)

The so-called Two Extremities Theorem says that finite collections of
points in the plane fall into one of two extremes: one where a large frac-
tion of points lie on a single line, and one where a large number of lines are

needed to connect all the points.

Theorem 18.8 (Beck 1983). Given any n points in the plane, at least one
of the following statements is true:

1. There is a line which contains at least 2(n) of the points.
2. There exist at least 2(n?) lines, each of which contains at least two of the
points.

Proof. Consider a set P of n points in the plane. Let ¢ be a positive integer.
Let us say that a pair of points x,y in the set P is t-connected if the (unique)
line connecting x and y contains between 2¢ and 2¢+! —1 points of P (including
x and y). By Theorem 18.7, the number of such lines is at most about n? /23t +
n/2¢. Since each such line connects together at most about 22! pairs of points
of P, we thus see that at most about n?/2' + n2! pairs of points can be
t-connected.

Now, let C' be a large constant. By summing the geometric series, we see
that the number of pairs of points which are ¢-connected for some ¢ satisfying
C <2 <n/C is at most about n?/C. On the other hand, the total number
of pairs is (Z)

Thus if we choose constant C to be large enough, we can find at least,
say, n?/4 pairs of points which are not t-connected for any C' < 2t < n/C.
The lines that connect these pairs either pass through fewer than C points,
or pass through more than n/C points. If the latter case holds for even one
of these pairs, then we have the first conclusion of Beck’s theorem. Thus
we may assume that all of the n?/4 pairs are connected by lines which pass
through fewer than C points. But each such line can connect at most C?
pairs of points. Thus there must be at least n?/4C? lines connecting at least
two points of P. O

More about combinatorial problems in geometry as well as their cute so-
lutions can be found in a beautiful book by Matousek (2002).

18.6 Far away strings

The Hamming distance between two binary strings is the number dist(x, y)
of positions in which these strings differ. How many binary strings can we
find such that each two of them lie at Hamming distance at least n/2? In
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Sect. 14.3 we used Hadamard matrices to construct such a set consisting of
2n strings (see Theorem 14.10). But what if we relax the condition and only
require the pairwise distance be at least, say, n/4? It turns out that then
much larger sets exist.

To show this, we will use the following Chernoff’s inequality: If X is
the sum of n independent and uniformly distributed 0-1 variables, then
Pr[X <n/2—a] < e—20%/n,

Theorem 18.9. There exists a set of €10 binary strings of length n such
that any pair is at Hamming distance at least n/4 from each other.

Proof. Consider a random string in {0,1}" generated by picking each bit
randomly and independently. For any two such strings = and y, let X; be the
indicator random variable for the event that x; # y;. Then E [X;] = 1/2, and
dist(x,y) = X1+ - -+ X,,. By the linearity of expectation, E [dist(z,y)] = n/2.
Using Chernoff’s inequality, we have that

Pr[dist(z,y) < n/2—a] < e20%/m
Now generate M := /16 strings at random and independently. Set a := n/4.
By the union bound, the probability thagt any pair of these strings lies at
distance at most n/4, is at most (Af)e’za /" < M?e~"/8 =1, implying that
the desired set of strings exists. a

This result has an interesting interpretation in the Euclidean setting. Re-
call that a wunit vector is a vector x € R"™ such that ||z| = 1, where
|z|| = /22 + -+ 22 is the norm of z. The set of all unit vectors forms
the unit sphere. The Euclidean distance between two vectors z,y € R™ is the
norm |z — y|| of their difference.

Corollary 18.10. The unit sphere in R contains a set of €"/16 points, each

two of which are at Fuclidean distance at least one from each other.

Proof. Let P C {0,1}™ be the set of binary strings guaranteed by Theo-
rem 18.9. Associate with each binary string u = (u1,...,u,) a unit vector

r, € R™ whose i-th coordinate is defined by z,(i) := ﬁ(—l)“ Then, for

any two vectors u,v € P and for any coordinate ¢, we have that
2 1 2 0 if ui = /Uia
xui_.’IJUZ' = — _1ui__1vi) _
(rali) =) = (2% (1) {%ﬁw#w'

Hence,

n

fea = zall? = 3 (i) — (@) = - dist(9) 2 1,

i=1

as desired. O
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18.7 Low degree polynomials

In this section we consider polynomials f(z1,...,z,) on n variables over the
field Fs. Such a polynomial has degree at most d if it can be written in the

form .
f(xl,...,xn):ao—i—z H xj,

i=1j€S;

where ag € {0,1} and Sy,...,S,, are subsets of {1,...,n} of size at most d;
here and throughout the section the sum is modulo 2.

If f1,..., fmm are polynomials of degree at most d, then their product can
have degree up to dm. The following result says that the product can still be
approximated quite well by a polynomial of relatively small degree.

Lemma 18.11 (Razborov 1987). Let f = [[/~, fi, where f1,..., fm are poly-
nomials of degree at most d over Fyo. Then, for any r > 1, there exists a
polynomial g of degree at most dr such that g differs from f on at most 2™~ "
mnputs.

Proof. Let S be arandom subset of {1, ..., m}, that is, we choose S randomly
from the family of all 2" subsets with probability 27™. Let Si,...,S, be
independent copies of S. Consider a (random) function of the form

g:ﬁhj, where hjzl—Z(l—fi)- (18.4)

Jj=1 i€S;
We claim that, for every (fixed) input a € {0,1}",

Prig(a) # f(a)] <27". (18.5)

Indeed, if f(a) = 1 then all f;(a) = 1, and hence, g(a) = 1 with probability
1. Suppose now that f(a) = 0. Then f;,(a) = 0 for at least one ig. Since
each of the sets Si,...,S, contains ig with probability 1/2, we have that
Pr{hj(a) =1] < 1/2 for all j = 1,...,r (consult Exercise 18.11 for this
conclusion). Hence,

Prig(a)=0=1-Pr[hi(a)=...=h,(a)=1] >1-27",

as claimed.

For an input vector a € {0,1}", let X, denote the indicator random vari-
able for the event that g(a) # f(a), and let X be the sum of X, over all a.
By (18.5) and the linearity of expectation, the expected number of inputs on
which g differs from f is

E(X]=) E[X,=) PriX,=1<2"".
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By the pigeonhole principle of expectation, there must be a point in the
probability space for which this holds. This point is a polynomial of the form
(18.4); it has degree at most dr and differs from f on at most 2"~" inputs. O

Razborov used this lemma to prove that the majority function cannot
be computed by constant-depth polynomial-size circuits with unbounded
fanin And, Or and Parity gates. The majority function is a boolean func-
tion Maj,, (21, ..., z,) which outputs 1 if and only if xy + - -+ + 2, > n/2.

Theorem 18.12 (Razborov 1987). Every unbounded fanin depth-c circuit
with And, Or and Parity gates computing Maj,, requires 292(n'/%%) gates.

The idea is as follows. If f can be computed by a depth-c circuit of size
£ then, by Lemma 18.11, there exists a polynomial g of degree at most r¢
such that ¢ differs from f on at most £ - 2"~ " inputs. The desired lower
bound is then obtained by showing that the majority function cannot be
approximated sufficiently well by such polynomials (see Lemma 13.8). Taking
7 to be about n'/(2¢) and making necessary computations this leads to a lower
bound ¢ > 98 (n'/ <))
we omit it.

. This final step requires some routine calculations, and

18.8 Maximum satisfiability

In most of the above applications it was enough to take a uniform distribution,
that is, every object had the same probability of appearing. In this section
we will consider the situation where the distribution essentially depends on
the specific properties of a given family of objects.

An And-Or formula or a CNF (or simply, a formula) over a set of variables
Z1,...,Ty is an And of an arbitrary number of clauses, where a clause is an
Or of an arbitrary number of literals, each literal being either a variable z;
or a negated variable ;. For example:

F = (331 Vfg)(fl V i) \/53)(?2)(51 \/fg).

An assignment is a mapping which assigns each variable one of the values 0
or 1. We can look at such assignments as binary vectors v = (v,...,v,) €
{0,1}", where v; is the value assigned to z;. If y is a literal, then we say that
v satisfies y if either y = x; and v; = 1, or y = T; and v; = 0. An assignment
satisfies a clause if it satisfies at least one of its literals. An assignment sat-
isfies a formula if it satisfies each of its clauses. For the formula above, the
assignment v = (1,0,0) is satisfying. A formula is satisfiable if at least one
assignment satisfies it. A formula F' is k-satisfiable if any subset of k clauses
of F' is satisfiable.

It is an interesting “Helly-type” phenomenon, first established by Lieberher
and Specker (1981), which says that if a formula is 3-satisfiable then at least
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2/3 of its clauses are simultaneously satisfiable. For 2-satisfiable formulas this
fraction is 2/(1 4+ v/5) > 0.618 (the inverse of the golden ratio). The original
proof of these facts was rather involved. Yannakakis (1994) has found a very
simple proof of these bounds using the probabilistic method.

Theorem 18.13 (Yannakakis 1994). If F is a 3-satisfiable formula then at
least a 2/3 fraction of its clauses are simultaneously satisfiable.

Proof. Given a 3-satisfiable formula F', define a random assignment v =
(v1,...,vy), where each bit v; takes its value independently from other bits
and with probability

2/3 if F contains a unary clause (z;);
Prv; =1] =< 1/3 if F contains a unary clause (T;);
1/2 otherwise.

Note that this definition is consistent since it is impossible to have the unary
clauses (z;) and (T;) in the same 3-satisfiable formula. Simple (but crucial)
observation is that each singular literal y € {x;,7;}, which appears in the
formula F, is falsified with probability < 2/3 (independent of whether this
literal forms a unary clause or not). To see this, let y = x; and p = Pr[v; = 0].
We have three possibilities:

- either (z;) is a unary clause of F, and in this case p=1—-2/3 =1/3;
- or F contains a unary clause (7;), and in this casep=1—1/3 = 2/3;
- or neither x; nor T; appears in a unary clause, in which case p = 1/2.

Using this observation, we can prove the following fact.
Claim 18.14. Every clause is satisfied by v with probability at least 2/3.

For unary clauses the claim is trivial. On the other hand, if C' contains
three or more literals, then, by the above observation, each of these literals
can be falsified with probability at most 2/3, and hence, the clause is satisfied
with probability at least 1 — (2/3)3 = 0.7037... > 2/3; for longer clauses the
probabilities are even better.

It remains to consider binary clauses. Assume w.l.o.g. that C = (z1 V x2).
If at least one of 21 and o is satisfied with probability 1/2 then the clause
C is satisfied with probability 1 — Prfv; =0] - Prlv; =0] > 1—-1.2 = 2
Thus, the only bad case would be when both literals x; and x5 are satisfied
only with probability 1/3. But this is impossible because it would mean that
the formula F' contains the clauses (z1V z2), (Z1), (T2), which contradicts the
fact that F' is 3-satisfiable.

We now conclude the proof of the theorem in a standard manner. Suppose
that F' consists of the clauses C1, ..., Cy,. Let X; denote the indicator random
variable for the event “the i-th clause Cj is satisfied by v”. Then X = ZZ’;l X;
is the total number of satisfied clauses of F. By Claim 18.14, Pr[X; = 1] >
2/3 for each i, and by the linearity of expectation, E [X] = Y1" | E[X;] > 2%
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By the pigeonhole property of the expectation, at least one assignment v must
satisfy so many clauses of F', as desired. O

It is worth mentioning that, for large values of k, the right fraction for all
k-satisfiable formulas is 3/4. Namely, Trevisan (2004) has proved that, if i
stands for the largest real such that in any k-satisfiable formula at least an -
th fraction of its clauses are satisfied simultaneously, then limy_.. 7 = 3/4.

18.9 Hash functions

A set V of vectors of length ¢ over an alphabet A = {1,...,n} is called k-
separated if for every k distinct vectors there is a coordinate in which they
are all distinct. How many vectors can such a set have?

This question is equivalent to the question about the maximum size
N = N(n,k,t) of a domain for which there exists a family of (n,k) hash
functions with t members, that is, a family of ¢ partial functions fi,..., f
mapping a domain of size IV into a set of size n so that every subset of k
elements of the domain is mapped in a one-to-one fashion by at least one
of the functions. To see this equivalence, it is enough to consider the set of
vectors (f1(x),..., fi(x)) for each point = of the domain.

The problem of estimating N (n, k, t), which is motivated by the numerous
applications of perfect hashing in theoretical computer science, has received
a considerable amount of attention. The interesting case is when the number
t of hash functions is much bigger than the size n of the target set (and, of
course, n > k). The following are the best known estimates for N(n, k, t):

1 1 1
1 < Zlog N(n, k, t 18.6
o8 S 0Nk (15.6)
and ) +1
n—r
- < ' r-rr-
tlogN(n,k,t)ngrrnglgilg(n,r)log pa— (18.7)
where

g(n, k) := (Zik _ ”(”_1)'~7;L’£n—k;+1).

In particular, (18.7) implies that

N(n,k,t) < (%)t

The lower bound (18.6), proved by Fredman and Komlés (1984), can be
derived using a probabilistic argument (the deletion method) discussed in
Chap. 20: one chooses an appropriate number of vectors randomly, shows
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that the expected number of non-separated k-tuples is small, and omits a
vector from each such “bad” k-tuple. The proof of the upper bound (18.7)
was much more difficult. For » = k—1, a slightly weaker version of this bound
was proved in Fredman and Komlés (1984), and then extended to (18.7) by
Korner and Marton (1988). All these proofs rely on certain techniques from
information theory.
A short and simple probabilistic proof of (18.7), which requires no information-

theoretic tools, was found by Nilli (1994) (c/o Noga Alon). We only present
the key lemma of this proof.

Lemma 18.15. Let U be a set of m vectors of length t over the alphabet B U
{*}, where B ={1,...,b}, and let x, denote the number of non-+ coordinates
ofveU. LetT=> x,/m be the average value of x,,. If for every d distinct
vectors in U there is a coordinate in which they all are different from x and
are all distinct, then

mﬁ(d—l)(d—il)m.

Proof. For every coordinate i, choose randomly and independently a subset
D; of cardinality d — 1 of B. Call a vector v € U consistent if for every
i, v; € D; U {x}. Since each set D; has size d — 1, the assumption clearly
implies that for any choice of the sets D, there are no more than d — 1
consistent vectors. On the other hand, for a fixed vector v and its coordinate
i, Prlv; € D;] = (d — 1)/b. So, each vector v is consistent with probability
((d -1)/ b) “* and, by the linearity of expectation, the expected number of
consistent vectors in U is

3 d—1 “>m d—1\"
b = b ’
velU

where the inequality follows from Jensen’s inequality (see Proposition 1.12),
since the function g(z) = ((d — 1)/b)” is convex. O

18.10 Discrepancy

Let Xq,...,X; be n-element sets, and X = X; x --- X Xg. A subset T;
of X is called a cylinder in the i-th dimension if membership in 7; does
not depend on the i-th coordinate. That is, (z1,...,z,...,z;) € T; implies
that (x1,...,2,...,2) € T; for all z; € X;. A subset T C X is a cylinder
intersection if it is an intersection T' = T1NT5N- - -NTy, where T; is a cylinder
in the i-th dimension. The discrepancy of a function f : X — {—1,1} on a set
T is the absolute value of the sum of the values of f on points in T, divided
by the total number |X| of points:
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> f)

The discrepancy of f is the maximum disc(f) = maxyp discy(f) over all cylin-
der intersections T' C X.

The importance of this measure stems from the fact that functions with
small discrepancy have large multi-party communication complezity. (We will
discuss this in Sect. 27.4 devoted to multi-party games.) However, this fact
alone does not give immediate lower bounds for the multi-party communica-
tion complexity, because disc(f) is very hard to estimate. Fortunately, the
discrepancy can be bounded from above using the following more tractable
measure.

discr(f

1
)TN

a; &) Ak
b by b
Fig. 18.2 A cube

A k-dimensional cube is defined to be a multi-set D = {ay1,b1} x -+ X
{ak,br}, where a;,b; € X; (not necessarily distinct) for all i. Being a multi-
set means that one element can occur several times. Thus, for example, the
cube D = {ay, a1} x --- x {ax, ax} has 2% elements.

Given a function f: X — {—1,1} and a cube D C X, define the sign of f

on D to be the value
f) =11 f@.
x€D

Hence, f(D) = 1 if and only if f(z) = —1 for an even number of vectors
x € D. We choose a cube D at random according to the uniform distribution.
This can be done by choosing a;, b; € X; for each i according to the uniform
distribution. Let
() =) =E| ] 1)
zeD
be the expected value of the sign of a random cube D. To stress the fact that

the expectation is taken over a particular random object (this time, over D)
we will also write Ep [f(D)] instead of E [f(D)].

Ezample 18.16. The difference between the measures disc(f) and £(f) can
best be seen in the case when k = 2. In this case X = X7 x X5 is just a grid,
and each function f : X — {—1,1} is just a =1 matrix M;. Cylinder inter-
sections " C X in this case correspond to submatrices of My, and discr(f)
is just the sum of all entries in T divided by |X|. Thus, to determine disc(f)
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we must consider all submatrices of M. In contrast, to determine £(f) it is
enough to only consider all s x ¢ submatrices with 1 < s,¢ < 2.

The following result was proved in Chung (1990) and generalizes a similar
result from Babai et al. (1992).

Theorem 18.17. For every f : X — {—1,1},
disc(f) < £(f)V/*" .

The theorem is very useful because £(f) is a much simpler object than
disc(f). For many functions f, it is relatively easy to compute E(f) exactly
(we will show this in the next section). In Chung and Tetali (1993), £(f) was
computed for some explicit functions, resulting in the highest known lower
bounds for the multi-party communication complexity of these functions.

Proof (due to Raz 2000). We will only prove the theorem for k = 2; the
general case is similar. So let X = X; x Xy and f : X — {—1,1} be a
given function. Our goal is to show that disc(f) < £(f)Y/%. To do this, pick
at random (uniformly and independently) an element & € X. The proof
consists of showing two claims.

Claim 18.18. For all functions h: X — {—1,1}, £(h) > (Eg [h(z)])*.

Claim 18.19. There exists & such that |Eq [h(z)]| > disc(f) and E(h) =
E(f)-

Together, these two claims imply the theorem (for k = 2):

E(f) = E(h) > (Ba [h(@)])" = > disc(f)*.

In the proof of these two claims we will use two known facts about the mean
value of random variables:

E[¢?] >E [€)>  for any random variable ; (18.8)

and
E[¢-¢)=E[¢-E[¢] if € and ¢ are independent. (18.9)

The first one is a consequence of the Cauchy—Schwarz inequality, and the
second is a basic property of expectation.

Proof of Claim 18.18. Take a random 2-dimensional cube D = {a,a’} X
{b,0'}. Then
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€)= B (WD) = Ep | T] hto)

2D
=Eq o Epp [R(a,b) - h(a,b") - h(a',b) - h(a', )]
= Eaa | (Ey [h(a,0) - h(a’, b)) by (18.9)

> (a0 By [A(a,b) - h(a’, b)))* by (18.8)

= (EqEy [(a,b)])’ Pr (') = Pr|a]
= (B (B (@, 5)?) by (189)
> (Ea [h(a,b)])* by (18.8). O

Proof of Claim 18.19. Let T = A X B be a cylinder intersection (a submatrix
of X, since k = 2) for which disc(f) is attained. We prove the existence
of h by the probabilistic method. The idea is to define a random function
g : X1 x X9 — {—1,1} such that the expected value E [g(z)] = Eq [g(z)] is
the characteristic function of T'. For this, define g to be the product g(z) =
g1 () - go(z) of two random functions, whose values are defined on the points
xr = (a,b) c X1 x Xo by

1 if a € A;
gl(a7 b) = .
set randomly to £1  otherwise

and

1 if b € B;
g2 (a7 b) = .
set randomly to £1  otherwise.

These function have the property that g; depends only on the rows and
g, only on the columns of the grid X; x X,. That is, g,(a,b) = g,(a,b’)
and g,(a,b) = g5(a’,b) for all a,a’ € X7 and b,b' € X,. Hence, for z € T,
g(x) = 1 with probability 1, while for ¢ T, g(x) = 1 with probability 1/2
and g(z) = —1 with probability 1/2; this is so because the functions g, g,
are independent of each other, and x € T iff & Ax X5 or x & X; x B. Thus,
the expectation E [g(z)] takes the value 1 on all x € T, and takes the value
1+ (-3)=0onallz ¢T,ie., E[g(x)] is the characteristic function of the

set T':
1 ifzeT,
Ew@”:{o itz g T
Now let  be a random vector uniformly distributed in X = X; x Xs. Then
diser(f) = |E [f(2) - Eg [9(2)]] | = [E<Eq [f(2) - g()] |
= {EQEfE [f(x) - g(x)] | .

So there exists some choice of g = g1 - g2 such that
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[Ez [f(2) - g(2)]| = discr(f)

and we can take h(z) := f(z) - g(x). Then |Eq [h(z)]| > disc(f). Moreover,
E(h) = &(f) because g; is constant on the rows and go is constant on the
columns so the product g(D) =[], g(x) cancels to 1. O

This completes the proof of Theorem 18.17 in case k = 2. To extend it for
arbitrary k, just repeat the argument k times. O

Say that a (0,1) matrix A is odd if the number of its all-1 rows is odd.
Note that, if the matrix has only two columns, then it is odd iff the scalar (or
inner) product of these columns over GF(2) is 1. By this reason, a boolean
function, detecting whether a given matrix is odd, is called the “generalized
inner product” function. We will assume that input matrices have n rows and
k columns.

That is, the generalized inner product function GIP(z) is a boolean function
in kn variables, arranged in an n x k matrix « = (x;5), and is defined by:

n k
GIP(J?) = @ /\ Tij -

i=1 j=1

Since we want our function to have range {—1,1}, we will consider the func-

tion
n

f(l‘) — (_1)GIP(z) — H(_l)milm'ﬂ‘“zik ) (18.10)

i=1

Theorem 18.20. For the +1 version f(x) of the generalized inner product
function we have that

E(f) = (1 - Qik)n (18.11)

Proof. In our case, the function f is a mapping f : X3 xXax--- X, — {—1,1},
where the elements of each set X; are column vectors of length n. Hence, a
cube D in our case is specified by two n x k (0,1) matrices A = (a,;) and
B = (bij). The cube D consists of all 2¥ n x k matrices, the j-th column in
each of which is either the j-th column of A or the j-th column of B. By
(18.10), we have that

fD) = T] f2) =[] [J(-p)reeeon with z;; € {as;, bij}
zeD zeD i=1
— H H (_1)Iilzi2“‘zik
i=lxeD

_ H(_1)(ail+b'i1)(a'i2+bi2)"'(az‘k+bik) .
i=1
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Note that the exponent (a;1 + bi1)(ai2 + bi2) - - - (@i, + bix) is even if a;; = by;
for at least one 1 < j < k, and is equal to 1 in the unique case when a;; # b;;
for all j =1,...,k, that is, when the i-th row of B is complementary to the
i-th row of A. Thus,

f(D) = —1 iff the number of complementary rows in A and B is odd.

Now, £(f) is the average of the above quantity over all choices of matrices A
and B. We fix the matrix A and show that the expectation over all matrices
B is precisely the right-hand side of (18.11). Let Ay,..., A, be the rows of
A and By, ..., B, be the rows of B. Then f(D) =[]\, g(B;), where

+1 B #A @1,

B;) := (—1)(@itbin)(aiztbiz) - (aix+bir) —
9(Bi) = (1) 1 B =A&1.

Thus, for every fixed matrix A, we obtain that

Bs| [T =T[Enlom) by (189
=TI 5 0B
=1 B;
L5 @)

18.11 Large deviation inequalities

A simple, but one of the most basic inequalities concerning the expectation
of random variables states that a non-negative random variable X can take
values much larger than E [X] with only small probability.

Theorem 18.21 (Markov’s Inequality). If X is a non-negative random vari-
able then, for every real number a > 0,
E [X]

Pr(X >a] < , thatis, Pr[X>a-E[X]] <
a

ISHE

Proof.

EX]=)i-Pr[X=i>> a-Pr[X=il=a Pr[X >ad]. 0
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Intuitively, when a < E[X] the inequality is trivial. For a > E[X], it
means the larger a is relative to the mean, the harder it is to have X > a.

In particular, if Ay,..., A, is a sequence of events, then Markov’s inequality
and the linearity of expectation (of their indicator random variables) implies
that

> iy PrAd]

Pr [fewer than k events hold] > 1 — -

In Markov’s inequality, X can be an arbitrary non-negative random variable.
In applications, however, X is often a sum of independent random variables.
In these cases, Markov’s inequality can be substantially sharpened. The main
observation (due to Sergei Bernstein) is that, if X is a random variable and
t > 0, then Markov’s inequality yields

Pr[X > a] = Pr[e'® > '] < E[e!*]. e, (18.12)

There are many resulting inequalities known under a common name “Cher-
noff’s inequalities.” We mention just one of them.

Theorem 18.22 (Chernoff’s Inequality). Let X1, ..., X,, be independent ran-
dom wvariables taking their values in the interval [0,1]. Let X = X1 +---+ X,
and pn = E[X]. Then, for every real number a > 0, both Pr[X > p+ a] and

—a?/2n

Pr[X < p—a] are at most e

Note that the variables X; need not be 0-1 variables: they can take arbi-
trary real values in the interval [0, 1]. Important restriction, however, is that
these variables must be independent.

Proof. Consider random variables Y; = X; — E[X;]. Then E [¥;] = 0 and for
theirsumY =Y;+---+Y, wehave that Y = > | X;—> " | E[X;] = X —p.
Using (18.12) we have for every ¢t > 0,

Pr[X > it = Pr[y > ] <e B [¢] = o B[edl ]
= e*t“E[HetYl} =e HE [e™] (18.13)
i=1 i=1

where in the last equality we used the independence of random variables Y;,
and hence, also of random variables etY.

In order to estimate E[e!¥?] from above, consider the function f(z) = e!*
and its derivatives. Since ¢ > 0, the second derivative f”(z) is positive, mean-
ing that f(x) is convex. Let ¢ + dz be a line through the points (—1, f(—1))
and (1, f(1)). Then ¢ —d = f(—1)=e " and ¢+ d = f(1) = €', from which

t et t ot

c= % and d= %
follows. Since f(x) is convex, all values f(x) with « € [—1, 1] must lie below
the line c+dx, that is, e’ = f(z) < c+dx for all z € [—1,1]. Since E[V;] = 0,
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we obtain
1
E[e™] <E[c+dYi]=c+d-E[Y;]=c 5(6 +e7 ).
Using the Taylor series e” = Zzo:o 2F k! we get
iy 1 2 B
Ble] < 5 (141 )
[e"i] < LCREAT +3,+ +-
+1(1 t+t2 t3+t4 )
2 2l 3! 4!
2 12k
— 14— ... ..
atat ot e T
2 t4 t2k i
2 ok
— il il _ 42
1+x+2|+ +k'+ for x =t2/2
=et/2

Together with (18.13) this gives the upper bound
Pr[X > pi+a] < e fottn/2,

The desired upper bound Pr[X > p+a] < e=2°/") now follows by taking
t=a/n.

To prove the second inequality Pr[X < u—a] < e*“2/2", it is enough to
consider the random variable X’ := —X. Then X < u — a if and only if
X' > ' + a, where ¢/ = E[X'] = —p. O

For sums of uniformly distributed +1 random variables we have the follow-
ing bounds. Let Y =Y; +--- 4+ Y, where Pr[Y; = +1] =Pr[Y; = —1] = 1/2
and the Y; are mutually independent. Then for any a > 0, both Pr[Y > q]
and Pr[Y < —a] are smaller than e~®/2n.,

Using Jensen’s inequality to upper bound E [etXi], the following more
general inequality can be derived: If X7,...,X,, are mutually independent
random variables with | X;| < ¢; and E [X;] = 0, then

a2
PT[X]_++Xn >a] <eXp<—m) .
For sums of independent 0-1 random variables, the proof of Theorem 18.22
yields somewhat tighter bounds. Let X = X; + -+ + X, be the sum of
independent 0-1 random variables with Pr[X; = 1] = p;. Let p = E[X] =
P14+ -+ =+ pn. Since each X; can only take values 0 or 1, the random variable
e!Xi can also take only values 1 or e’. Hence, setting a = (1 + d)u and
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t =1In(1+¢) in (18.12) and using the estimate
E[(1+0)Y] =p;i-(1+68) + (1 —pi) - 1 =1+6p; <
we obtain that
Pr[X > (14 0)u] < e¥(146)~1F0n,

Depending on how large the parameter J is, one obtains different estimates.
For example, if § > 2e — 1 then (1+8)™% > (2e)'9 > 21495 and we obtain
that

Pr(X > (14 0)u) < 2”0+

in this case. If 0 < § < 1, then simple calculus yields
PriX > (146 <e %r/3.

Similarly, Pr[X < (1 —6)u] < e=%#/2 holds for all § > 0.

Exercises

18.1. We have n letters going to n different persons and n envelopes with
their addresses. We insert each letter into an envelope independently from
each other at random (several letters may go in the same envelope). What is
the expected number of correct matches? (Answer: E = 1.)

18.2. There are k people in a lift at the ground floor. Each wants to get off
at a random floor of one of the n upper floors. What is the expected number
of lift stops? Hint: Consider the indicator random variables X; for the events that at
least one person is off at the i-th floor, and apply the linearity of expectation. Answer:
E=n(l1-1-1/n)k).

18.3. Let {2 be a uniform sample space, and let X : 2 — {0,1,..., M} be a
random variable with the expectation 4 = M — a for some a. Prove that then,
forany 1 <b< M, Pr [X > M — b} > (b — a)/b. Hint: Let B be the set of those
points w € 2 for which X (w) < M —b. Then Pr[B]- (M —b) +Pr [B] - M > M —a, or
Pr[B] < a/b.

18.4. Let T be a random tourname