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Preface

Preface to the First Edition

Combinatorial mathematics has been pursued since time immemorial, and
at a reasonable scientific level at least since Leonhard Euler (1707–1783). It
rendered many services to both pure and applied mathematics. Then along
came the prince of computer science with its many mathematical problems
and needs – and it was combinatorics that best fitted the glass slipper held out.
Moreover, it has been gradually more and more realized that combinatorics
has all sorts of deep connections with “mainstream areas” of mathematics,
such as algebra, geometry and probability. This is why combinatorics is now
a part of the standard mathematics and computer science curriculum.
This book is as an introduction to extremal combinatorics – a field of com-

binatorial mathematics which has undergone a period of spectacular growth
in recent decades. The word “extremal” comes from the nature of problems
this field deals with: if a collection of finite objects (numbers, graphs, vectors,
sets, etc.) satisfies certain restrictions, how large or how small can it be?
For example, how many people can we invite to a party where among each

three people there are two who know each other and two who don’t know
each other? An easy Ramsey-type argument shows that at most five persons
can attend such a party. Or, suppose we are given a finite set of nonzero
integers, and are asked to mark an as large as possible subset of them under
the restriction that the sum of any two marked integers cannot be marked.
It turns out that (independent of what the given integers actually are!) we
can always mark at least one-third of them.
Besides classical tools, like the pigeonhole principle, the inclusion-exclusion

principle, the double counting argument, induction, Ramsey argument, etc.,
some recent weapons – the probabilistic method and the linear algebra
method – have shown their surprising power in solving such problems. With
a mere knowledge of the concepts of linear independence and discrete prob-
ability, completely unexpected connections can be made between algebra,
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probability, and combinatorics. These techniques have also found striking ap-
plications in other areas of discrete mathematics and, in particular, in the
theory of computing.
Nowadays we have comprehensive monographs covering different parts of

extremal combinatorics. These books provide an invaluable source for stu-
dents and researchers in combinatorics. Still, I feel that, despite its great po-
tential and surprising applications, this fascinating field is not so well known
for students and researchers in computer science. One reason could be that,
being comprehensive and in-depth, these monographs are somewhat too dif-
ficult to start with for the beginner. I have therefore tried to write a “guide
tour” to this field – an introductory text which should

- be self-contained,
- be more or less up-to-date,
- present a wide spectrum of basic ideas of extremal combinatorics,
- show how these ideas work in the theory of computing, and
- be accessible to graduate and motivated undergraduate students in
mathematics and computer science.

Even if not all of these goals were achieved, I hope that the book will at
least give a first impression about the power of extremal combinatorics, the
type of problems this field deals with, and what its methods could be good
for. This should help students in computer science to become more familiar
with combinatorial reasoning and so be encouraged to open one of these
monographs for more advanced study.
Intended for use as an introductory course, the text is, therefore, far from

being all-inclusive. Emphasis has been given to theorems with elegant and
beautiful proofs: those which may be called the gems of the theory and may
be relatively easy to grasp by non-specialists. Some of the selected arguments
are possible candidates for The Book, in which, according to Paul Erdős, God
collects the perfect mathematical proofs.∗ I hope that the reader will enjoy
them despite the imperfections of the presentation.
A possible feature and main departure from traditional books in combina-

torics is the choice of topics and results, influenced by the author’s twenty
years of research experience in the theory of computing. Another departure
is the inclusion of combinatorial results that originally appeared in computer
science literature. To some extent, this feature may also be interesting for
students and researchers in combinatorics. In particular, some impressive
applications of combinatorial methods in the theory of computing are dis-
cussed.

Teaching. The text is self-contained. It assumes a certain mathematical
maturity but no special knowledge in combinatorics, linear algebra, prob-
∗ “You don’t have to believe in God but, as a mathematician, you should believe in The
Book.” (Paul Erdős)

For the first approximation see M. Aigner and G.M. Ziegler, Proofs from THE BOOK.
Second Edition, Springer, 2000.
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ability theory, or in the theory of computing — a standard mathematical
background at undergraduate level should be enough to enjoy the proofs. All
necessary concepts are introduced and, with very few exceptions, all results
are proved before they are used, even if they are indeed “well-known.” For-
tunately, the problems and results of combinatorics are usually quite easy to
state and explain, even for the layman. Its accessibility is one of its many
appealing aspects.
The book contains much more material than is necessary for getting ac-

quainted with the field. I have split it into relatively short chapters, each
devoted to a particular proof technique. I have tried to make the chapters
almost independent, so that the reader can choose his/her own order to fol-
low the book. The (linear) order, in which the chapters appear, is just an
extension of a (partial) order, “core facts first, applications and recent devel-
opments later.” Combinatorics is broad rather than deep, it appears in dif-
ferent (often unrelated) corners of mathematics and computer science, and it
is about techniques rather than results – this is where the independence of
chapters comes from.
Each chapter starts with results demonstrating the particular technique in

the simplest (or most illustrative) way. The relative importance of the topics
discussed in separate chapters is not reflected in their length – only the topics
which appear for the first time in the book are dealt with in greater detail.
To facilitate the understanding of the material, over 300 exercises of varying
difficulty, together with hints to their solution, are included. This is a vital
part of the book – many of the examples were chosen to complement the
main narrative of the text. Some of the hints are quite detailed so that they
actually sketch the entire solution; in these cases the reader should try to fill
out all missing details.

Acknowledgments. I would like to thank everybody who was directly
or indirectly involved in the process of writing this book. First of all, I am
grateful to Alessandra Capretti, Anna Gál, Thomas Hofmeister, Daniel Kral,
G. Murali Krishnan, Martin Mundhenk, Gurumurthi V. Ramanan, Martin
Sauerhoff and P.R. Subramania for comments and corrections.
Although not always directly reflected in the text, numerous earlier discus-

sions with Anna Gál, Pavel Pudlák, and Sasha Razborov on various combina-
torial problems in computational complexity, as well as short communications
with Noga Alon, Aart Blokhuis, Armin Haken, Johan Håstad, Zoltan Füredi,
Hanno Lefmann, Ran Raz, Mike Sipser, Mario Szegedy, and Avi Wigder-
son, have broadened my understanding of things. I especially benefited from
the comments of Aleksandar Pekec and Jaikumar Radhakrishnan after they
tested parts of the draft version in their courses in the BRICS International
Ph.D. school (University of Aarhus, Denmark) and Tata Institute (Bombay,
India), and from valuable comments of László Babai on the part devoted to
the linear algebra method.
I would like to thank the Alexander von Humboldt Foundation and the

German Research Foundation (Deutsche Forschungsgemeinschaft) for sup-
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porting my research in Germany since 1992. Last but not least, I would like
to acknowledge the hospitality of the University of Dortmund, the University
of Trier and the University of Frankfurt; many thanks, in particular, to Ingo
Wegener, Christoph Meinel and Georg Schnitger, respectively, for their help
during my stay in Germany. This was the time when the idea of this book
was born and realized. I am indebted to Hans Wössner and Ingeborg Mayer
of Springer-Verlag for their editorial help, comments and suggestions which
essentially contributed to the quality of the presentation in the book.
My deepest thanks to my wife, Daiva, and my daughter, Indrė, for being

there.

Frankfurt/Vilnius March 2001 Stasys Jukna

Preface to the Second Edition

This second edition has been extended with substantial new material, and
has been revised and updated throughout. In particular, it offers three new
chapters about expander graphs and eigenvalues, the polynomial method and
error-correcting codes. Most of the remaining chapters also include new ma-
terial such as the Kruskal–Katona theorem about shadows, the Lovász–Stein
theorem about coverings, large cliques in dense graphs without induced 4-
cycles, a new lower bounds argument for monotone formulas, Dvir’s solution
of finite field Kakeya’s conjecture, Moser’s algorithmic version of the Lovász
Local Lemma, Schöning’s algorithm for 3-SAT, the Szemerédi–Trotter the-
orem about the number of point-line incidences, applications of expander
graphs in extremal number theory, and some other results. Also, some proofs
are made shorter and new exercises are added. And, of course, all errors and
typos observed by the readers in the first edition are corrected.
I received a lot of letters from many readers pointing to omissions, errors

or typos as well as suggestions for alternative proofs – such an enthusiastic
reception of the first edition came as a great surprise. The second edition
gives me an opportunity to incorporate all the suggestions and corrections in
a new version. I am therefore thankful to all who wrote me, and in particular
to: S. Akbari, S. Bova, E. Dekel, T. van Erven, D. Gavinsky, Qi Ge, D. Gun-
derson, S. Hada, H. Hennings, T. Hofmeister, Chien-Chung Huang, J. Hün-
ten, H. Klauck, W. Koolen-Wijkstra, D. Krämer, U. Leck, Ben Pak Ching
Li, D. McLaury, T. Mielikäinen, G. Mota, G. Nyul, V. Petrovic, H. Proth-
mann, P. Rastas, A. Razen, C. J. Renteria, M. Scheel, N. Schmitt, D. Sieling,
T. Tassa, A. Utturwar, J. Volec, F. Voloch, E. Weinreb, A. Windsor, R. de
Wolf, Qiqi Yan, A. Zilberstein, and P. Zumstein.
I thank everyone whose input has made a difference for this new edition.

I am especially thankful to Thomas Hofmeister, Detlef Sieling and Ronald
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de Wolf who supplied me with the reaction of their students. The “error-
probability” in the 2nd edition was reduced by Ronald de Wolf and Philipp
Zumstein who gave me a lot of corrections for the new stuff included in
this edition. I am especially thankful to Ronald for many discussions—his
help was extremely useful during the whole preparation of this edition. All
remaining errors are entirely my fault.

Finally, I would like to acknowledge the German Research Foundation
(Deutsche Forschungsgemeinschaft) for giving an opportunity to finish the
2nd edition while working within the grant SCHN 503/5-1.

Frankfurt/Vilnius August 2011 S. J.



Notation

In this section we give the notation that shall be standard throughout the
book.

Sets

We deal exclusively with finite objects. We use the standard set-theoretical
notation:

• |X | denotes the size (the cardinality) of a set X .
• A k-set or k-element set is a set of k elements.
• [n] = {1, 2, . . . , n} is often used as a “standard” n-element set.
• A \B = {x : x ∈ A and x �∈ B}.
• A = X\A is the complement of A.
• A⊕B = (A \B) ∪ (B \A) (symmetric difference).
• A×B = {(a, b) : a ∈ A, b ∈ B} (Cartesian product).
• A ⊆ B if B contains all the elements of A.
• A ⊂ B if A ⊆ B and A �= B.
• 2X is the set of all subsets of the set X . If |X | = n then |2X | = 2n.
• A permutation of X is a one-to-one mapping (a bijection) f : X → X .
• {0, 1}n = {(v1, . . . , vn) : vi ∈ {0, 1}} is the (binary) n-cube.
• 0-1 vector (matrix) is a vector (matrix) with entries 0 and 1.
• A unit vector ei is a 0-1 vector with exactly one 1 in the i-th position.
• An m× n matrix is a matrix with m rows and n columns.
• The incidence vector of a set A ⊆ {x1, . . . , xn} is a 0-1 vector v =
(v1, . . . , vn), where vi = 1 if xi ∈ A, and vi = 0 if xi �∈ A.

• The characteristic function of a subset A ⊆ X is the function f : X →
{0, 1} such that f(x) = 1 if and only if x ∈ A.

Arithmetic

Some of the results are asymptotic, and we use the standard asymptotic
notation: for two functions f and g, we write f = O(g) if f ≤ c1g + c2 for
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all possible values of the two functions, where c1, c2 are absolute constants.
We write f = Ω(g) if g = O(f), and f = Θ(g) if f = O(g) and g = O(f).
If the limit of the ratio f/g tends to 0 as the variables of the functions tend
to infinity, we write f = o(g). Finally, f � g means that f ≤ (1 + o(1))g,
and f ∼ g denotes that f = (1 + o(1))g, i.e., that f/g tends to 1 when the
variables tend to infinity. If x is a real number, then �x� denotes the smallest
integer not less than x, and 
x� denotes the greatest integer not exceeding
x. As customary, Z denotes the set of integers, R the set of reals, Zn an
additive group of integers modulo n, and GF(q) (or Fq) a finite Galois field
with q elements. Such a field exists as long as q is a prime power. If q = p is
a prime then Fp can be viewed as the set {0, 1, . . . , p− 1} with addition and
multiplication performed modulo p. The sum in F2 is often denoted by ⊕,
that is, x⊕ y stands for x+ y mod 2. We will often use the so-called Cauchy–
Schwarz inequality (see Proposition 13.4 for a proof): if a1, . . . , an and b1, . . .,
bn are real numbers then( n∑

i=1
aibi

)2
≤

( n∑
i=1

a2
i

)( n∑
i=1

b2
i

)
.

If not stated otherwise, e = 2.718... will always denote the base of the
natural logarithm.

Graphs

A graph is a pair G = (V,E) consisting of a set V , whose members are
called vertices (or nodes), and a family E of 2-element subsets of V , whose
members are called edges. A vertex v is incident with an edge e if v ∈ e. The
two vertices incident with an edge are its endvertices or endpoints, and the
edge joins its ends. Two vertices u, v of G are adjacent, or neighbors, if {u, v}
is an edge of G. The number d(u) of neighbors of a vertex u is its degree. A
walk of length k in G is a sequence v0, e1, v1 . . . , ek, vk of vertices and edges
such that ei = {vi−1, vi}. A walk without repeated vertices is a path. A walk
without repeated edges is a trail. A cycle of length k is a path v0, . . . , vk with
v0 = vk. A (connected) component in a graph is a set of its vertices such that
there is a path between any two of them. A graph is connected if it consists
of one component. A tree is a connected graph without cycles. A subgraph
is obtained by deleting edges and vertices. A spanning subgraph is obtained
by deleting edges only. An induced subgraph is obtained by deleting vertices
(together with all the edges incident to them).
A complete graph or clique is a graph in which every pair is adjacent. An

independent set in a graph is a set of vertices with no edges between them.
The greatest integer r such that G contains an independent set of size r is
the independence number of G, and is denoted by α(G). A graph is bipartite
if its vertex set can be partitioned into two independent sets.
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A legal coloring of G = (V,E) is an assignment of colors to each vertex
so that adjacent vertices receive different colors. In other words, this is a
partition of the vertex set V into independent sets. The minimum number of
colors required for that is the chromatic number χ(G) of G.

Set systems

A set system or family of sets F is a collection of sets. Because of their intimate
conceptual relation to graphs, a set system is often called a hypergraph. A
family is k-uniform if all its members are k-element sets. Thus, graphs are
k-uniform families with k = 2.
In order to prove something about families of sets (as well as to interpret

the results) it is often useful to keep in mind that any family can be looked
at either as a 0-1 matrix or as a bipartite graph.
Let F = {A1, . . . , Am} be a family of subsets of a set X = {x1, . . . , xn}.

The incidence matrix of F is an n × m 0-1 matrix M = (mi,j) such that
mi,j = 1 if and only if xi ∈ Aj . Hence, the j-th column of M is the incidence
vector of the set Aj . The incidence graph of F is a bipartite graph with parts
X and F , where xi and Aj are joined by an edge if and only if xi ∈ Aj .

A

B

A

B

B C
C

C

1 0 0

0

0

01

1

0

00

1

1

0

2

4

5

1

1

3

5

1

4

2

1

2

3 5

4

A

3

Fig. 0.1 Three representations of the family F = {A,B,C} over the set of points
X = {1, 2, 3, 4, 5} with A = {1, 2, 3}, B = {2, 4} and C = {5}.

For small n, the system of all subsets of an n-element set, ordered by set-
inclusion, can be represented by a so-called Hasse diagram. The k-th level
here contains all k-element subsets, k = 0, 1, . . . , n.

0 0 0

1 1 0

0 1 0
0 0 11 0 0 

1 0 1

1 1 1

0 1 1

{a,b,c}

{a,b}

{c}

{a,c}

{a} {b}

O

{b,c}

Fig. 0.2 A Hasse diagram of the family of all subsets of {a,b,c} ordered by set-inclusion,
and the set of all binary strings of length three; there is an edge between two strings if
and only if they differ in exactly one position.
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Part I
The Classics

 
 

 





1. Counting

We start with the oldest combinatorial tool — counting.

1.1 The binomial theorem

Given a set of n elements, how many of its subsets have exactly k elements?
This number (of k-element subsets of an n-element set) is usually denoted by(
n
k

)
and is called the binomial coefficient. Put otherwise,

(
n
k

)
is the number

of possibilities to choose k distinct objects from a collection on n distinct
objects.
The following identity was proved by Sir Isaac Newton in about 1666, and

is known as the Binomial theorem.

Binomial Theorem. Let n be a positive integer. Then for all x and y,

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k .

Proof. If we multiply the terms

(x+ y)n = (x+ y) · (x+ y) · . . . · (x+ y)︸ ︷︷ ︸
n−times

,

then, for every k = 0, 1, . . . , n, there are exactly
(
n
k

)
possibilities to obtain

the term xkyn−k. Why? We obtain the term xkyn−k precisely if from n pos-
sibilities (terms x+ y) we choose the first number x exactly k times. ��
Note that this theorem just generalizes the known equality:

(x + y)2 =
(
2
0

)
x0y2 +

(
2
1

)
x1y1 +

(
2
2

)
x2y0 = x2 + 2xy + y2 .
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1 Counting

Be it so simple, the binomial theorem has many applications.

Example 1.1 (Parity of powers). To give a typical example, let us show the
following property of integers: If n, k are natural numbers, then nk is odd iff
n is odd.
One direction (⇒) is trivial: If n = 2m is even, then nk = 2k(mk) must

be also even. To show the other direction (⇐), assume that n is odd, that
is, has the form n = 2m+ 1 for a natural number m. The binomial theorem
with x = 2m and y = 1 yields:

nk = (2m+ 1)k = 1 + (2m)1
(
k

1

)
+ (2m)2

(
k

2

)
+ · · ·+ (2m)k

(
k

k

)
.

That is, the number nk has the form “1 plus an even number”, and must be
odd.

The factorial of n is the product n! := n(n − 1) · · · 2 · 1. This is extended
to all non-negative integers by letting 0! = 1. The k-th factorial of n is the
product of the first k terms:

(n)k :=
n!

(n − k)! = n(n − 1) · · · (n − k + 1) .

Note that
(
n
0
)
= 1 (the empty set) and

(
n
n

)
= 1 (the whole set). In general,

binomial coefficients can be written as quotients of factorials:

Proposition 1.2. (
n

k

)
= (n)k

k! =
n!

k!(n− k)! .

Proof. Observe that (n)k is the number of (ordered!) strings (x1, x2, . . . , xk)
consisting of k different elements of a fixed n-element set: there are n possibil-
ities to choose the first element x1; after that there are still n−1 possibilities
to choose the next element x2, etc. Another way to produce such strings is
to choose a k-element set and then arrange its elements in an arbitrary order.
Since each of

(
n
k

)
k-element subsets produces exactly (k)k = k! such strings,

we conclude that (n)k =
(
n
k

)
k!. ��

There are a lot of useful equalities concerning binomial coefficients. In
most situations, using their combinatorial nature (instead of algebraic, as
given by the previous proposition) we obtain the desired result fairly easily.
For example, if we observe that each subset is uniquely determined by its
complement, then we immediately obtain the equality(

n

n− k

)
=

(
n

k

)
. (1.1)

By this equality, for every fixed n, the value of the binomial coefficient(
n
k

)
increases till the middle and then decreases. By the binomial theorem,

4



1.1 The binomial theorem

the sum of all these n + 1 coefficients is equal to the total number 2n of all
subsets of an n-element set:

n∑
k=0

(
n

k

)
=

n∑
k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n .

In a similar (combinatorial) way other useful identities can be established
(see Exercises for more examples).

Proposition 1.3 (Pascal Triangle). For every integers n ≥ k ≥ 1, we have(
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
.

Proof. The first term
(
n−1
k−1

)
is the number of k-sets containing a fixed element,

and the second term
(
n−1
k

)
is the number of k-sets avoiding this element; their

sum is the whole number
(
n
k

)
of k-sets. ��

For growing n and k, exact values of binomial coefficients
(
n
k

)
are hard

to compute. In applications, however, we are often interested only in their
rate of growth, so that (even rough) estimates suffice. Such estimates can be
obtained, using the Taylor series of the exponential and logarithmic functions:

et = 1 + t+ t2

2! +
t3

3! + · · · for all t ∈ R (1.2)

and

ln(1 + t) = t − t2

2 +
t3

3 − t4

4 + · · · for −1 < t ≤ 1. (1.3)

This, in particular, implies some useful estimates:

1 + t < et for all t 	= 0, (1.4)

1− t > e−t−t
2/2 for all 0 < t < 1. (1.5)

Proposition 1.4.

(n
k

)k
≤

(
n

k

)
and

k∑
i=0

(
n

i

)
≤

(en
k

)k
. (1.6)

Proof. Lower bound:(n
k

)k
= n

k
· n
k

· · · n
k

≤ n

k
· n− 1
k − 1 · · · n− k + 1

1 =
(
n

k

)
.

Upper bound: for 0 < t ≤ 1 the inequality

5



1 Counting

k∑
i=0

(
n

i

)
≤

k∑
i=0

(
n

i

)
ti

tk
= (1 + t)

n

tk

follows from the binomial theorem. Now substitute t = k/n and use (1.4). ��
Tighter (asymptotic) estimates can be obtained using the famous Stirling

formula for the factorial:

n! =
(n
e

)n √
2πn eαn , (1.7)

where 1/(12n+ 1) < αn < 1/12n. This leads, for example, to the following
elementary but very useful asymptotic formula for the k-th factorial:

(n)k = nke−
k2
2n− k3

6n2 +o(1) valid for k = o(n3/4), (1.8)

and hence, for binomial coefficients:

(
n

k

)
= nke−

k2
2n− k3

6n2

k! (1 + o(1)) . (1.9)

1.2 Selection with repetitions

In the previous section we considered the number of ways to choose r distinct
elements from an n-element set. It is natural to ask what happens if we can
choose the same element repeatedly. In other words, we may ask how many
integer solutions does the equation x1+ · · ·+xn = r have under the condition
that xi ≥ 0 for all i = 1, . . . , n. (Look at xi as the number of times the i-
th element was chosen.) The following more entertaining formulation of this
problem was suggested by Lovász, Pelikán, and Vesztergombi (1977).
Suppose we have r sweets (of the same sort), which we want to distribute

to n children. In how many ways can we do this? Letting xi denote the
number of sweets we give to the i-th child, this question is equivalent to that
stated above.
The answer depends on how many sweets we have and how fair we are.

If we are fair but have only r ≤ n sweets, then it is natural to allow no
repetitions and give each child no more than one sweet (each xi is 0 or 1). In
this case the answer is easy: we just choose those r (out of n) children who
will get a sweet, and we already know that this can be done in

(
n
r

)
ways.

Suppose now that we have enough sweets, i.e., that r ≥ n. Let us first be
fair, that is, we want every child gets at least one sweet. We lay out the sweets
in a single row of length r (it does not matter in which order, they all are
alike), and let the first child pick them up from the left to right. After a while
we stop him/her and let the second child pick up sweets, etc. The distribution

6



1.3 Partitions

of sweets is determined by specifying the place (between consecutive sweets)
of where to start with a new child. There are r−1 such places, and we have to
select n−1 of them (the first child always starts at the beginning, so we have
no choice here). For example, if we have r = 9 sweets and n = 6 children, a
typical situation looks like this:

� � � � � � � � � � � � � �
2 3 4 5 6

Thus, we have to select an (n − 1)-element subset from an (r − 1)-element
set. The number of possibilities to do so is

(
r−1
n−1

)
. If we are unfair, we have

more possibilities:

Proposition 1.5. The number of integer solutions to the equation

x1 + · · ·+ xn = r

under the condition that xi ≥ 0 for all i = 1, . . . , n, is
(
n+r−1

r

)
.

Proof. In this situation we are unfair and allow that some of the children may
be left without a sweet. With the following trick we can reduce the problem
of counting the number of such distributions to the problem we just solved:
we borrow one sweet from each child, and then distribute the whole amount
of n+ r sweets to the children so that each child gets at least one sweet. This
way every child gets back the sweet we borrowed from him/her, and the lucky
ones get some more. This “more” is exactly r sweets distributed to n children.
We already know that the number of ways to distribute n + r sweets to n
children in a fair way is

(
n+r−1
n−1

)
, which by (1.1) equals

(
n+r−1

r

)
. ��

1.3 Partitions

A partition of n objects is a collection of its mutually disjoint subsets, called
blocks, whose union gives the whole set. Let S(n; k1, k2, . . . , kn) denote the
number of all partitions of n objects with ki i-element blocks (i = 1, . . . , n;
k1 + 2k2 + . . .+ nkn = n). That is,

ki = the number of i-element blocks in a partition.

Proposition 1.6.

S(n; k1, k2, . . . , kn) =
n!

k1! · · ·kn!(1!)k1 · · · (n!)kn .

Proof. If we consider any arrangement (i.e., a permutation) of the n objects
we can get such a partition by taking the first k1 elements as 1-element blocks,

7
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the next 2k2 elements as 2-element blocks, etc. Since we have n! possible
arrangements, it remains to show that we get any given partition exactly

k1! · · · kn!(1!)k1 · · · (n!)kn

times. Indeed, we can construct an arrangement of the objects by putting the
1-element blocks first, then the 2-element blocks, etc. However, there are ki!
possible ways to order the i-element blocks and (i!)ki possible ways to order
the elements in the i-element blocks. ��

1.4 Double counting

The double counting principle states the following “obvious” fact: if the ele-
ments of a set are counted in two different ways, the answers are the same.
In terms of matrices the principle is as follows. LetM be an n×m matrix

with entries 0 and 1. Let ri be the number of 1s in the i-th row, and cj be
the number of 1s in the j-th column. Then

n∑
i=1

ri =
m∑
j=1

cj = the total number of 1s in M .

The next example is a standard demonstration of double counting. Suppose
a finite number of people meet at a party and some shake hands. Assume that
no person shakes his or her own hand and furthermore no two people shake
hands more than once.

Handshaking Lemma. At a party, the number of guests who shake hands
an odd number of times is even.

Proof. Let P1, . . . , Pn be the persons. We apply double counting to the set
of ordered pairs (Pi, Pj) for which Pi and Pj shake hands with each other at
the party. Let xi be the number of times that Pi shakes hands, and y the
total number of handshakes that occur. On one hand, the number of pairs
is

∑n
i=1 xi, since for each Pi the number of choices of Pj is equal to xi. On

the other hand, each handshake gives rise to two pairs (Pi, Pj) and (Pj , Pi);
so the total is 2y. Thus

∑n
i=1 xi = 2y. But, if the sum of n numbers is even,

then evenly many of the numbers are odd. (Because if we add an odd number
of odd numbers and any number of even numbers, the sum will be always
odd). ��
This lemma is also a direct consequence of the following general identity,

whose special version for graphs was already proved by Euler. For a point x,
its degree or replication number d(x) in a family F is the number of members
of F containing x.

8



1.4 Double counting

Proposition 1.7. Let F be a family of subsets of some set X. Then∑
x∈X

d(x) =
∑
A∈F

|A| . (1.10)

Proof. Consider the incidence matrix M = (mx,A) of F . That is, M is a 0-1
matrix with |X | rows labeled by points x ∈ X and with |F| columns labeled
by sets A ∈ F such that mx,A = 1 if and only if x ∈ A. Observe that d(x) is
exactly the number of 1s in the x-th row, and |A| is the number of 1s in the
A-th column. ��
Graphs are families of 2-element sets, and the degree of a vertex x is the

number of edges incident to x, i.e., the number of vertices in its neighborhood.
Proposition 1.7 immediately implies

Theorem 1.8 (Euler 1736). In every graph the sum of degrees of its vertices
is two times the number of its edges, and hence, is even.

The following identities can be proved in a similar manner (we leave their
proofs as exercises):∑

x∈Y
d(x) =

∑
A∈F

|Y ∩ A| for any Y ⊆ X . (1.11)

∑
x∈X

d(x)2 =
∑
A∈F

∑
x∈A

d(x) =
∑
A∈F

∑
B∈F

|A ∩ B| . (1.12)

Turán’s number T (n, k, l) (l ≤ k ≤ n) is the smallest number of l-element
subsets of an n-element set X such that every k-element subset of X contains
at least one of these sets.

Proposition 1.9. For all positive integers l ≤ k ≤ n,

T (n, k, l) ≥
(
n

l

)/(
k

l

)
.

Proof. Let F be a smallest l-uniform family over X such that every k-subset
of X contains at least one member of F . Take a 0-1 matrix M = (mA,B)
whose rows are labeled by sets A in F , columns by k-element subsets B of
X , and mA,B = 1 if and only if A ⊆ B.
Let rA be the number of 1s in the A-th row and cB be the number of 1s

in the B-th column. Then, cB ≥ 1 for every B, since B must contain at least
one member of F . On the other hand, rA is precisely the number of k-element
subsets B containing a fixed l-element set A; so rA =

(
n−l
k−l

)
for every A ∈ F .

By the double counting principle,

|F| ·
(
n − l

k − l

)
=

∑
A∈F

rA =
∑
B

cB ≥
(
n

k

)
,

9
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which yields

T (n, k, l) = |F| ≥
(
n

k

)/(
n− l

k − l

)
=

(
n

l

)/(
k

l

)
,

where the last equality is another property of binomial coefficients (see Exer-
cise 1.12). ��
Our next application of double counting is from number theory: How many

numbers divide at least one of the first n numbers 1, 2, . . . , n? If t(n) is the
number of divisors of n, then the behavior of this function is rather non-
uniform: t(p) = 2 for every prime number, whereas t(2m) = m + 1. It is
therefore interesting that the average number

τ(n) = t(1) + t(2) + · · ·+ t(n)
n

of divisors is quite stable: It is about lnn.

Proposition 1.10. |τ(n) − lnn| ≤ 1.
Proof. To apply the double counting principle, consider the 0-1 n×n matrix
M = (mij) with mij = 1 iff j is divisible by i:

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1
4 1 1 1
5 1 1
6 1 1
7 1
8 1

The number of 1s in the j-th column is exactly the number t(j) of divisors
of j. So, summing over columns we see that the total number of 1s in the
matrix is Tn = t(1) + · · ·+ t(n).
On the other hand, the number of 1s in the i-th row is the number of

multipliers i, 2i, 3i, . . . , ri of i such that ri ≤ n. Hence, we have exactly 
n/i�
ones in the i-th row. Summing over rows, we obtain that Tn =

∑n
i=1
n/i�.

Since x − 1 < 
x� ≤ x for every real number x, we obtain that

Hn − 1 ≤ τ(n) = 1
n
Tn ≤ Hn ,

where

Hn = 1 +
1
2 +
1
3 + · · ·+ 1

n
= lnn+ γn, 0 ≤ γn ≤ 1 (1.13)
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is the n-th harmonic number. ��

1.5 The averaging principle

Suppose we have a set of m objects, the i-th of which has “size” li, and we
would like to know if at least one of the objects is large, i.e., has size li ≥ t
for some given t. In this situation we can try to consider the average size
l =

∑
li/m and try to prove that l ≥ t. This would immediately yield the

result, because we have the following

Averaging Principle. Every set of numbers must contain a number at least
as large (≥) as the average and a number at least as small (≤) as the average.
This principle is a prototype of a very powerful technique – the probabilis-

tic method – which we will study in Part 4. The concept is very simple, but
the applications can be surprisingly subtle. We will use this principle quite
often.
To demonstrate the principle, let us prove the following sufficient condition

that a graph is disconnected.
A (connected) component in a graph is a set of its vertices such that there

is a path between any two of them. A graph is connected if it consists of one
component; otherwise it is disconnected.

Proposition 1.11. Every graph on n vertices with fewer than n− 1 edges is
disconnected.

Proof. Induction by n. When n = 1, the claim is vacuously satisfied, since
no graph has a negative number of edges.
When n = 2, a graph with less than 1 edge is evidently disconnected.
Suppose now that the result has been established for graphs on n vertices,

and take a graph G = (V,E) on |V | = n+ 1 vertices such that |E| ≤ n − 1.
By Euler’s theorem (Theorem 1.8), the average degree of its vertices is

1
|V |

∑
x∈V

d(x) = 2|E|
|V | ≤ 2(n− 1)

n+ 1 < 2 .

By the averaging principle, some vertex x has degree 0 or 1. If d(x) = 0, x
is a component disjoint from the rest of G, so G is disconnected. If d(x) = 1,
suppose the unique neighbor of x is y. Then, the graph H obtained from G
by deleting x and its incident edge has |V | − 1 = n vertices and |E| − 1 ≤
(n − 1) − 1 = n − 2 edges; by the induction hypothesis, H is disconnected.
The restoration of an edge joining a vertex y in one component to a vertex x
which is outside of a second component cannot reconnect the graph. Hence,
G is also disconnected. ��
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1− )λ + ( λ ba a b

Fig. 1.1 A convex function.

We mention one important inequality, which is especially useful when deal-
ing with averages.
A real-valued function f(x) is convex if

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) ,

for any 0 ≤ λ ≤ 1. From a geometrical point of view, the convexity of f means
that if we draw a line l through points (a, f(a)) and (b, f(b)), then the graph
of the curve f(z) must lie below that of l(z) for z ∈ [a, b]. Thus, for a function
f to be convex it is sufficient that its second derivative is nonnegative.

Proposition 1.12 (Jensen’s Inequality). If 0 ≤ λi ≤ 1, ∑n
i=1 λi = 1 and f

is convex, then

f

( n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi) . (1.14)

Proof. Easy induction on the number of summands n. For n = 2 this is true,
so assume the inequality holds for the number of summands up to n, and
prove it for n + 1. For this it is enough to replace the sum of the first two
terms in λ1x1 + λ2x2 + . . .+ λn+1xn+1 by the term

(λ1 + λ2)
(

λ1
λ1 + λ2

x1 +
λ2

λ1 + λ2
x2

)
,

and apply the induction hypothesis. ��
If a1, . . . , an are non-negative then, taking f(x) = x2 and λi = 1/n, we

obtain a useful inequality (which is also an easy consequence of the Cauchy–
Schwarz inequality):

n∑
i=1

a2
i ≥ 1

n

( n∑
i=1

ai

)2
. (1.15)

Jensen’s inequality (1.14) yields the following useful inequality between the
arithmetic and geometric means: for any be non-negative numbers a1, . . . , an,
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1
n

n∑
i=1

ai ≥
( n∏
i=1

ai

)1/n
. (1.16)

To show this, apply Jensen’s inequality with f(x) = 2x, λ1 = . . . = λn = 1/n
and xi = log2 ai, for all i = 1, . . . , n. Then

1
n

n∑
i=1

ai =
n∑
i=1

λif(xi) ≥ f

(
n∑
i=1

λixi

)
= 2(

∑
n

i=1
xi)/n =

(
n∏
i=1

ai

)1/n

.

1.6 The inclusion-exclusion principle

The principle of inclusion and exclusion (sieve of Eratosthenes) is a powerful
tool in the theory of enumeration as well as in number theory. This principle
relates the cardinality of the union of certain sets to the cardinalities of
intersections of some of them, these latter cardinalities often being easier to
handle.
For any two sets A and B we have

|A ∪ B| = |A|+ |B| − |A ∩ B|.

In general, given n subsets A1, . . . , An of a set X , we want to calculate the
number |A1 ∪ · · · ∪ An| of points in their union. As the first approximation
of this number we can take the sum

|A1|+ · · ·+ |An|. (1.17)

However, in general, this number is too large since if, say, Ai ∩ Aj 	= ∅ then
each point of Ai ∩Aj is counted two times in (1.17): once in |Ai| and once in
|Aj |. We can try to correct the situation by subtracting from (1.17) the sum∑

1≤i<j≤n
|Ai ∩ Aj |. (1.18)

But then we get a number which is too small since each of the points in
Ai ∩ Aj ∩ Ak 	= ∅ is counted three times in (1.18): once in |Ai ∩ Aj |, once in
|Aj ∩Ak|, and once in |Ai∩Ak|. We can therefore try to correct the situation
by adding the sum ∑

1≤i<j<k≤n
|Ai ∩Aj ∩ Ak|,

but again we will get a too large number, etc. Nevertheless, it turns out
that after n steps we will get the correct result. This result is known as the
inclusion-exclusion principle. The following notation will be handy: if I is a
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subset of the index set {1, . . . , n}, we set

AI :=
⋂
i∈I

Ai,

with the convention that A∅ = X .

Proposition 1.13 (Inclusion-Exclusion Principle). Let A1, . . . , An be subsets
of X. Then the number of elements of X which lie in none of the subsets Ai
is ∑

I⊆{1,...,n}
(−1)|I||AI |. (1.19)

Proof. The sum is a linear combination of cardinalities of sets AI with coef-
ficients +1 and −1. We can re-write this sum as∑

I

(−1)|I||AI | =
∑
I

∑
x∈AI
(−1)|I| =

∑
x

∑
I:x∈AI

(−1)|I|.

We calculate, for each point of X , its contribution to the sum, that is, the
sum of the coefficients of the sets AI which contain it.
First suppose that x ∈ X lies in none of the sets Ai. Then the only term

in the sum to which x contributes is that with I = ∅; and this contribution
is 1.
Otherwise, the set J := {i : x ∈ Ai} is non-empty; and x ∈ AI precisely

when I ⊆ J . Thus, the contribution of x is

∑
I⊆J
(−1)|I| =

|J|∑
i=0

(|J |
i

)
(−1)i = (1 − 1)|J| = 0

by the binomial theorem.
Thus, points lying in no set Ai contribute 1 to the sum, while points in

some Ai contribute 0; so the overall sum is the number of points lying in
none of the sets, as claimed. ��
For some applications the following form of the inclusion-exclusion princi-

ple is more convenient.

Proposition 1.14. Let A1, . . . , An be a sequence of (not necessarily distinct)
sets. Then

|A1 ∪ · · · ∪ An| =
∑

∅�=I⊆{1,...,n}
(−1)|I|+1|AI | . (1.20)

Proof. The left-hand of (1.20) is |A∅| minus the number of elements of X =
A∅ which lie in none of the subsets Ai. By Proposition 1.13 this number is

|A∅| −
∑

I⊆{1,...,n}
(−1)|I||AI | =

∑
∅�=I⊆{1,...,n}

(−1)|I|+1|AI | ,
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as desired. ��
Suppose we would like to know, given a set of indices I, how many elements

belong to all the sets Ai with i ∈ I and do not belong to any of the remaining
sets. Proposition 1.13 (which corresponds to the case when I = ∅) can be
generalized for this situation.

Proposition 1.15. Let A1, . . . , An be sets, and I a subset of the index set
{1, . . . , n}. Then the number of elements which belong to Ai for all i ∈ I and
for no other values is ∑

J⊇I
(−1)|J\I||AJ | . (1.21)

Proof. Consider the set X :=
⋂
i∈I Ai and its subsets Bk := X ∩ Ak, for

all k ∈ N \ I, where N := {1, . . . , n}. The proposition asks us to calculate
the number of elements of X lying in none of Bk. By Proposition 1.13, this
number is ∑

K⊆N\I
(−1)|K|

∣∣∣∣ ⋂
k∈K

Bk

∣∣∣∣ = ∑
K⊆N\I

(−1)|K|
∣∣∣∣ ⋂
i∈K∪I

Ai

∣∣∣∣
=

∑
J⊇I
(−1)|J\I||AJ | . ��

What is the probability that if n people randomly search a dark closet to
retrieve their hats, no person will pick his own hat? Using the principle of
inclusion and exclusion it can be shown that this probability is very close to
e−1 = 0.3678....
This question can be formalized as follows. A permutation is a bijective

mapping f of the set {1, . . . , n} into itself. We say that f fixes a point i if
f(i) = i. A derangement is a permutation which fixes none of the points. We
have exactly n! permutations. How many of them are derangements?

Proposition 1.16. The number of derangements of {1, . . . , n} is equal to

n∑
i=0
(−1)i

(
n

i

)
(n − i)! = n!

n∑
i=0

(−1)i
i! . (1.22)

The sum
∑n

i=0
(−1)i
i! is the initial part of the Taylor expansion of e−1; so

about an e−1 fraction of all permutations are derangements.

Proof. We are going to apply the inclusion-exclusion formula (1.19). Let X
be the set of all permutations, and Ai the set of permutations fixing the point
i; so |Ai| = (n−1)!, and more generally, |AI | = (n− |I|)!, since permutations
in AI fix every point in I and permute the remaining points arbitrarily. A
permutation is a derangement if and only if it lies in none of the sets Ai; so
by (1.19), the number of derangements is

15



1 Counting

∑
I⊆{1,...,n}

(−1)|I|(n − |I|)! =
n∑
i=0
(−1)i

(
n

i

)
(n − i)!

putting i = |I|. ��

Exercises

1.1. In how many ways can we distribute k balls to n boxes so that each box
has at most one ball?

1.2. Show that for every k the product of any k consecutive natural numbers
is divisible by k!. Hint: Consider

(
n+k
k

)
.

1.3. Show that the number of pairs (A,B) of distinct subsets of {1, . . . , n}
with A ⊂ B is 3n−2n. Hint: Use the binomial theorem to evaluate

∑n

k=0

(
n
k

)
(2k−1).

1.4. Show that (
n

k

)
= n

k

(
n − 1
k − 1

)
.

Hint: Count in two ways the number of pairs (x,M), where M is a k-element subset
of {1, . . . , n} and x ∈M .

1.5. Prove that
n∑
k=1

k

(
n

k

)
= n2n−1 .

Hint: Count in two ways the number of pairs (x,M) with x ∈M ⊆ {1, . . . , n}.
1.6. There is a set of 2n people: n male and n female. A good party is a set
with the same number of male and female. How many possibilities are there
to build such a good party?

1.7. Use Proposition 1.3 to show that
r∑
i=0

(
n+ i − 1

i

)
=

(
n+ r
r

)
.

1.8. Let 0 ≤ a ≤ m ≤ n be integers. Use Proposition 1.3 to show that
n∑

i=m

(
i

a

)
=

(
n+ 1
a+ 1

)
−

(
m

a+ 1

)
.

1.9. Prove the Cauchy–Vandermonde identity:
(
p+ q
k

)
=

k∑
i=0

(
p

i

)(
q

k − i

)
.
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Exercises

Hint: Take a set of p+ q people (p male and q female) and make a set of k people (with
i male and k − i female).

1.10. Show that
n∑
k=0

(
n

k

)2
=

(
2n
n

)
.

Hint: Exercise 1.9 and Eq. (1.1).

1.11. Prove the following analogy of the binomial theorem for factorials:

(x+ y)n =
n∑
k=0

(
n

k

)
(x)k(y)n−k .

Hint: Divide both sides by n!, and use the Cauchy–Vandermonde identity.

1.12. Let 0 ≤ l ≤ k ≤ n. Show that(
n

k

)(
k

l

)
=

(
n

l

)(
n− l

k − l

)
.

Hint: Count in two ways the number of all pairs (L,K) of subsets of {1, . . . , n} such that
L ⊆ K, |L| = l and |K| = k.

1.13. Use combinatorics (not algebra) to prove that, for 0 ≤ k ≤ n,(
n

2

)
=

(
k

2

)
+ k(n − k) +

(
n− k

2

)
.

Hint:
(
n
2

)
is the number of edges in a complete graph on n vertices.

1.14. One of Euclid’s theorems says that, if a prime number divides a product
a · b of two integers, then p must divide at least one of these integers. Use
this to show that:

(i) If 1 ≤ k < p, then
(
p
k

) ≡ 0 mod p.
(ii) If 1 ≤ k ≤ n < p, then

(
n
k

) 	≡ 0 mod p.
Hint: (i) Let x = n(n− 1) · · · (n− k + 1). Note that x = a · b with a =

(
n
k

)
and b = k!.

1.15. Prove Fermat’s Little theorem: if p is a prime and if a is a natural
number, then ap ≡ a mod p. In particular, if p does not divide a, then ap−1 ≡
1 mod p. Hint: Apply the induction on a. For the induction step, use the binomial
theorem to show that (a+ 1)p ≡ ap + 1 mod p.

1.16. Let 0 < α < 1 be a real number, and αn be an integer. Using Stirling’s
formula show that (

n

αn

)
= 1 + o(1)√

2πα(1− α)n
· 2n·H(α),

17



1 Counting

where H(α) = −α log2 α− (1−α) log2(1−α) is the binary entropy function.
Hint: H(α) = log2 h(α), where h(α) = α−α(1 − α)−(1−α).

1.17. Prove that, for s ≤ n/2,

(1)
s∑

k=0

(
n

k

)
≤

(
n

s

)(
1 + s

n− 2s+ 1
)
;

(2)
s∑

k=0

(
n

k

)
≤ 2n·H(s/n).

Hint: To (1): observe that
(
n
k−1

)
/
(
n
k

)
= k/(n−k+1) does not exceed α := s/(n−s+1),

and use the identity
∑∞

i=0 α
i = 1/(1 − α).

To (2): set p = s/n and apply the binomial theorem to show that

ps(1− p)n−s
s∑

k=0

(
n

k

)
≤ 1 .

See also Corollary 22.9 for another proof.

1.18. Prove the following estimates: If k ≤ k + x < n and y < k ≤ n, then(
n− k − x

n− x

)x
≤

(
n− x

k

)(
n

k

)−1
≤

(
n− k

n

)x
≤ e−(k/n)x (1.23)

and (
k − y

n − y

)y
≤

(
n− y

k − y

)(
n

k

)−1
≤

(
k

n

)y
.

1.19. Prove that if 1 ≤ k ≤ n/2, then(
n

k

)
≥ γ ·

(ne
k

)k
, where γ = 1√

2πk
e−k

2/n−1/(6k). (1.24)

Hint: Use Stirling’s formula to show that(
n

k

)
≥ 1√

2π e1/(6k)

(
n

k

)k ( n

n− k
)n−k( n

k(n− k)

)1/2

,

and apply the estimate ln(1 + t) ≥ t− t2/2 valid for all t ≥ 0.

1.20. In how many ways can we choose a subset S ⊆ {1, 2, . . . , n} such that
|S| = k and no two elements of S precede each other, i.e., x 	= y + 1 for all
x, y ∈ S? Hint: If S = {a1, . . . , ak} is such a subset with a1 < a2 < . . . < ak, then
a1 < a2 − 1 < . . . < ak − (k − 1).

1.21. Let k ≥ 2n. In how many ways can we distribute k sweets to n children,
if each child is supposed to get at least 2 of them?
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Exercises

1.22. Let F = {A1, . . . , Am} be a family of subsets of a finite set X . For
x ∈ X , let d(x) be the number of members of F containing x. Show that∑m

i,j=1 |Ai ∩ Aj | =
∑

x∈X d(x)2.

1.23. Bell’s number Bn is the number of all possible partitions of an n-
element set X (we assume that B0 = 1). Prove that Bn+1 =

∑n
i=0

(
n
i

)
Bi.

Hint: For every subset A ⊆ X there are precisely B|X\A| partitions of X containing A
as one of its blocks.

1.24. Let |N | = n and |X | = x. Show that there are xn mappings from N to
X , and that S(n, k)x(x− 1) · · · (x− k+1) of these mappings have a range of
cardinality k; here S(n, k) is the Stirling number (the number of partitions
of an n-element set into exactly k blocks). Hint: We have x(x− 1) · · · (x− k + 1)
possibilities to choose a sequence of k elements in X , and we can specify S(n, k) ways
in which elements of N are mapped onto these chosen elements.

1.25. Let F be a family of subsets of an n-element set X with the property
that any two members of F meet, i.e., A ∩ B 	= ∅ for all A,B ∈ F . Suppose
also that no other subset of X meets all of the members of F . Prove that
|F| = 2n−1. Hint: Consider sets and their complements.

1.26. Let F be a family of k-element subsets of an n-element set X such that
every l-element subset of X is contained in at least one member of F . Show
that |F| ≥ (

n
l

)/(
k
l

)
. Hint: Argue as in the proof of Proposition 1.9.

1.27. (Sperner 1928). Let F be a family of k-element subsets of {1, . . . , n}. Its
shadow is the family of all those (k−1)-element subsets which lie entirely in at
least one member of F . Show that the shadow contains at least k|F|/(n−k+1)
sets. Hint: Argue as in the proof of Proposition 1.9.

1.28. (Counting in bipartite graphs). Let G = (A ∪ B,E) be a bipartite
graph, d be a minimum degree of a vertex in A and D the maximum degree
of a vertex in B. Assume that |A|d ≥ |B|D. Show that then, for every subset
A0 ⊆ A of density α := |A0|/|A|, there is a subset B0 ⊆ B such that: (i)
|B0| ≥ α|B|/2, (ii) every vertex of B0 has at least αD/2 neighbors in A0,
and (iii) at least half of the edges leaving A0 go to B0. Hint: Let B0 consist of
all vertices in B having > αD/2 neighbors in A0.

1.29. Let a1, . . . , an be nonnegative numbers. Define

f(t) =
(
at1 + · · ·+ atn

n

)1/t
.

Use Jensen’s inequality to show that s ≤ t implies f(s) ≤ f(t).

1.30. (Quine 1988). The famous Fermat’s Last Theorem states that if n > 2,
then xn + yn = zn has no solutions in nonzero integers x, y and z. This
theorem can be stated in terms of sorting objects into a row of bins, some of
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1 Counting

which are red, some blue, and the rest unpainted. The theorem amounts to
saying that when there are more than two objects, the following statement
is never true: The number of ways of sorting them that shun both colors is
equal to the number of ways that shun neither. Show that this statement is
equivalent to Fermat’s equation xn + yn = zn. Hint: Let n be the number of
objects, z the number of bins, x the number of bins that are not red and y the number
of bins that are not blue. There are zn ways of sorting the objects into bins; xn of these
ways shun red and yn of them shun blue.

1.31. Use the principle of inclusion and exclusion to determine the number
of ways in which three women and their three spouses may be seated around
a round table under each of the following two restrictions:
(i) no woman sits beside her spouse (on either side);
(ii) no two women may sit opposite one another at the table (i.e., with two
people between them on either side).

Hint: To (i): two seatings are equivalent if one can be rotated into the other; so the
underlying set consists of all circular permutations, 5! in number. Let Ai (i = 1, 2, 3)
be the subset of permutations in which the members of the i-th couple sit side by side.
Show that |Ai| = 2 · 4!, |Ai ∩ Aj | = 22 · 3!, |A1 ∩ A2 ∩ A3| = 23 · 2! and apply the
inclusion-exclusion formula. To (ii): distinguish two cases, according to whether there
exist two women sitting side by side or not.

1.32. Let m ≥ n. A function f : [m] → [n] is a surjection (or a mapping of
[m] onto [n]) if f maps at least one element of [m] to each element of [n].
Prove that the number of such functions is

∑n−1
k=0 (−1)k

(
n
k

)
(n− k)m. Hint: Let

Ai = {f : f(j) 	= i for all j} and apply the inclusion-exclusion formula.

1.33. Let n and k ≥ l be positive integers. How many different integer solu-
tions are there to the equation x1 + x2 + · · · + xn = k, with all 0 ≤ xi < l?
Hint: Consider the universum X = Xn,k of all solutions with all xi ≥ 0, let Ai be the set
of all solutions with xi ≥ l, and apply the inclusion-exclusion formula (1.19). Observe
that |Ai| = |Xn,k−l|, where the size of Xn,k is given by Proposition 1.5.

1.34. Let r ≥ 5. How many ways are there to color the vertices with r colors
in the following graphs such that adjacent vertices get different colors?

Hint: For the first graph, the universe X is the set of all r4 ways to color the vertices.
Associate with each edge e the set Ae of all colorings, which assign the same color to its
ends, and apply the inclusion-exclusion formula (1.19).

1.35. Say that a permutation π on [2n] has property P if for some i ∈ [2n],
|π(i) − π(i + 1)| = n, where i+ 1 is taken modulo 2. Show that, for each n,
there are more permutations with property P than without it. Hint: Consider
the sets Ai = {π : |π(i)−π(i+1)| = n}. Show that |Ai| = 2n(2n−2)! and Ai∩Ai+1 = ∅.
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Exercises

1.36. Prove that for any two sets I ⊆ J ,

∑
I⊆K⊆J

(−1)|K\I| =
{
1, if I = J
0, if I 	= J.

1.37. Prove the following Bonferroni inequalities for each even k ≥ 2:
k∑

ν=1
(−1)ν+1

∑
|I|=ν

|AI | ≤ |
n⋃
i=1

Ai| ≤
k+1∑
ν=1
(−1)ν+1

∑
|I|=ν

|AI |

where AI :=
⋂
i∈I Ai. What about an odd k?

1.38. Let M be an n × n boolean matrix (with entries 0 and 1). A covering
of M is a set R1, . . . , Rt of rank-1 boolean matrices such that every 1-entry
of M is a 1-entry in at least one of these matrices, and every 0-entry of
M is a 0-entry in all these matrices. That is, M must be an entry-wise Or
M =

∨t
i=1 Ri of the Ri’s. Let t(A) be the smallest number of the Ri’s in

such a covering of M . For a boolean matrix B ≤ M (again, inequality is
entry-wise), let wM (B) denote the largest possible number of 1-entries in B
that can be covered by some all-1 submatrix R of M . (Note that R need not
be a submatrix of B.) Set

μ(M) = max
B≤M

|B|
wM (B)

,

where |B| is the number of 1s in B. Prove that

μ(M) ≤ t(M) ≤ μ(M) · ln |M |+ 1 .

Hint: For the upper bound, consider a greedy covering R1, ..., Rt of M by all-1 subma-
trices: in the i-th step choose an all-1 submatrix Ri ≤M covering the largest number of
all yet uncovered 1s in M . Let Bi ≤ M be the submatrix containing all 1-entries of M
that are left uncovered after the i-th step. Observe that |Bi|/wA(Bi) ≤ μ(A) for all i.

1.39. For a boolean matrix M and an integer k ≥ 1, let tk(M) denote the
smallest number t of rank-1 boolean matrices R1, . . . , Rt in a covering of M
with a restriction that

∑t
i=1 Ri ≤ kJ , where J is an all-1 matrix. That is, we

now require that no 1-entry of M is covered more than k times. Prove that
then

k∑
i=1

(
t

i

)
≥ rk(M) .

Hint: For a subset I ⊆ {1, . . . , t}, let RI be a (0, 1) matrix with RI [x, y] = 1 iff Ri[x, y] =
1 for all i ∈ I . Use the inclusion-exclusion principle to write M as

M =
∑
I �=∅

(−1)|I|+1RI .
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1.40. The determinant det(A) of an n × n matrix A = (aij) is a sum of n!
signed products ±a1i1a2i2 · · · anin , where (i1, i2, . . . , in) is a permutation of
(1, 2, . . . , n), the sign being +1 or −1, according to whether the number of
inversions of (i1, i2, . . . , in) is even or odd. An inversion occurs when ir > is
but r < s. Prove the following: let A be a matrix of even order n with 0s on
the diagonal and arbitrary entries from {+1,−1} elsewhere. Then det(A) 	= 0.
Hint: Observe that for such matrices, det(A) is congruent modulo 2 to the number of
derangements on n points, and show that for even n, the sum (1.22) is odd.
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2. Advanced Counting

When properly applied, the (double) counting argument can lead to more
subtle results than those discussed in the previous chapter.

2.1 Bounds on intersection size

How many r-element subsets of an n-element set can we choose under the
restriction that no two of them share more than k elements? Intuitively, the
smaller k is, the fewer sets we can choose. This intuition can be made precise
as follows. (We address the optimality of this bound in Exercise 2.5.)

Lemma 2.1 (Corrádi 1969). Let A1, . . . , AN be r-element sets and X be their
union. If |Ai ∩Aj | ≤ k for all i �= j, then

|X | ≥ r2N

r + (N − 1)k . (2.1)

Proof. Just count. By (1.11), we have for each i = 1, . . . , N ,

∑
x∈Ai

d(x) =
N∑
j=1

|Ai ∩Aj | = |Ai|+
∑
j �=i

|Ai ∩ Aj | ≤ r + (N − 1)k . (2.2)

Summing over all sets Ai and using Jensen’s inequality (1.15) we get

N∑
i=1

∑
x∈Ai

d(x) =
∑
x∈X

d(x)2 ≥ 1
n

( ∑
x∈X

d(x)
)2
= 1
n

( n∑
i=1

|Ai|
)2
= (Nr)2

n
.

Using (2.2) we obtain (Nr)2 ≤ N · |X | (r + (N − 1)k), which gives the desired
lower bound on |X |. ��
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2 Advanced Counting

Given a family of sets A1, . . . , AN , their average size is

1
N

N∑
i=1

|Ai|.

The following lemma says that, if the average size of sets is large, then some
two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let A1, . . . , AN be subsets of
X of average size at least n/w. If N ≥ 2w2, then there exist i �= j such that

|Ai ∩Aj | ≥ n

2w2 . (2.3)

Proof. Again, let us just count. On the one hand, using Jensen’s inequality
(1.15) and equality (1.10), we obtain that

∑
x∈X

d(x)2 ≥ 1
n

( ∑
x∈X

d(x)
)2
= 1
n

( N∑
i=1

|Ai|
)2

≥ nN2

w2 .

On the other hand, assuming that (2.3) is false and using (1.11) and (1.12)
we would obtain

∑
x∈X

d(x)2 =
N∑
i=1

N∑
j=1

|Ai ∩ Aj | =
∑
i

|Ai|+
∑
i�=j

|Ai ∩ Aj |

< nN + nN(N − 1)
2w2 = nN2

2w2

(
1 + 2w

2

N
− 1
N

)
≤ nN2

w2 ,

a contradiction. ��
Lemma 2.2 is a very special (but still illustrative) case of the following

more general result.

Lemma 2.3 (Erdős 1964b). Let X be a set of n elements x1, . . . , xn, and let
A1, . . . , AN be N subsets of X of average size at least n/w. If N ≥ 2kwk,
then there exist Ai1 , . . . , Aik such that |Ai1 ∩ · · · ∩ Aik | ≥ n/(2wk).

The proof is a generalization of the one above and we leave it as an exercise
(see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a
subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.)
A typical question in graph theory is the following one:
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2.2 Graphs with no 4-cycles

How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n,H) of edges in a
H-free graph on n vertices. The graph H itself is then called a “forbidden
subgraph.”
Let us consider the case when forbidden subgraphs are cycles. Recall that

a cycle Ck of length k (or a k-cycle) is a sequence v0, v1, . . . , vk such that
vk = v0 and each subsequent pair vi and vi+1 is joined by an edge.
If H = C3, a triangle, then ex(n,C3) ≥ n2/4 for every even n ≥ 2: a

complete bipartite r × r graph Kr,r with r = n/2 has no triangles but has
r2 = n2/4 edges. We will show later that this is already optimal: any n-vertex
graph with more than n2/4 edges must contain a triangle (see Theorem 4.7).
Interestingly, ex(n,C4) is much smaller, smaller than n3/2.

Theorem 2.4 (Reiman 1958). If G = (V,E) on n vertices has no 4-cycles,
then

|E| ≤ n

4 (1 +
√
4n− 3) .

Proof. Let G = (V,E) be a C4-free graph with vertex-set V = {1, . . . , n}, and
d1, d2, . . . , dn be the degrees of its vertices. We now count in two ways the
number of elements in the following set S. The set S consists of all (ordered)
pairs (u, {v, w}) such that v �= w and u is adjacent to both v and w in G.
That is, we count all occurrences of “cherries”

w

u
v

in G. For each vertex u, we have
(
du
2
)
possibilities to choose a 2-element

subset of its du neighbors. Thus, summing over u, we find |S| = ∑n
u=1

(
du
2
)
.

On the other hand, the C4-freeness of G implies that no pair of vertices v �= w
can have more than one common neighbor. Thus, summing over all pairs we
obtain that |S| ≤ (

n
2
)
. Altogether this gives

n∑
i=1

(
di
2

)
≤

(
n

2

)

or
n∑
i=1

d2
i ≤ n(n − 1) +

n∑
i=1

di . (2.4)

Now, we use the Cauchy–Schwarz inequality( n∑
i=1

xiyi

)2
≤

( n∑
i=1

x2
i

)( n∑
i=1

y2
i

)

with xi = di and yi = 1, and obtain
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2 Advanced Counting( n∑
i=1

di

)2
≤ n

n∑
i=1

d2
i

and hence by (2.4) ( n∑
i=1

di

)2
≤ n2(n− 1) + n

n∑
i=1

di .

Euler’s theorem gives
∑n

i=1 di = 2|E|. Invoking this fact, we obtain

4|E|2 ≤ n2(n − 1) + 2n|E|

or
|E|2 − n

2 |E| − n2(n − 1)
4 ≤ 0 .

Solving the corresponding quadratic equation yields the desired upper bound
on |E|. ��
Example 2.5 (Construction of dense C4-free graphs). The following construc-
tion shows that the bound of Theorem 2.4 is optimal up to a constant factor.
Let p be a prime number and take V = (Zp \ {0})× Zp, that is, vertices

are pairs (a, b) of elements of a finite field with a �= 0. We define a graph G
on these vertices, where (a, b) and (c, d) are joined by an edge iff ac = b+ d
(all operations modulo p). For each vertex (a, b), there are p − 1 solutions of
the equation ax = b+ y: pick any x ∈ Zp \ {0}, and y is uniquely determined.
Thus, G is a (p − 1)-regular graph on n = p(p − 1) vertices (some edges are
loops). The number of edges in it is n(p − 1)/2 = Ω(n3/2).
To verify that the graph is C4-free, take any two its vertices (a, b) and

(c, d). The unique solution (x, y) of the system{
ax = b+ y
cx = d+ y is given by x = (b − d)(a − c)−1

2y = x(a+ c)− b − d

which is only defined when a �= c, and has x �= 0 only when b �= d. Hence, if
a �= c and b �= d, then the vertices (a, b) and (c, d) have precisely one common
neighbor, and have no common neighbors at all, if a = c or b = d.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with
all the edges incident to them (see Fig. 2.1).
Theorem 2.4 says that a graph cannot have many edges, unless it contains

C4 as a (not necessarily induced) subgraph. But what about graphs that
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2.3 Graphs with no induced 4-cycles

G

Fig. 2.1 Graph G contains several copies of C4 as a subgraph, but none of them as an
induced subgraph.

do not contain C4 as an induced subgraph? Let us call such graphs weakly
C4-free.
Note that such graphs can already have many more edges. In particular,

the complete graphKn is weakly C4-free: in any 4-cycle there are edges in Kn

between non-neighboring vertices of C4. Interestingly, any(!) dense enough
weakly C4-free graph must contain large complete subgraphs.
Let ω(G) denote the maximum number of vertices in a complete subgraph

of G. In particular, ω(G) ≤ 3 for every C4-free graph. In contrast, for weakly
C4-free graphs we have the following result, due to Gyárfás, Hubenko and
Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V,E) is weakly C4-free, then

ω(G) ≥ 0.4 |E|2
n3 .

The proof of Theorem 2.6 is based on a simple fact, relating the average
degree with the minimum degree, as well as on two facts concerning indepen-
dent sets in weakly C4-free graphs.
For a graph G = (V,E), let e(G) = |E| denote the number of its edges,

dmin(G) the smallest degree of its vertices, and dave(G) = 2e(G)/|V | the
average degree. Note that, by Euler’s theorem, dave(G) is indeed the sum of
all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

dave(H) ≥ dave(G) and dmin(H) ≥ 12 dave(G) .

Proof. We remove vertices one-by-one. To avoid the danger of ending up with
the empty graph, let us remove a vertex v ∈ V if this does not decrease the
average degree dave(G). Thus, we should have

dave(G − v) = 2(e(G)− d(v))
|V | − 1 ≥ dave(G) =

2e(G)
|V |

which is equivalent to d(v) ≤ dave(G)/2. So, when we stick, each vertex in
the resulting graph H has minimum degree at least dave(G)/2. ��
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xj
S

u

v

(b)

Bi
Ai ∩ Aj

y

z

(a)

.............................

xi

.............................

.............................

.............................

Fig. 2.2 (a) If u and v were non-adjacent, we would have an induced 4-cycle
{xi, xj , u, v}. (b) If y and z were non-adjacent, then (S \ {xi}) ∪ {y, z} would be a
larger independent set.

Recall that a set of vertices in a graph is independent if no two of its
vertices are adjacent. Let α(G) denote the largest number of vertices in such
a set.

Proposition 2.8. For every weakly C4-free graph G on n vertices, we have

ω(G) ≥ n(
α(G)+1

2
) .

Proof. Fix an independent set S = {x1, . . . , xα} with α = α(G). Let Ai be
the set of neighbors of xi in G, and Bi the set of vertices whose only neighbor
in S is xi. Consider the family F consisting of all α sets {xi} ∪ Bi and

(
α
2
)

sets Ai ∩ Aj . We claim that:

(i) each member of F forms a clique in G, and
(ii) the members of F cover all vertices of G.
The sets Ai ∩ Aj are cliques because G is weakly C4-free: Any two vertices
u �= v ∈ Ai ∩Aj must be joined by an edge, for otherwise {xi, xj , u, v} would
form a copy of C4 as an induced subgraph. The sets {xi} ∪ Bi are cliques
because S is a maximal independent set: Otherwise we could replace xi in
S by any two vertices from Bi. By the same reason (S being a maximal
independent set), the members of F must cover all vertices of G: If some
vertex v were not covered, then S ∪ {v} would be a larger independent set.
Claims (i) and (ii), together with the averaging principle, imply that

ω(G) ≥ n

|F| =
n

α+
(
α
2
) = n(

α+1
2

) . ��

Proposition 2.9. Let G be a weakly C4-free graph on n vertices, and d =
dmin(G). Then, for every t ≤ α(G),

ω(G) ≥ d · t− n(
t
2
) .
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Proof. Take an independent set S = {x1, . . . , xt} of size t and let Ai be the
set of neighbors of xi in G. Let m be the maximum of |Ai ∩ Aj | over all
1 ≤ i < j ≤ t. We already know that each Ai ∩Aj must form a clique; hence,
ω(G) ≥ m. On the other hand, by the Bonferroni inequality (Exercise 1.37)
we have that

n ≥
∣∣∣∣ t⋃
i=1

Ai

∣∣∣∣ ≥ td −
∑
i<j

|Ai ∩ Aj | ≥ td −
(
t

2

)
m,

from which the desired lower bound on ω(G) follows. ��
Now we are able to prove Theorem 2.6.

Proof of Theorem 2.6. Let a be the average degree of G; hence, a = 2|E|/n.
By Proposition 2.7, we know that G has an induced subgraph of average
degree ≥ a and minimum degree ≥ a/2. So, we may assume w.l.o.g. that the
graph G itself has these two properties. We now consider the two possible
cases.
If α(G) ≥ 4n/a, then we apply Proposition 2.9 with∗ t = 4n/a and obtain

ω(G) ≥ (a/2) · t− n(
t
2
) = n(4n/a

2
) .

If α(G) ≤ 4n/a, then we apply Proposition 2.8 and obtain

ω(G) ≥ n(
α(G)+1

2
) ≥ n(4n/a+1

2
) .

In both cases we obtain

ω(G) ≥ n(4n/a+1
2

) = a2

8n+ 2a ≥ 0.1a
2

n
. ��

2.4 Zarankiewicz’s problem

At most how many 1s can an n × n 0-1 matrix contain if it has no a × b
submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem
of the estimation of this number for a = b = 3 and n = 4, 5, 6 and the general
problem became known as Zarankiewicz’s problem.
It is worth reformulating this problem in terms of bipartite graphs. A bi-

partite graph with parts of size n is a triple G = (V1, V2, E), where V1 and
V2 are disjoint n-element sets of vertices (or nodes), and E ⊆ V1 × V2 is the
set of edges. We say that the graph contains an a× b clique if there exist an

∗ For simplicity, we ignore ceilings and floors.
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a-element subset A ⊆ V1 and a b-element subset B ⊆ V2 such that A×B ⊆ E.
(Note that an a × b clique is not the same as a b × a clique, unless a = b.)
Let ka(n) be the minimal integer k such that any bipartite graph with

parts of size n and more than k edges contains at least one a × a clique.
Using the probabilistic argument, it can be shown (see Exercise 20.6) that

ka(n) ≥ c · n2−2/a,

where c > 0 is a constant, depending only on a. It turns out that this bound
is not very far from the best possible, and this can be proved using the double
counting argument. The result is essentially due to Kővári, Sós and Turán
(1954). For a = 2, a lower bound k2(n) ≤ 3n3/2 was proved by Erdős (1938).
He used this to prove that, if a set A ⊆ [n] is such that the products of any
two of its different members are different, then |A| ≤ π(n) + O(n3/4), where
π(n) is the number of primes not exceeding n.

Theorem 2.10. For all natural numbers n ≥ a ≥ 2 we have

ka(n) ≤ (a− 1)1/an2−1/a + (a − 1)n.

Proof. The proof is a direct generalization of a double counting argument
we used in the proof of Theorem 2.4. Our goal is to prove the following: let
G = (V1, V2, E) be a bipartite graph with parts of size n, and suppose that
G does not contain an a× a clique; then |E| ≤ (a − 1)1/an2−1/a + (a − 1)n.
By a star in the graph G we will mean a set of any a of its edges incident

with one vertex x ∈ V1, i.e., a set of the form

S(x,B) := {(x, y) ∈ E : y ∈ B},

where B ⊆ V2, |B| = a. Let Δ be the total number of such stars in G. We
may count the stars S(x,B) in two ways, by fixing either the vertex x or the
subset B.
For a fixed subset B ⊆ V2, with |B| = a, we can have at most a − 1 stars

of the form S(x,B), because otherwise we would have an a × a clique in G.
Thus,

Δ ≤ (a− 1) ·
(
n

a

)
. (2.5)

On the other hand, for a fixed vertex x ∈ V1, we can form
(
d(x)
a

)
stars S(x,B),

where d(x) is the degree of vertex x in G (i.e., the number of vertices adjacent
to x). Therefore, ∑

x∈V1

(
d(x)
a

)
≤ (a− 1) ·

(
n

a

)
. (2.6)

We are going to estimate the left-hand side from below using Jensen’s inequal-
ity. Unfortunately, the function

(
x
a

)
= x(x − 1) · · · (x − a + 1)/a! is convex

only for x ≥ a − 1. But we can set f(z) := (
x
a

)
if x ≥ a − 1, and f(x) := 0
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2.4 Zarankiewicz’s problem

otherwise. Then Jensen’s inequality (1.14) (with λx = 1/n for all x ∈ V1)
yields

∑
x∈V1

(
d(x)
a

)
≥

∑
x∈V1

f(d(x)) ≥ n · f
( ∑
x∈V1

d(x)/n
)
= n · f(|E|/n) .

If |E|/n < a− 1, there is nothing to prove. So, we can suppose that |E|/n ≥
a− 1. Then we have that

n ·
(|E|/n

a

)
= n · f(|E|/n) ≤

∑
x∈V1

(
d(x)
a

)
≤ (a − 1)

(
n

a

)
.

Expressing the binomial coefficients as quotients of factorials, this inequality
implies

n (|E|/n − (a− 1))a ≤ (a − 1)na,
and therefore |E|/n ≤ (a−1)1/an1−1/a+a−1, from which the desired upper
bound on |E| follows. ��
The theorem above says that any bipartite graph with many edges has

large cliques. In order to destroy such cliques we can try to remove some of
their vertices. We would like to remove as few vertices as possible. Just how
few says the following result.

Theorem 2.11 (Ossowski 1993). Let G = (V1, V2, E) be a bipartite graph
with no isolated vertices, |E| < (k + 1)r edges and d(y) ≤ r for all y ∈ V2.
Then we can delete at most k vertices from V1 so that the resulting graph has
no (r − a+ 1)× a clique for a = 1, 2, . . . , r.

For a vertex x, let N(x) denote the set of its neighbors in G, that is, the
set of all vertices adjacent to x; hence, |N(x)| is the degree d(x) of x. We will
use the following lemma relating the degree to the total number of vertices.

Lemma 2.12. Let (X,Y,E) be a bipartite graph with no isolated vertices,
and f : Y → [ 0,∞) be a function. If the inequality d(y) ≤ d(x) · f(y) holds
for each edge (x, y) ∈ E, then |X | ≤ ∑

y∈Y f(y).

Proof. By double counting,

|X | =
∑
x∈X

∑
y∈N(x)

1
d(x) ≤

∑
x∈X

∑
y∈N(x)

f(y)
d(y)

=
∑
y∈Y

∑
x∈N(y)

f(y)
d(y) =

∑
y∈Y

f(y)
d(y) · |N(y)| =

∑
y∈Y

f(y). ��

Proof of Theorem 2.11. (Due to F. Galvin 1997). For a set of vertices Y ⊆ V2,
let N(Y ) :=

⋂
y∈Y N(y) denote the set of all its common neighbors in G, that

is, the set of all those vertices in V1 which are joined to each vertex of Y ;
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hence |N(Y )| ≤ r for all Y ⊆ V2. Let X ⊆ V1 be a minimal set with the
property that |N(Y ) \ X | ≤ r − |Y | whenever Y ⊆ V2 and 1 ≤ |Y | ≤ r. Put
otherwise, X is a minimal set of vertices in V1, the removal of which leads to
a graph without (r − a+ 1)× a cliques, for all a = 1, . . . , r.
Our goal is to show that |X | ≤ k.
Note that, for each x ∈ X we can choose Yx ⊆ V2 so that 1 ≤ |Yx| ≤ r,

x ∈ N(Yx) and
|N(Yx) \ X | = r − |Yx|;

otherwise X could be replaced by X \ {x}, contradicting the minimality of
X . We will apply Lemma 2.12 to the bipartite graph G′ = (X,V2, F ), where

F = {(x, y) : y ∈ Yx} .

All we have to do is to show that the hypothesis of the lemma is satisfied by
the function (here N(y) is the set of neighbors of y in the original graph G):

f(y) := |N(y)|
r

,

because then

|X | ≤
∑
y∈V2

f(y) = 1
r

∑
y∈V2

|N(y)| = |E|
r

< k + 1.

Consider an edge (x, y) ∈ F ; we have to show that d(y) ≤ d(x) · f(y), where

d(x) = |Yx| and d(y) = |{x ∈ X : y ∈ Yx}|

are the degrees of x and y in the graph G′ = (X,V2, F ). Now, y ∈ Yx implies
N(Yx) ⊆ N(y), which in its turn implies

|N(y) \ X | ≥ |N(Yx) \ X | = r − |Yx|;

hence

d(y) ≤ |N(y) ∩ X | = |N(y)| − |N(y) \ X |
≤ |N(y)| − r + |Yx| = r · f(y)− r + d(x),

and so

d(x) · f(y)− d(y) ≥ d(x) · f(y)− r · f(y) + r − d(x)
= (r − d(x)) · (1− f(y)) ≥ 0 . ��
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2.5 Density of 0-1 matrices

Let H be an m × n 0-1 matrix. We say that H is α-dense if at least an α-
fraction of all its mn entries are 1s. Similarly, a row (or column) is α-dense
if at least an α-fraction of all its entries are 1s.
The next result says that any dense 0-1 matrix must either have one “very

dense” row or there must be many rows which are still “dense enough.”

Lemma 2.13 (Grigni and Sipser 1995). If H is 2α-dense then either
(a) there exists a row which is

√
α-dense, or

(b) at least
√
α ·m of the rows are α-dense.

Note that
√
α is larger than α when α < 1.

Proof. Suppose that the two cases do not hold. We calculate the density of
the entire matrix. Since (b) does not hold, less than

√
α · m of the rows are

α-dense. Since (a) does not hold, each of these rows has less than
√
α · n 1s;

hence, the fraction of 1s in α-dense rows is strictly less than (
√
α)(

√
α) = α.

We have at most m rows which are not α-dense, and each of them has less
than αn ones. Hence, the fraction of 1s in these rows is also less than α.
Thus, the total fraction of 1s in the matrix is less than 2α, contradicting the
2α-density of H . ��
Now consider a slightly different question: if H is α-dense, how many of its

rows or columns are “dense enough”? The answer is given by the following
general estimate due to Johan Håstad. This result appeared in the paper
of Karchmer and Wigderson (1990) and was used to prove that the graph
connectivity problem cannot be solved by monotone circuits of logarithmic
depth.
Suppose that our universe is a Cartesian product A = A1 × · · · × Ak of

some finite sets A1, . . . , Ak. Hence, elements of A are strings a = (a1, . . . , ak)
with ai ∈ Ai. Fix now a subset of strings H ⊆ A and a point b ∈ Ai. The
degree of b in H is the number dH(b) = |{a ∈ H : ai = b}| of strings in H
whose i-th coordinate is b.
Say that a point b ∈ Ai from the i-th set is popular in H if its degree dH(b)

is at least a 1/2k fraction of the average degree of an element in Ai, that is,
if

dH(b) ≥ 1
2k

|H |
|Ai| .

Let Pi ⊆ Ai be the set of all popular points in the i-th set Ai, and consider
the Cartesian product of these sets:

P := P1 × P2 × · · · × Pk .

Lemma 2.14 (Håstad). |P | > 1
2 |H |.
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Proof. It is enough to show that |H \P | < 1
2 |H |. For every non-popular point

b ∈ Ai, we have that

|{a ∈ H : ai = b}| < 1
2k

|H |
|Ai| .

Since the number of non-popular points in each set Ai does not exceed the
total number of points |Ai|, we obtain

|H \ P | ≤
k∑
i=1

∑
b�∈Pi

|{a ∈ H : ai = b}| <
k∑
i=1

∑
b�∈Pi

1
2k

|H |
|Ai|

≤
k∑
i=1

1
2k |H | = 12 |H | . ��

Corollary 2.15. In any 2α-dense 0-1 matrix H either a
√
α-fraction of its

rows or a
√
α-fraction of its columns (or both) are (α/2)-dense.

Proof. Let H be anm×nmatrix. We can view H as a subset of the Cartesian
product [m] × [n], where (i, j) ∈ H iff the entry in the i-th row and j-th
column is 1. We are going to apply Lemma 2.14 with k = 2. We know that
|H | ≥ 2αmn. So, if P1 is the set of all rows with at least 1

4 |H |/|A1| = αn/2
ones, and P2 is the set of all columns with at least 1

4 |H |/|A2| = αm/2 ones,
then Lemma 2.14 implies that

|P1|
m

· |P2|
n

≥ 12
|H |
mn

≥ 12 · 2αmn
mn

= α .

Hence, either |P1|/m or |P2|/n must be at least √
α, as claimed. ��

2.6 The Lovász–Stein theorem

This theorem was used by Stein (1974) and Lovász (1975) in studying some
combinatorial covering problems. The advantage of this result is that it can
be used to get existence results for some combinatorial problems using con-
structive methods rather than probabilistic methods.
Given a family F of subsets of some finite set X , its cover number of F ,

Cov (F), is the minimum number of members of F whose union covers all
points (elements) of X .

Theorem 2.16. If each member of F has at most a elements, and each point
x ∈ X belongs to at least v of the sets in F , then

Cov (F) ≤ |F|
v
(1 + ln a) .
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Proof. Let N = |X |,M = |F| and consider the N ×M 0-1 matrix A = (ax,i),
where ax,i = 1 iff x ∈ X belongs to the i-th member of F . By our assumption,
each row of A has at least v ones and each column at most a ones. By double
counting, we have that Nv ≥ Ma, or equivalently,

M

v
≤ N

a
. (2.7)

Our goal is to show that then A must contain an N × K submatrix C with
no all-0 rows and such that

K ≤ N/a+ (M/v) ln a ≤ (M/v)(1 + ln a) .

We describe a constructive procedure for producing the desired submatrix C.
Let Aa = A and define A′a to be any maximal set of columns from Aa whose
supports† are pairwise disjoint and whose columns each have a ones. Let
Ka = |A′a|. Discard from Aa the columns of A′a and any row with a one in A′a.
We are left with a ka× (M −Ka) matrix Aa−1, where ka = N −aKa. Clearly,
the columns of Aa−1 have at most a−1 ones (indeed, otherwise such a column
could be added to the previously discarded set, contradicting its maximality).
We continue by doing toAa−1 what we did toAa. That is we define A′a−1 to be
any maximal set of columns from Aa−1 whose supports are pairwise disjoint
and whose columns each have a − 1 ones. Let Ka−1 = |A′a−1|. Then discard
from Aa−1 the columns of A′a−1 and any row with a one in A′a−1 getting a
ka−1 × (M −Ka−Ka−1) matrix Aa−2, where ka−1 = N −aKa− (a−1)Ka−1.
The process will terminate after at most a steps (when we have a matrix

containing only zeros). The union of the columns of the discarded sets form
the desired submatrix C with K =

∑a
i=1 Ki. The first step of the algorithm

gives ka = N − aKa, which we rewrite, setting ka+1 = N , as

Ka =
ka+1 − ka

a
.

Analogously,
Ki =

ki+1 − ki
i

for i = 1, . . . , a.

Now we derive an upper bound for ki by counting the number of ones in Ai−1
in two ways: every row of Ai−1 contains at least v ones, and every column at
most i − 1 ones, thus

vki ≤ (i − 1)(M − Ka − · · · − Ki+1) ≤ (i − 1)M ,

or equivalently,

ki ≤ (i − 1)M
v

.

† The support of a vector is the set of its nonzero coordinates.
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So,

K =
a∑
i=1

Ki =
a∑
i=1

ki+1 − ki
i

= ka+1
a
+ ka
a(a− 1) +

ka−1
(a − 1)(a− 2) + · · ·+ k2

2 · 1 − k1

≤ N

a
+ M

v

(
1
a
+ 1
a− 1 + · · ·+ 12

)
≤ N

a
+ M

v
ln a .

The last inequality here follows because 1+ 1/2+ 1/3+ · · ·+1/n is the n-th
harmonic number which is known to lie between lnn and lnn+ 1. Together
with (2.7), this yields K ≤ (M/v)(1 + ln a), as desired. ��
The advantage of this proof is that it can be turned into a simple greedy

algorithm which constructs the desired N ×K submatrix A′ with column-set
C, |C| = K:
1. Set C := ∅ and A′ := A.
2. While A′ has at least one row do:

- find a column c in A′ having a maximum number of ones;
- delete all rows of A′ that contain a 1 in column c;
- delete column c from A′;
- set C := C ∪ {c}.

2.6.1 Covering designs

An (n, k, l) covering design is a family F of k-subsets of an n-element set
(called blocks) such that every l-subset is contained in at least one of these
blocks. Let M(n, k, l) denote the minimal cardinality of such a design. A
simple counting argument (Exercise 1.26) shows that M(n, k, l) ≥ (

n
l

)/(
k
l

)
.

In 1985, Rödl proved a long-standing conjecture of Erdős and Hanani
that for fixed k and l, coverings of size

(
n
l

)/(
k
l

)
(1 + o(1)) exist. Rödl used

non-constructive probabilistic arguments. We will now use the Lovász–Stein
theorem to show how to construct an (n, k, l) covering design with only ln

(
k
l

)
times more blocks. This is not as sharp as Rödl’s celebrated result, but it is
constructive. A polynomial-time covering algorithm, achieving Rödl’s bound,
was found by Kuzjurin (2000).

Theorem 2.17. M(n, k, l) ≤ (
n
l

)/(
k
l

)[
1 + ln

(
k
l

)]
.

Proof. Let X = (xS,T ) be an N ×M 0-1 matrix with N =
(
n
l

)
and M =

(
n
k

)
.

Rows of X are labeled by l-element subsets S ⊆ [n], columns by k-element
subsets T ⊆ [n], and xS,T = 1 iff S ⊆ T . Note that each row contains exactly
v =

(
n−l
k−l

)
ones, and each column contains exactly a =

(
k
l

)
ones.

By the Lovász–Stein theorem, there is an N × K submatrix X ′ such that
X ′ does not contain an all-0 row and
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K ≤ (M/v)(1 + ln a) =
(
n

k

)/(
n− l

k − l

)[
1 + ln

(
k

l

)]

=
(
n

l

)/(
k

l

)[
1 + ln

(
k

l

)]
,

as
(
n
l

)(
n−l
k−l

)
=

(
n
k

)(
k
l

)
(see Exercise 1.12). By the definition of X and the

property of X ′ (no all-0 row), the k-subsets that correspond to the columns
of X ′ form an (n, k, l) covering design. ��

Exercises

2.1. Let A1, . . . , Am be subsets of an n-element set such that |Ai ∩ Aj | ≤ t
for all i �= j. Prove that

∑m
i=1 |Ai| ≤ n+ t · (m2 ).

2.2. Let A = (aij) be an n × n matrix (n ≥ 4 even). The matrix is filled
with integers and each integer appears exactly twice. Show that there exists
a permutation π of {1, . . . , n} such that all the numbers ai,π(i), i = 1, . . . , n
are distinct. (Such a permutation π is also called a Latin transversal of A.)
Hint: Look at how many pairs of entries are “bad,” i.e., contain the same number, and
show that strictly less than n! of all permutations can go through such pairs.

2.3. Let F be a family of m subsets of a finite set X . For x ∈ X , let p(x)
be the number of pairs (A,B) of sets A,B ∈ F such that either x ∈ A ∩ B
or x �∈ A ∪ B. Prove that p(x) ≥ m2/2 for every x ∈ X . Hint: Let d(x) be the
degree of x in F , and observe that p(x) = d(x)2 + (m− d(x))2.

2.4. Let F be a family of nonempty subsets of a finite set X that is closed
under union (i.e., A,B ∈ F implies A ∪ B ∈ F). Prove or give a counterex-
ample: there exists x ∈ X such that d(x) ≥ |F|/2. (Open conjecture, due to
Peter Frankl.)

2.5. A projective plane of order r − 1 is a family of n = r2 − r + 1 r-element
subsets (called lines) of an n-element set of points such that each two lines
intersect at precisely one point and each point belongs to precisely r lines
(cf. Sect. 12.4). Use this family to show that the bound given by Corrádi’s
lemma (Lemma 2.1) is optimal.

2.6. Theorem 2.10 gives a sufficient condition for a bipartite graph with parts
of the same size n to contain an a × a clique. Extend this result to not
necessarily balanced graphs. Let ka,b(m,n) be the minimal integer k such
that any bipartite graph with parts of size m and n and more than k edges
contains at least one a×b clique. Prove that for any 0 ≤ a ≤ m and 0 ≤ b ≤ n,

ka,b(m,n) ≤ (a − 1)1/bnm1−1/b + (b − 1)m.
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2.7. (Paturi–Zane 1998). Extend Theorem 2.10 to r-partite graphs as follows.
An r-partite m-clique is a Cartesian product V1 ×V2 × · · · ×Vr of m-element
sets V1, . . . , Vr. An r-partite graph with parts of size m is a subset E of an
r-partite m-clique. Let ex(m, r, 2) denote the maximum size |E| of such a
graph E which does not contain an r-partite 2-clique. Erdős (1959, 1964b)
proved that

cmr−r/2r−1 ≤ ex(m, r, 2) ≤ mr−1/2r−1
,

where c = c(r) > 0 is a constant depending only on r. A slightly weaker upper
bound ex(m, r, 2) < 2mr−1/2r−1 can be derived from Lemma 2.2. Show how to
do this. Hint: Argue by induction on r. For the induction step take X = V1 ×· · ·×Vr−1

and consider m subsets Av = {x ∈ X : (x, v) ∈ E} with v ∈ Vr. Apply Lemma 2.2 with
n = mr−1, N = m and w = 1

2m
1/2r−1

, to obtain a pair of points u �= v ∈ Vk for which
the graph E′ = Au ∩Av is large enough, and use the induction hypothesis.

2.8. Let F = {A1, . . . , AN} be a family of subsets of some set X . Use (1.11)
to prove that for every 1 ≤ s ≤ N ,∑

x∈X
d(x)s =

∑
(i1,i2,...,is)

|Ai1 ∩ Ai2 ∩ · · · ∩ Ais |,

where the last sum is over all s-tuples (i1, i2, . . . , is) of (not necessarily dis-
tinct) indices.

2.9. Use the previous exercise and the argument of Lemma 2.2 to prove
Lemma 2.3.

2.10. Let A1, . . . , AN be subsets of some n-element set X , and suppose that
these sets have average size at least αn. Show that for every s ≤ (1 − ε)αN
with 0 < ε < 1, there are indices i1, i2, . . . , is such that

|Ai1 ∩ Ai2 ∩ · · · ∩ Ais | ≥ (εα)sn.

Hint: Consider the bipartite graph G = (X, V, E) where V = {1, . . . , N}, and (x, i) ∈ E
if and only if x ∈ Ai. Observe that |E| ≥ αnN and argue as in the proof of Theorem 2.10.

2.11. Prove the following very useful averaging principle for partitions. Let
X = A1 ∪ A2 ∪ · · · ∪ Am be a partition of a finite set X into m mutually
disjoint sets (blocks), and a =

∑m
i=1 |Ai|/m be the average size of a block in

this partition. Show that for every 1 ≤ b ≤ a, at least (1 − 1/b)|X | elements
of X belong to blocks of size at least a/b. How many elements of X belong
to blocks of size at most ab? Hint: m · (a/b) ≤ |X |/b.

2.12. Let A1, . . . , Ar be a sequence of (not necessarily distinct) subsets of an
n-element set X such that each set has size n/s and each element x ∈ X
belongs to least one and to at most k of them; hence r ≤ ks. Let K :=∑k

i=0
(
r
i

)
and assume that s > 2k. Prove that there exist two disjoint subsets

X1 and X2 of X such that |Xi| ≥ n/(2K) for both i = 1, 2, and none of the
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sets A1, . . . , Ar contains points from both sets X1 and X2. Hint: Associate with
each x ∈ X its trace T (x) = {i : x ∈ Ai} and partition the elements of X according
to their traces. Use the previous exercise to show that at least n/2 elements belong to
blocks of size at least n/(2K). Show that some two of these elements x and y must have
disjoint traces, T (x) ∩ T (y) = ∅.

2.13. Let X = A1 ∪ A2 ∪ · · · ∪ Am be a partition of a finite set X into
mutually disjoint blocks. Given a subset Y ⊆ X , we obtain its partition
Y = B1 ∪ B2 ∪ · · · ∪ Bm into blocks Bi = Ai ∩ Y . Say that a block Bi is λ-
large if |Bi|/|Ai| ≥ λ · |Y |/|X |. Show that, for every λ > 0, at least (1−λ) · |Y |
elements of Y belong to λ-large blocks.

2.14. Given a family S1, . . . , Sn of subsets of V = {1, . . . , n}, its intersection
graph G = (V,E) is defined by: {i, j} ∈ E if and only if Si ∩Sj �= ∅. Suppose
that: (i) the sets have average size at least r, and (ii) the average size of
their pairwise intersections does not exceed k. Show that |E| ≥ n

k · (r2). Hint:
Consider the sum

∑
i<j

|Si ∩ Sj |.

2.15. Let H be a 2α-dense 0-1 matrix. Prove that at least an α/(1 − α)
fraction of its rows must be α-dense.

2.16. (Alon 1986). Let S be a set of strings of length n over some alphabet.
Suppose that every two strings of S differ in at least d coordinates. Let k be
such that d > n(1 − 1/(k2)). Show that any k distinct strings v1, . . . , vk of S
attain k distinct values in at least one coordinate. Hint: Assume the opposite
and count the sum of distances between the

(
k
2

)
pairs of vi’s.
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3. Probabilistic Counting

Roughly speaking, the probabilistic method works as follows: trying to prove
that an object with certain properties exists, one defines an appropriate prob-
ability space of objects and shows that a randomly chosen element of this
space has the desired properties with a positive probability. A prototype of
this method is the following averaging (counting) argument:

If x1, . . . , xn ∈ R and
x1 + · · ·+ xn

n
≥ a (3.1)

then for some j
xj ≥ a. (3.2)

The usefulness of the method lies in the fact that the average (3.1) is often
easier to compute than to exhibit a specific xj for which (3.2) can be proved
to hold.
The goal of this chapter is to demonstrate the probabilistic method on sim-

ple examples (more impressive applications will be given in Part IV devoted
to this method). In its simplest applications, probabilistic argument can be
replaced by a straightforward counting, “counting with weights.” However, as
soon as one gets away from the simplest examples, the heart and soul of the
method is the probabilistic point of view rather than the act of counting.

3.1 Probabilistic preliminaries

We briefly recall some basic definitions of (discrete) probability.
A finite probability space consists of a finite set Ω and a function (called

also probability distribution) Pr : Ω → [0, 1], such that
∑

x∈Ω Pr [x] = 1.
A probability space is a representation of a random experiment, where we
choose a member of Ω at random and Pr [x] is the probability that x is
chosen. Subsets A ⊆ Ω are called events. The probability of an event is
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3 Probabilistic Counting

defined by Pr [A] :=
∑

x∈A Pr [x], i.e., the probability that a member of A is
chosen.
We call Ω the domain (or a sample space) and we call Pr a probability

distribution. The most common probability distribution is the uniform distri-
bution, which is defined as Pr [x] = 1/|Ω| for each x ∈ Ω; the corresponding
sample space is then called symmetric.
Some elementary properties follow directly from the definitions. In parti-

cular, for any two events∗ A and B we have that

1. Pr [Ω] = 1, Pr [∅] = 0 and Pr [A] ≥ 0 for all A ⊆ Ω;
2. Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩B] ≤ Pr [A] + Pr [B];
3. Pr [A ∪ B] = Pr [A] + Pr [B] if A and B are disjoint;
4. Pr

[
A
]
= 1− Pr [A];

5. Pr [A \ B] = Pr [A]− Pr [A ∩ B];
6. Pr [A ∩ B] ≥ Pr [A]− Pr [B]

;
7. If B1, . . . , Bm is a partition of Ω then Pr [A] =

∑m
i=1 Pr [A ∩ Bi].

For two events A and B, the conditional probability of A given B, denoted
Pr [A|B], is the probability that one would assign to A if one knew that B
occurs. Formally,

Pr [A|B] := Pr [A ∩ B]
Pr [B] ,

when Pr [B] 
= 0. For example, if we are choosing a uniform integer from
{1, . . . , 6}, A is the event that the number is 2 and B is the event that the
number is even, then Pr [A|B] = 1/3, whereas Pr [B|A] = 1.
Two events A and B are independent if Pr [A ∩ B] = Pr [A] · Pr [B]. If

B 
= ∅, this is equivalent to Pr [A |B ] = Pr [A]. It is very important to note
that the “independence” has nothing to do with the “disjointness” of the
events: if, say, 0 < Pr [A] < 1, then the events A and A are dependent!
Let Γ be finite set, and 0 ≤ p ≤ 1. A random subset S of Γ is obtained

by flipping a coin, with probability p of success, for each element of Γ to
determine whether the element is to be included in S; the distribution of S is
the probability distribution on Ω = 2Γ given by Pr [S] = p|S|(1−p)|Γ |−|S| for
S ⊆ Γ . We will mainly consider the case when S is uniformly distributed, that
is, when p = 1/2. In this case each subset S ⊆ Γ receives the same probability
Pr [S] = 2−|Γ |. If F is a family of subsets, then its random member S is a
uniformly distributed member; in this case, Ω = F and S has the probability
distribution Pr [S] = 1/|F|. Note that, for p = 1/2, a random subset of Γ is
just a random member of 2Γ .
A random variable is a variable defined as a function X : Ω → R of the

domain of a probability space. For example, if X is a uniform integer chosen
from {1, . . . , n}, then Y := 2X and Z := “the number of prime divisors of
X” are both random variables, and so is X itself. In what follows, Pr [X = s]
denotes the probability of the event X−1(s) = {x ∈ Ω : X(x) = s}. One
∗ Here and throughout A = Ω \A stands for the complement of A.
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3.1 Probabilistic preliminaries

says in this case that X takes value s ∈ R with probability Pr [X = s]. It
is clear that events are a special type of random variables taking only two
values 0 and 1. Namely, one can identify an event A ⊆ Ω with its indicator
random variable XA such that XA(x) = 1 if and only if x ∈ A.
One of the most basic probabilistic notions is the expected value of a

random variable. This is defined for any real-valued random variable X , and
intuitively, it is the value that we would expect to obtain if we repeated a
random experiment several times and took the average of the outcomes of X .
Namely, if X takes values s1, . . . , sm, then the mean or expectation of X is
defined as the weighted average of these values:

E [X ] :=
m∑
i=1

si · Pr [X = si] =
∑
x∈Ω

X(x) · Pr [x] .

For example, if X is the number of spots on the top face when we roll a fair
die, then the expected number of spots is E [X ] =

∑6
i=1 i(1/6) = 3.5. In this

book we will only consider random variables with finite ranges S, so that we
will not be faced with the convergence issue of the corresponding series.
Note that the probability distribution Pr : Ω → [0, 1] itself is a random

variable, and its expectation is

E [Pr] =
∑
x∈Ω
Pr[x]2 .

In particular, if Pr is a uniform distribution of a set with n elements, then its
expectation is 1/n, as it should be. The expectation of the indicator random
variable XA of an event A is just its probability:

E [XA] = 0 · Pr[XA = 0] + 1 · Pr[XA = 1] = Pr[XA = 1] = Pr [A] .

The probabilistic method is most striking when it is applied to prove the-
orems whose statement does not seem to suggest the need for probability at
all. It is therefore surprising what results may be obtained from such simple
principles like the union bound: The probability of a union of events is at
most the sum of the probabilities of the events,

Pr [A1 ∪ A2 ∪ · · · ∪ An] ≤ Pr [A1] + Pr [A2] + · · ·+ Pr [An] . (3.3)

Thus, if Ai’s are some “bad” events and
∑
Pr [Ai] < 1 then we know that

Pr
[∩iAi] = Pr [∪iAi] = 1− Pr [∪iAi] > 0, that is, with positive probability,

none of these bad events happens. Already this simple fact often allows to
show that some object with desired “good” properties exists.
A next useful property is the linearity of expectation: If X1, . . . , Xn are

random variables and a1, . . . , an real numbers, then

E [a1X1 + · · ·+ anXn] = a1E [X1] + · · ·+ anE [Xn] .
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The equality follows directly from the definition E [X ]. The power of this
principle comes from there being no restrictions on the Xi’s.
A general framework for the probabilistic method is the following. Many

extremal problems can be defined by a pair (M, f), where M is some finite
set of objects and f :M → R some function assigning each object x ∈ M its
“value”. For example, M could be a set of graphs, satisfying some conditions,
and f(x) could be the maximum size of a clique in x. Given a threshold value
t, the goal is to show that an object x ∈ M with f(x) ≥ t exists. That is, we
want to show that maxx∈M f(x) ≥ t.
To solve this task, one defines an appropriate probability distribution Pr :

M → [0, 1] and considers the resulting probability space. In this space the
target function f becomes a random variable. One tries then to show that
either E [f ] ≥ t or Pr [f(x) ≥ t] > 0 holds. If at least one of these inequalities
holds, then the existence of x ∈ M with f(x) ≥ t is already shown. Indeed,
would f(x) < t hold for all x ∈ M , then we would have

Pr [f(x) ≥ t] = Pr [∅] = 0

and
E [f ] =

∑
i

i · Pr [f = i] <
∑
i

t · Pr [f = i] = t .

The property

E [f ] ≥ t implies f(x) ≥ t for at least one x ∈ M

is sometimes called the pigeonhole principle of expectation: a random variable
cannot always be smaller (or always greater) than its expectation.
In the next sections we give some simplest applications of the probabilistic

method (more applications are given in Part IV).

3.2 Tournaments

A tournament is an oriented graph T = (V,E) such that (x, x) 
∈ E for
all x ∈ V , and for any two vertices x 
= y exactly one of (x, y) and (y, x)
belongs to E. That is, each tournament is obtained from a complete graph
by orienting its edges. The name tournament is natural, since one can think
of the set V as a set of players in which each pair participates in a single
match, where (x, y) ∈ E iff x beats y.
Say that a tournament has the property Pk if for every set of k players

there is one who beats them all, i.e., if for any subset S ⊆ V of k players
there exists a player y 
∈ S such that (y, x) ∈ E for all x ∈ S.

Theorem 3.1 (Erdős 1963a). If n ≥ k22k+1, then there is a tournament of
n players that has the property Pk.
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Proof. Consider a random tournament of n players, i.e., the outcome of every
game is determined by the flip of fair coin. For a set S of k players, let AS
be the event that no y 
∈ S beats all of S. Each y 
∈ S has probability 2−k of
beating all of S and there are n− k such possible y, all of whose chances are
mutually independent. Hence Pr [AS ] = (1 − 2−k)n−k and

Pr
[⋃

AS

]
≤

(
n

k

)
(1− 2−k)n−k < nk

k! e
−(n−k)/2k ≤ nke−n/2k .

If n ≥ k22k+1, this probability is strictly smaller than 1. Thus, for such an
n, with positive probability no event AS occurs. This means that there is a
point in the probability space for which none of the events AS happens. This
point is a tournament T and this tournament has the property Pk. ��

3.3 Universal sets

A set of 0-1 strings of length n is (n, k)-universal if, for any subset of k
coordinates S = {i1, . . . , ik}, the projection

A�S := {(ai1 , . . . , aik) : (a1, . . . , an) ∈ A}

of A onto the coordinates in S contains all possible 2k configurations.
In Sects. 10.5 and 17.4 we will present two explicit constructions of such

sets of size about n, when k ≤ (log n)/3, and of size nO(k), for arbitrary k. On
the other hand, a simple probabilistic argument shows that (n, k)-universal
sets of size k2k log2 n exist (note that 2k is a trivial lower bound).

Theorem 3.2 (Kleitman–Spencer 1973). If
(
n
k

)
2k(1− 2−k)r < 1, then there

is an (n, k)-universal set of size r.

Proof. Let A be a set of r random 0-1 strings of length n, each entry of which
takes values 0 or 1 independently and with equal probability 1/2. For every
fixed set S of k coordinates and for every fixed vector v ∈ {0, 1}k,

Pr [v 
∈ A�S ] =
∏
a∈A

Pr [v 
= a�S ] =
∏
a∈A

(
1− 2−|S|

)
=

(
1− 2−k)r .

Since there are only
(
n
k

)
2k possibilities to choose a pair (S, v), the set A is

not (n, k)-universal with probability at most
(
n
k

)
2k(1−2−k)r, which is strictly

smaller than 1. Thus, at least one set A of r vectors must be (n, k)-universal,
as claimed. ��
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3.4 Covering by bipartite cliques

A biclique covering of a graph G is a set H1, . . . , Ht of its complete bipartite
subgraphs such that each edge of G belongs to at least one of these subgraphs.
The weight of such a covering is the sum

∑t
i=1 |V (Hi)| of the number of

vertices in these subgraphs. Let bc(G) be the smallest weight of a biclique
covering of G. Let Kn be a complete graph on n vertices.

Theorem 3.3. If n is a power of two, then bc(Kn) = n log2 n.

Proof. Let n = 2m. We can construct a covering of Kn as follows. Assign
to each vertex v its own vector xv ∈ {0, 1}m, and consider m = log2 n
bipartite cliques H1, . . . , Hm, where two vertices u and v are adjacent in Hi

iff xu(i) = 0 and xv(i) = 1. Since every two distinct vectors must differ in
at least one coordinate, each edge of Kn belongs to at least one of these
bipartite cliques. Moreover, each of the cliques has weight (n/2)+ (n/2) = n,
since exactly 2m−1 = n/2 of the vectors in {0, 1}m have the same value in
the i-th coordinate. So, the total weight of this covering is mn = n log2 n.
To prove the lower bound we use a probabilistic argument. Let A1 ×

B1, . . . , At × Bt be a covering of Kn by bipartite cliques. For a vertex v,
let mv be the number of these cliques containing v. By the double-counting
principle,

t∑
i=1
(|Ai|+ |Bi|) =

n∑
v=1

mv

is the weight of the covering. So, it is enough to show that the right-hand
sum is at least n log2 n.
To do this, we throw a fair 0-1 coin for each of the cliques Ai × Bi and

remove all vertices in Ai from the graph if the outcome is 0; if the outcome
is 1, then we remove Bi. Let X = X1 + · · ·+Xn, where Xv is the indicator
variable for the event “the vertex v survives.”
Since any two vertices of Kn are joined by an edge, and since this edge

is covered by at least one of the cliques, at most one vertex can survive at
the end. This implies that E [X ] ≤ 1. On the other hand, each vertex v will
survive with probability 2−mv : there are mv steps that are “dangerous” for
v, and in each of these steps the vertex v will survive with probability 1/2.
By the linearity of expectation,

n∑
v=1
2−mv =

n∑
v=1
Pr [v survives] =

n∑
v=1
E [Xv] = E [X ] ≤ 1 .

We already know that the arithmetic mean of numbers a1, . . . , an is at least
their geometric mean (1.16):

1
n

n∑
v=1

av ≥
( n∏
v=1

av

)1/n
.
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When applied with av = 2−mv , this yields

1
n

≥ 1
n

n∑
v=1
2−mv ≥

( n∏
v=1
2−mv

)1/n
= 2−

1
n

∑n

v=1
mv ,

from which 2
1
n

∑
n

v=1
mv ≥ n, and hence, also

∑n
v=1 mv ≥ n log2 n follows. ��

3.5 2-colorable families

Let F be a family of subsets of some finite set. Can we color the elements of
the underlying set in red and blue so that no member of F will be monochro-
matic? Such families are called 2-colorable.
Recall that a family is k-uniform if each member has exactly k elements.

Theorem 3.4 (Erdős 1963b). Every k-uniform family with fewer than 2k−1

members is 2-colorable.

Proof. Let F be an arbitrary k-uniform family of subsets of some finite set X .
Consider a random 2-coloring obtained by coloring each point independently
either red or blue, where each color is equally likely. Informally, we have
an experiment in which a fair coin is flipped to determine the color of each
point. For a member A ∈ F , let XA be the indicator random variable for the
event that A is monochromatic. So, X =

∑
A∈F XA is the total number of

monochromatic members.
For a member A to be monochromatic, all its |A| = k points must receive

the same color. Since the colors are assigned at random and independently,
this implies that each member of F will be monochromatic with probability
at most 2 · 2−k = 21−k (factor 2 comes since we have two colors). Hence,

E [X ] =
∑
A∈F
E [XA] =

∑
A∈F
21−k = |F| · 21−k .

Since points in our probability space are 2-colorings, the pigeonhole property
of expectation implies that a coloring, leaving at most |F| · 21−k members of
F monochromatic, must exist.
In particular, if |F| < 2k−1 then no member of F will be left monochro-

matic. ��
The proof was quite easy. So one could ask whether we can replace 2k−1 by,

say, 4k? By turning the probabilistic argument “on its head” it can be shown
that this is not possible. The sets now become random and each coloring
defines an event.

Theorem 3.5 (Erdős 1964a). If k is sufficiently large, then there exists a
k-uniform family F such that |F| ≤ k22k and F is not 2-colorable.
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Proof. Set r = 
k2/2�. Let A1,A2, . . . be independent random members of([r]
k

)
, that is, Ai ranges over the set of all A ⊆ {1, . . . , r} with |A| = k, and

Pr [Ai = A] =
(
r
k

)−1. Consider the family F = {A1, . . . ,Ab}, where b is a
parameter to be specified later. Let χ be a coloring of {1, . . . , r} in red and
blue, with a red points and r − a blue points. Using Jensen’s inequality (see
Proposition 1.12), for any such coloring and any i, we have

Pr [Ai is monochromatic] = Pr [Ai is red] + Pr [Ai is blue]

=
(
a
k

)
+

(
r−a
k

)(
r
k

) ≥ 2
(
r/2
k

)/(
r

k

)
:= p,

where, by the asymptotic formula (1.9) for the binomial coefficients, p is
about e−121−k. Since the members Ai of F are independent, the probability
that a given coloring χ is legal for F equals

b∏
i=1
(1− Pr [Ai is monochromatic]) ≤ (1− p)b.

Hence, the probability that at least one of all 2r possible colorings will be
legal for F does not exceed 2r(1 − p)b < er ln 2−pb, which is less than 1 for
b = (r ln 2)/p = (1 + o(1))k22k−2e ln 2. But this means that there must be
at least one realization of the (random) family F , which has only b sets and
which cannot be colored legally. ��
Let B(k) be the minimum possible number of sets in a k-uniform family

which is not 2-colorable. We have already shown that

2k−1 ≤ B(k) ≤ k22k .

As for exact values of B(k), only the first two B(2) = 3 and B(3) = 7 are
known. The value B(2) = 3 is realized by the graph K3. We address the
inequality B(3) ≤ 7 in Exercise 3.9.
There is yet another class of 2-colorable families, without any uniformity

restriction.

Theorem 3.6. Let F be an arbitrary family of subsets of a finite set, each
of which has at least two elements. If every two non-disjoint members of F
share at least two common elements, then F is 2-colorable.

Proof. Let X = {x1, . . . , xn} be the underlying set. We will color the points
x1, . . . , xn one-by-one so that we do not color all points of any set in F with
the same color. Color the first point x1 arbitrarily. Suppose that x1, . . . , xi
are already colored. If we cannot color the next element xi+1 in red then this
means that there is a set A ∈ F such that A ⊆ {x1, . . . , xi+1}, xi+1 ∈ A and
all the points in A \ {xi+1} are red. Similarly, if we cannot color the next
element xi+1 in blue, then there is a set B ∈ F such that B ⊆ {x1, . . . , xi+1},
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3.6 The choice number of graphs

xi+1 ∈ B and all the points in B\{xi+1} are blue. But then A∩B = {xi+1}, a
contradiction. Thus, we can color the point xi+1 either red or blue. Proceeding
in this way we will finally color all the points and no set of F becomes
monochromatic. ��

3.6 The choice number of graphs

The choice number (or list-coloring number) of a graph G, denoted by ch(G),
is the minimum integer k such that for every assignment of a set S(v) of k
colors to every vertex v of G, there is a legal coloring of G that assigns to
each vertex v a color from S(v). Recall that a coloring is legal if adjacent ver-
tices receive different colors. Obviously, this number is at least the chromatic
number χ(G) of G.

Theorem 3.7 (Alon 1992). For every bipartite n × n graph G with n ≥ 3,
we have that ch(G) ≤ 2 log2 n.

Proof. Let G = (V0 ∪ V1, E) be a bipartite graph with |V0| = |V1| = n.
Suppose that each vertex v is assigned a set S(v) of at least 2 log2 n colors,
and let S = ∪vS(v) be the set of all colors. Since the graph is bipartite, it is
enough to show that there is a partition S = S0 ∪ S1 of S such that

Si ∩ S(v) 
= ∅ for both i = 0, 1 and all v ∈ Vi. (3.4)

Then, for every two (even not necessarily adjacent) vertices u ∈ V0 and
v ∈ V1, we can choose arbitrary colors cv ∈ S0 ∩ S(v) and cu ∈ S1 ∩ S(v);
since S0 ∩ S1 = ∅, these colors are clearly distinct.
To define such a partition S = S0 ∪ S1 just flip, for each color c ∈ S, a

fair 0-1 coin to decide whether to include this color in the set S0; let also
S1 = S \ S0. For a fixed i ∈ {0, 1} and v ∈ Vi we have that

Pr [Si ∩ S(v) = ∅] = 2−|S(v)| ≤ 2−2 log2 n = 1
n2 <

1
2n .

The number of pairs (i, v) with i ∈ {0, 1} and v ∈ Vi is 2n. Hence, by the
union bound, the probability that our random partition S = S0 ∪ S1 does
not satisfy (3.4) is strictly smaller than 1, implying that a desired partition
exists. ��
Note that the proof says a bit more. If A1, . . . , An and B1, . . . , Bn are any

two sequences of not necessarily distinct 2 log2 n-element subsets of some set
of vertices, then it is possible to color the vertices in red and blue so that
each of the Ai receives at least one red color and each of the Bi receives at
least one blue color.
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Exercises

3.1. Let Ω = B1 ∪ B2 be a partition of a sample space, and A ⊆ Ω be an
event. Prove that then Pr [A] does not exceed the maximum of Pr[A |B1] and
Pr[A |B2]. Hint: Show that Pr [A] = Pr [B1] · Pr[A |B1] + Pr [B2] · Pr[A |B2].

3.2. Prove the following Bonferroni inequality:

Pr[A1 ∩ · · · ∩An] ≥ Pr[A1] + · · ·+ Pr[An]− n+ 1 .

3.3. Let X,Y : Ω → R be random variables. The variance of a random
variable X is defined as Var [X ] := E

[
(X − E [X ])2]. Prove that

1. E [a ·X + b · Y ] = a · E [X ] + b · E [Y ] for any constants a and b.
2. If X and Y are independent then E [X · Y ] = E [X ] · E [Y ] and
Var [X + Y ] = Var [X ] + Var [Y ].

3. Var [X ] = E[X2]− E [X ]2 . Hint: E [X · E [X ]] = E [X ]2.

3.4. Let X be a non-negative integer-valued random variable. Show that
E[X2] ≥ E [X ], Pr [X = 0] ≥ 1− E [X ] and E [X ] =∑∞

x=1Pr [X ≥ x].

3.5. Use the Cauchy–Schwarz inequality (
∑n

i=1 aibi)2 ≤ (∑n
i=1 a

2
i )(

∑n
i=1 b

2
i )

to show that, for any random variable X , E [X ]2 ≤ E[X2].

3.6. Let X1, . . . , Xn be n independent 0-1 random variables such that
Pr [Xi = 1] = pi and Pr [Xi = 0] = 1 − pi. Let X =

∑n
i=1 Xi mod 2. Prove

that Pr [X = 1] = 1
2 [1− ∏

i(1− 2pi)] . Hint: Consider the random variable
Y = Y1 · · ·Yn, where Yi = 1 − 2Xi, and observe that E [Y ] = 1− 2 · Pr [Y = −1].

3.7. For a graph G let, as before, bc(G) denote the smallest weight of a
biclique covering of G. Show that if an n-vertex graph G has no independent
set of size larger than α then bc(G) ≥ n log2(n/α). Hint: Argue as in the proof
of the lower bound in Theorem 3.3, and show that E [X ] ≤ α.

3.8. For a graph G = (V,E), let μG be the minimum of (a + b)/ab over all
pairs of integers a, b ≥ 1 such that G contains a copy of a complete bipartite
a× b graph Ka,b. Show that bc(G) ≥ μG · |E|.
3.9. Prove that B(3) ≤ 7. That is, exhibit a family of seven 3-element sets
which is not 2-colorable. Hint: Consider the Fano configuration (Fig. 12.1).

3.10. (Razborov 1990). Consider the family of all pairs (A,B) of disjoint k-
element subsets of {1, . . . , n}. A set Y separates the pair (A,B) if A ⊆ Y
and B ∩ Y = ∅. Prove that there exist � = 2k4k lnn sets such that every
pair (A,B) is separated by at least one of them. Hint: Pick subsets Y 1, . . . ,Y �

of {1, . . . , n} randomly and independently, each with probability 2−n. Show that the
probability that none of them separates a given pair (A,B) is at most

(
1− 2−2k)� and

use the counting sieve.
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Exercises

3.11. Let X be a set of n = kr points and consider their colorings c : X →
{1, . . . , k} by k colors. Say that such a coloring c is balanced if each color
is used for the same number of points, i.e., if |c−1(i)| = r for every color
i = 1, . . . , k. Given a k-element set of points, say that it is differently colored if
no two of its points get the same color. Prove that there exist � = O(kek logn)
balanced colorings c1, . . . , c� such that every k-element subset of X is differ-
ently colored by at least one of them. Hint: Consider independent copies c1, . . . , c�

of a balanced coloring c selected at random from the set of all n!/(r!)k such color-
ings. Show that for every k-element subset S of X , c colors S differently with proba-
bility p = rk ·

(
n
k

)−1. Use the counting sieve to show that, with probability at least
1 −

(
n
k

)
(1 − p)�, every k-element subset S will be colored differently by at least one of

c1, . . . , c�. Recall that r = n/k and use Proposition 1.4 to show that this probability is
nonzero for some � = O(kek log n)

3.12. (Khasin 1969). Consider the k-threshold function T nk (x1, . . . , xn) which
outputs 1 if and only if x1+ · · ·+xn ≥ k. In Sect. 6.3.2 we will show that any
depth-3 Or-And-Or formula for T nk must have size exponential in k. What
about the upper bounds? Use the previous exercise to show that T nk can be
computed by a monotone Or-And-Or formula of size O(kekn logn). Hint: Each
balanced k-coloring c of {1, . . . , n} gives us an And-Or formula Fc =

∧k

i=1

∨
c(j)=i xj .

Use the previous exercise to combine them into an Or-And-Or formula for Tnk .

3.13. Let F be a family, each member of which has ≥ 3 points and any two
members share exactly one point in common. Suppose also that F is not
2-colorable. Prove that: (i) every point x belongs to at least two members of
F , and (ii) any two points x, y belong to at least one member of F . Hint: (i)
Take x ∈ A ∈ F , color A \ {x} red and the rest blue. (ii) Select sets A,B such that
x ∈ A \ B and y ∈ B \A; color (A ∪B) \ {x, y} red and everything else blue.

3.14. (Lovász 1973). Let F be 3-uniform family on n ≥ 5 points, in which
each pair of points occurs in the same number of sets. Prove that F is not 2-
colorable. Hint: Suppose there is a 2-coloring, count the members of F in two ways: by
the monochromatic pairs contained in them and also by the bichromatic pairs contained
in them. Let n1 and n2 denote the number of red and blue points, respectively, and
let a be the number of members of F containing a given pair of points. We have a

(
n1
2

)
sets in F containing a pair {x, y} of red points, and a

(
n2
2

)
sets containing a blue pair of

points. Hence, |F| is the sum of these two numbers. On the other hand, each set of F
contains exactly two pairs {x, y} where x is blue and y is red; so 2|F| = an1n2. Compare
these numbers, and use the arithmetic-geometric mean inequality (1.16) to show that
the equality can hold only if n ≤ 4.
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4. The Pigeonhole Principle

The pigeonhole principle (also known as Dirichlet’s principle) states the “ob-
vious” fact that n + 1 pigeons cannot sit in n holes so that every pigeon is
alone in its hole. More generally, the pigeonhole principle states the following:

If a set consisting of at least rs + 1 objects is partitioned into r classes,
then some class receives at least s+ 1 objects.

Its truth is easy to verify: if every class receives at most s objects, then a
total of at most rs objects have been distributed. To see that the result is
best possible, observe that a set with at most rs points can be divided into r
groups with at most s points in each group; hence none of the groups contains
s+ 1 points.
This is one of the oldest “non-constructive” principles: it states only the

existence of a pigeonhole with more than k items and says nothing about how
to find such a pigeonhole. Today we have powerful and far reaching gener-
alizations of this principle (Ramsey-like theorems, the probabilistic method,
etc.). We will talk about them later.
As trivial as the pigeonhole principle itself may sound, it has numerous

nontrivial applications. The hard part in applying this principle is to decide
what to take as pigeons and what as pigeonholes. Let us illustrate this by
several examples.

4.1 Some quickies

To “warm-up,” let us start with the simplest applications. The degree of a
vertex x in a graph G is the number d(x) of edges of G adjacent to x.

Proposition 4.1. In any graph there exist two vertices of the same degree.

Proof. Given a graph G on n vertices, make n pigeonholes labeled from 0 up
to n − 1 and put a vertex x into the k-th pigeonhole iff d(x) = k. If some
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4 The Pigeonhole Principle

.  .  . .  .  .

yx

Fig. 4.1 There are only n− 2 vertices and at least n− 1 edges going to them.

pigeonhole contains more than one vertex, we are done. So, assume that no
pigeonhole has more than one vertex. There are n vertices going into the n
pigeonholes; hence each pigeonhole has exactly one vertex. Let x and y be the
vertices lying in the pigeonholes labeled 0 and n− 1, respectively. The vertex
x has degree 0 and so has no connection with other vertices, including y. But
y has degree n − 1 and hence, is connected with all the remaining vertices,
including x, a contradiction. ��
If G is a finite graph, the independence number α(G) is the maximum

number of pairwise nonadjacent vertices of G. The chromatic number χ(G)
of G is the minimum number of colors in a coloring of the vertices of G with
the property that no two adjacent vertices have the same color.

Proposition 4.2. In any graph G with n vertices, n ≤ α(G) · χ(G).
Proof. Consider the vertices of G partitioned into χ(G) color classes (sets
of vertices with the same color). By the pigeonhole principle, one of the
classes must contain at least n/χ(G) vertices, and these vertices are pairwise
nonadjacent. Thus α(G) ≥ n/χ(G), as desired. ��
A graph is connected if there is a path between any two of its vertices.

Proposition 4.3. Let G be an n-vertex graph. If every vertex has a degree
of at least (n − 1)/2 then G is connected.

Proof. Take any two vertices x and y. If these vertices are not adjacent, then
at least n− 1 edges join them to the remaining vertices, because both x and
y have a degree of at least (n− 1)/2.
Since there are only n − 2 other vertices, the pigeonhole principle implies

that one of them must be adjacent to both x and y (see Fig. 4.1). We have
proved that every pair of vertices is adjacent or has a common neighbor, so
G is connected. ��
Remark 4.4. A result is best possible if the conclusion no longer holds when
we weaken one of the conditions. Such is, for example, the result above: let
n be even and G be a union of two vertex disjoint complete graphs on n/2
vertices; then every vertex has degree (n−2)/2, but the graph is disconnected.
Note that, in fact, we have proved more: if every vertex of an n-vertex

graph has degree at least (n − 1)/2 then the graph has diameter at most
two. The diameter of a graph is the smallest number k such that every two
vertices are connected by a path with at most k edges.
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4.2 The Erdős–Szekeres theorem

4.2 The Erdős–Szekeres theorem

Let A = (a1, a2, . . . , an) be a sequence of n different numbers. A subsequence
of k terms of A is a sequence B of k distinct terms of A appearing in the same
order in which they appear in A. In symbols, we have B = (ai1 , ai2 , . . . , aik),
where i1 < i2 < · · · < ik. A subsequence B is said to be increasing if
ai1 < ai2 < · · · < aik , and decreasing if ai1 > ai2 > · · · > aik .
We will be interested in the length of the longest increasing and decreasing

subsequences of A. It is intuitively plausible that there should be some kind
of tradeoff between these lengths. If the longest increasing subsequence is
short, say has length s, then any subsequence of A of length s + 1 must
contain a pair of decreasing elements, so there are lots of pairs of decreasing
elements. Hence, we would expect the longest decreasing sequence to be large.
An extreme case occurs when s = 1. Then the whole sequence A is decreasing.
How can we quantify the feeling that the length of both, longest increasing

and longest decreasing subsequences, cannot be small? A famous result of
Erdős and Szekeres (1935) gives an answer to this question and was one of
the first results in extremal combinatorics.

Theorem 4.5 (Erdős–Szekeres 1935). Let A = (a1, . . . , an) be a sequence
of n different real numbers. If n ≥ sr + 1 then either A has an increasing
subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or
both).

Proof (due to Seidenberg 1959). Associate to each term ai of A a pair of
“scores” (xi, yi) where xi is the number of terms in the longest increasing
subsequence ending at ai, and yi is the number of terms in the longest de-
creasing subsequence starting at ai. Observe that no two terms have the
same score, i.e., that (xi, yi) �= (xj , yj) whenever i �= j. Indeed, if we have
· · · ai · · · aj · · · , then either ai < aj and the longest increasing subsequence
ending at ai can be extended by adding on aj (so that xi < xj), or ai > aj
and the longest decreasing subsequence starting at aj can be preceded by ai
(so that yi > yj).
Now make a grid of n2 pigeonholes:

r n1

1

s

n

Place each term ai in the pigeonhole with coordinates (xi, yi). Each term of
A can be placed in some pigeonhole, since 1 ≤ xi, yi ≤ n for all i = 1, . . . , n.
Moreover, no pigeonhole can have more than one term because (xi, yi) �=
(xj , yj) whenever i �= j. Since |A| = n ≥ sr+1, we have more items than the
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4 The Pigeonhole Principle

pigeonholes shaded in the above picture. So some term ai will lie outside this
shaded region. But this means that either xi ≥ s+ 1 or yi ≥ r + 1 (or both),
exactly what we need. ��
The set of real numbers is totally ordered. That is, for any two distinct

numbers x and y, either x < y or y < x. The following lemma, due to Dil-
worth, generalizes the Erdős–Szekeres theorem to sets in which two elements
may or may not be comparable.
A partial order on a set P is a binary relation < between its elements

which is transitive and irreflexive: if x < y and y < z then x < z, but x < y
and y < x cannot both hold. We write x ≤ y if x < y or x = y. Elements x
and y are comparable if either x ≤ y or y ≤ x (or both) hold. A chain in a
poset P is a subset C ⊆ P such that any two of its points are comparable.
Dually, an antichain is a subset A ⊆ P such that no two of its points are
comparable.

Lemma 4.6 (Dilworth 1950). In any partial order on a set P of n ≥ sr + 1
elements, there exists a chain of length s+ 1 or an antichain of size r + 1.

Proof. A chain is maximal if it cannot be prolonged by adding a new element.
Let C1, . . . , Cm be all maximal chains in P , and suppose there is no chain of
length s+1. Since the chains Ci must cover all n points of P , the pigeonhole
principle implies that we must have m ≥ r + 1 such chains. Let xi ∈ Ci be
the greatest element of Ci. Then no two elements xi and xj with i �= j can be
comparable: if xi ≤ xj then Ci ∪ {xj} would also be a chain, a contradiction
with the maximality of Ci. Thus, the elements x1, . . . , xm form an antichain
of size m ≥ r + 1. ��
This lemma implies the Erdős–Szekeres theorem (we address this question

in Exercise 4.10).

4.3 Mantel’s theorem

Here we discuss one typical extremal property of graphs. How many edges are
possible in a triangle-free graph G on n vertices? A triangle is a set of three
vertices, each two of which are connected by an edge. Certainly, G can have
n2/4 edges without containing a triangle: just let G be the bipartite complete
graph consisting of two sets of n/2 vertices each and all the edges between
the two sets. Indeed, n2/4 turns out to be the maximum possible number of
edges: if we take one more edge then the graph will have a triangle.
We give four proofs of this beautiful result: the first (original) proof is

based on double counting, the second uses the inequality
√
ab ≤ (a+ b)/2 of

the arithmetic and geometric mean, the third uses the pigeonhole principle,
and the fourth employs the so-called “shifting argument” (we will give this
last proof in the Sect. 4.7 devoted to this argument).
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4.3 Mantel’s theorem

Theorem 4.7 (Mantel 1907). If a graph G on n vertices contains more than
n2/4 edges, then G contains a triangle.

First proof. Let G be a graph on a set V of n vertices containing m >
n2/4 edges. Assume that G has no triangles. Then adjacent vertices have no
common neighbors, so d(x) + d(y) ≤ n for each edge {x, y} ∈ E. Summing
over all edges of G, we have (cf. Equation (1.12))∑

x∈V
d(x)2 =

∑
{x,y}∈E

(d(x) + d(y)) ≤ mn .

On the other hand, using Cauchy–Schwarz inequality (see Notation or Propo-
sition 13.4) and Euler’s equality

∑
x∈V d(x) = 2m (see Theorem 1.8), we

obtain ∑
x∈V

d(x)2 ≥
(∑

x∈V d(x)
)2

|V | = 4m
2

n
.

These two inequalities imply that m ≤ n2/4, contradicting the hypothesis.
��

Second proof. Let G = (V,E) be a graph on a set V of n vertices and assume
that G has no triangles. Let A ⊆ V be the largest independent set, i.e., a
maximal set of vertices, no two of which are adjacent in G. Since G is triangle-
free, the neighbors of a vertex x ∈ V form an independent set, and we infer
d(x) ≤ |A| for all x.
The set B = V \A meets every edge of G. Counting the edges of G accord-

ing to their end-vertices in B, we obtain |E| ≤ ∑
x∈B d(x). The inequality of

the arithmetic and geometric mean (1.16) yields

|E| ≤
∑
x∈B

d(x) ≤ |A| · |B| ≤
( |A|+ |B|

2

)2
= n2

4 .

��
Third proof. To avoid ceilings and floorings, we will prove the theorem for
graphs on an even number 2n of vertices. We want to prove that every such
graph with at least n2+1 edges must contain a triangle. We argue by induc-
tion on n. If n = 1, then G cannot have n2 + 1 edges; hence the statement
is true. Assuming the result for n, we now consider a graph G on 2(n + 1)
vertices with (n+ 1)2 + 1 edges. Let x and y be adjacent vertices in G, and
let H be the induced subgraph on the remaining 2n vertices. If H contains
at least n2 + 1 edges then we are done by the induction hypothesis. Suppose
that H has at most n2 edges, and therefore at least 2n+1 edges of G emanate
from x and y to vertices in H :
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By the pigeonhole principle, among these 2n + 1 edges there must be an
edge from x and an edge from y to the same vertex z in H . Hence G contains
the triangle {x, y, z}. ��

4.4 Turán’s theorem

A k-clique is a graph on k vertices, every two of which are connected by an
edge. For example, triangles are 3-cliques. Mantel’s theorem says that, if a
graph on n vertices has no 3-clique then it has at most n2/4 edges. What
about k > 3?
The answer is given by a fundamental result of Paul Turán, which initiated

extremal graph theory.

Theorem 4.8 (Turán 1941). If a graph G = (V,E) on n vertices has no
(k + 1)-clique, k ≥ 2, then

|E| ≤
(
1− 1

k

)
n2

2 . (4.1)

Like Mantel’s theorem, this result was rediscovered many times with vari-
ous different proofs. Here we present the original one due to Turán. The proof
based on so-called “weight shifting” argument is addressed in Exercise 4.9. In
Sect. 18.4 we will give a proof which employs ideas of a totally different nature
– the probabilistic argument.

Proof. We use induction on n. Inequality (4.1) is trivially true for n = 1. The
case k = 2 is Mantel’s theorem. Suppose now that the inequality is true for
all graphs on at most n − 1 vertices, and let G = (V,E) be a graph on n
vertices without (k + 1)-cliques and with a maximal number of edges. This
graph certainly contains k-cliques, since otherwise we could add edges. Let
A be a k-clique, and set B = V \ A.
Since each two vertices of A are joined by an edge, A contains eA =

(
k
2
)

edges. Let eB be the number of edges joining the vertices of B and eA,B the
number of edges between A and B. By induction, we have

eB ≤
(
1− 1

k

)
(n− k)2

2 .

Since G has no (k+1)-clique, every x ∈ B is adjacent to at most k−1 vertices
in A, and we obtain
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4.5 Dirichlet’s theorem

eA,B ≤ (k − 1)(n− k).

Summing up and using the identity(
1− 1

k

)
n2

2 =
(
k

2

)(n
k

)2

we conclude that

|E| ≤ eA + eB + eA,B ≤
(
k

2

)
+

(
k

2

)(
n − k

k

)2
+ (k − 1)(n− k)

=
(
k

2

)(
1 + n− k

k

)2
=

(
1− 1

k

)
n2

2 . ��

An n-vertex graph T (n, k) that does not contain any (k+1)-clique may be
formed by partitioning the set of vertices into k parts of equal or nearly-equal
size, and connecting two vertices by an edge whenever they belong to two
different parts. Thus, Turán’s theorem states that the graph T (n, k) has the
largest number of edges among all n-vertex graphs without (k + 1)-cliques.

4.5 Dirichlet’s theorem

Here is the application of the pigeonhole principle which Dirichlet made,
resulting in his name being attached to the principle. It concerns the existence
of good rational approximations to irrational numbers. The result belongs to
number theory, but the argument is combinatorial.

Theorem 4.9 (Dirichlet 1879). Let x be a real number. For any natural num-
ber n, there is a rational number p/q such that 1 ≤ q ≤ n and∣∣∣∣x − p

q

∣∣∣∣ < 1
nq

≤ 1
q2 .

Note that it is easy to get an approximation whose error is at most 1/n,
by fxing the denominator to be q = n. The improved approximation uses the
pigeonhole principle.

Proof. For this proof, we let {x} denote the fractional part of the real number
x, that is, {x} := x−�x�. Consider the n+1 numbers {ax}, a = 1, 2, . . . , n+1.
We put these numbers into the n pigeonholes

[0, 1/n) , [1/n, 2/n) , . . . , [1− 1/n, 1) .

By the pigeonhole principle, some interval contains more than one of the
numbers, say {ax} and {bx} with a > b, which therefore differ by less than
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1/n. Letting q = a−b, we see that there exists an integer p = �ax�−�bx� such
that |qx − p| < 1/n, from which the result follows on division by q. Moreover,
q is the difference between two integers in the range 1, . . . , n+1, so q ≤ n. ��

4.6 Swell-colored graphs

Let us color the edges of the complete graph Kn on n vertices. We say that
the graph is swell-colored if each triangle contains exactly 1 or 3 colors, but
never 2 colors and if the graph contains more than one color. That is, we
must use at least two colors, and for every triangle, either all its three edges
have the same color or each of them has a different color.
It can be shown (do this!) that Kn can never be swell-colored with exactly

two colors. A simple investigation shows that K3 and K4 are the only Kn

swell-colorable with 3 colors; the other Kn require more colors since they are
more highly connected.
Using the pigeonhole principle we can prove the following lower bound.

Theorem 4.10 (Ward–Szabó 1994). The complete graph on n vertices can-
not be swell-colored with fewer than

√
n+ 1 colors.

Proof. Let Kn be swell-colored with r distinct colors. Let N(x, c) denote the
number of edges incident to vertex x which have color c. Fix x0 and c0 for
which N(x0, c0) is maximal, and denote this maximum by N .
The n − 1 edges incident to x0 can be partitioned into ≤ r color classes,

each of which with N or fewer members. By the pigeonhole principle,

N · r ≥ n− 1.

Let x1, x2, . . . , xN be the vertices connected to x0 by the N edges of color
c0. Let G denote the (complete) subgraph of Kn induced by the vertex set
{x0, x1, . . . , xN}. The swell-coloredness of Kn is inherited by G and so all
edges of G have color c0. Since Kn is assumed to have at least two colors,
there must be some vertex y of Kn not in subgraph G and such that at least
one edge joining y to G has a color different from c0.

Claim 4.11. The N + 1 edges connecting y to G all are distinctly colored
with colors other than c0.

The claim implies that r ≥ N +2, which together with N ·r ≥ n−1 yields
r(r − 2) ≥ n− 1, and hence, r ≥ √

n+ 1, as desired. So, it remains to prove
the claim.
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If an edge connecting y to G, say {y, x1} (see the figure above), has color c0
then by the swell-coloredness of G, edge {y, x0} would have color c0, contrary
to the definition of x0 (recall that x1, x2, . . . , xN are all the edges incident to
x0 and colored by c0). Furthermore, if any two edges connecting y to G, say
{y, x1} and {y, x2}, have the same color, then the swell-coloredness of Kn

implies that the edge {x1, x2} shares the same color. But {x1, x2} belongs to
G, and hence has color c0 and so {y, x1} would have color c0 which we have
seen is impossible. This completes the proof of the claim, and thus, of the
theorem. ��
The optimality of the lower bound given by Theorem 4.10, can be shown

using a configuration known as “affine plane.” We will investigate these con-
figurations in Chap. 12. For our current purposes it is enough to know that
an affine plane AG(2, q) of order q contains exactly q2 points and exactly
q + 1 classes (also called “pencils”) of parallel lines, each containing q lines
(two lines are parallel if they share no point). Moreover, each two points lie
on a unique line.
Having such a plane, we can construct a swell-coloring of Kq2 with q + 1

colors as follows. Identify the vertices of Kq2 with the points in AG(2, q) and
associate some unique color with each of the q+1 pencils of parallel lines. In
order to define a swell-coloring, consider two distinct vertices x and y of Kq2 .
These points lie on a unique line which, in its turn, belongs to exactly one
of the pencils. Color the edge {x, y} with the color of this pencil. Since any
two points lie on a unique line and parallel lines do not meet in a point, all
three edges of a triangle will receive different colors, and hence, the coloring
is swell, as desired.
In fact, Ward and Szabó (1994) have proved that the converse also holds:

if the graph Kq2 (q ≥ 2) can be swell-colored using q + 1 colors then this
coloring can be used to construct an affine plane of order q.

4.7 The weight shifting argument

A version of the pigeonhole principle is the averaging principle which we
formulated in Sect. 1.5: every set of numbers contains a number at least as
large as the average (and one at least as small).
Trying to show that some “good” object exists, we can try to assign objects

their “weights” so that objects with a large enough (or small enough) weight
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are good, and try to show that the average weight is large (or small). The
averaging principle then guarantees that at least one of the objects is good.
The main difficulty is to define the weights relevant for the desired application.
After this we face the problem of how to compute the weights and accumulate
their sum. At this step the so-called “shifting argument” can help. Let us
illustrate this by three examples (the first is trivial, whereas the next two are
not).

Proposition 4.12. Let n ≤ m < 2n. Then for any distribution of m pigeons
among n pigeonholes so that no hole is left empty, at most 2(m − n) of the
pigeons will be happy, i.e., will sit not alone in their holes.

Proof. If some hole contains more than two pigeons then, by removing a
pigeon from this hole and placing it in a hole which had contained exactly
one pigeon, we arrive to a new distribution with one more happy pigeon. Thus,
the maximum number of happy pigeons is achieved when each hole has at
most two pigeons, and in this case this number is ≤ 2(m−n), as desired. ��
A trail in a graph is a walk without repeated edges.

Theorem 4.13 (Graham–Kleitman 1973). If the edges of a complete graph
on n vertices are labeled arbitrarily with the integers 1, 2, . . . ,

(
n
2
)
, each edge

receiving its own integer, then there is a trail of length at least n− 1 with an
increasing sequence of edge-labels.

Proof. To each vertex x, assign its weight wx equal to the length of the longest
increasing trail ending at x. If we can show that

∑
x wx ≥ n(n− 1), then the

averaging principle guarantees a vertex with a large enough weight.
We accumulate the weights and their sum iteratively, growing the graph

from the trivial graph; at each step we add a new edge whose label is minimal
among the remaining ones. Initially, the graph has no edges, and the weights
are all 0. At the i-th step we take a new edge e = {x, y} labeled by i. Let wx
and wy be the weights of x and y accumulated so far.

x

x y

wy

w

If wx = wy then increase both weights by 1. If wx < wy then the edge e
prolongs the longest increasing trail ending at y by 1; so the new weights are
w′x = wy + 1 and w′y = wy. In either case, when an edge is added, the sum
of the weights of the vertices increases by at least 2. Therefore, when all the(
n
2
)
steps are finished, the sum of the vertex weights is at least n(n − 1), as

desired. ��
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Finally, we illustrate the shifting argument by the fourth proof of Mantel’s
theorem: If a graph G on 2n vertices contains n2 + 1 edges, then G contains
a triangle.

Fourth proof of Mantel’s theorem (Motzkin–Straus 1965). Let G be a graph
on 2n vertices, and let m be the number of edges in G. Assume that G has
no triangles. Our goal is to prove that then m ≤ n2. We assign a nonnegative
wx to each vertex x such that

∑
xwx = 1. We seek to maximize

S :=
∑

wxwy,

where the sum is taken over all edges {x, y} of G. One way of assigning the
weights is to let wx = 1/(2n) for each x. This gives

S ≥ m

(2n)2 . (4.2)

We are going to show that, on the other hand, S never exceeds 1/4, which
together with the previous lower bound will imply that m ≤ n2, as desired.
And now comes the “shifting argument.” Suppose that x and y are two

nonadjacent vertices and Wx and Wy are the total weights of vertices con-
nected to x and y, respectively. Suppose also that Wx ≥ Wy. Then for any
ε ≥ 0,

(wx + ε)Wx + (wy − ε)Wy ≥ wxWx + wyWy.

This, in particular, means that we do not decrease the value of S if we shift
all of the weight of vertex y to the vertex x. It follows that S is maximized
when all of the weight is concentrated on a complete subgraph of G. But we
have assumed that G has no triangles; so G cannot have complete subgraphs
other than single edges. Hence, S is maximized when all of the weight is
concentrated on two adjacent vertices, say x and y. Therefore

S ≤ max {wx · wy : wx + wy = 1
}
= 1/4

which, together with (4.2), yield the desired upper bound m ≤ n2. ��

4.8 Schur’s theorem

The famous Fermat’s Last Theorem states that if n > 2, then xn+yn = zn has
no solutions in nonzero integers x, y and z. This theorem was first conjectured
by Pierre de Fermat in 1637, but was not proven until 1995 despite the efforts
of many mathematicians. The last step in its proof was done by Andrew
Wiles.
As early as 1916, Issai Schur used the pigeonhole principle to show that

Fermat’s Last Theorem is false in the finite field Zp for any sufficiently large
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prime p. He derived this from the following combinatorial result about color-
ings of numbers. The result may perhaps be considered as the earliest result
in Ramsey theory.
An r-coloring of a set assigns one of the colors 1, 2, . . . , r to each element

of the set.

Theorem 4.14 (Schur 1916). For any r ≥ 2 and for any r-coloring of
{1, 2, . . . , n}, where n = 
er!�, there are three integers x, y, z of the same
color and such that x+ y = z.

Proof. Let χ : {1, . . . , n} → {1, . . . , r} be an r-coloring of the first n positive
integers. Assume that there do not exist positive integers x, y with x+ y ≤ n
such that χ(x) = χ(y) = χ(x+ y). Our goal is to show that then n < er!.
Let c0 be a color which appears most frequently among the n elements,

and let x0 < x1 < . . . < xn1−1 be the elements of color c0. By the pigeonhole
principle, we know that n ≤ rn1,
Consider the set A0 = {xi − x0 : 1 ≤ i < n1}. By our assumption, no

number in A0 can receive color c0. So, the set A0 is colored by r − 1 colors.
Let c1 be a color which appears most frequently among the elements of A0,
and let y0 < y1 < . . . < yn2−1 be its elements of color c1. Observe that
n1 − 1 ≤ (r − 1)n2.
Consider the set A1 = {yi − y0 : 1 ≤ i < n2}. By the assumption, no

number in A1 can receive any of colors c0 and c1. So, the set A1 is colored
by r − 2 colors. Let c2 be a color which appears most frequently among the
elements of A1, and let z0 < z1 < . . . < zn3−1 be its elements of color c2.
Observe that n2 − 1 ≤ (r − 2)n3.
Continue this procedure until some nk becomes 1. Since we have only r

colors, this happens at the latest for k = r. Thus, we obtained the inequalities
n ≤ rn1 and ni ≤ (r − i)ni+1 + 1 for i = 1, . . . , k − 1, with nk = 1. Putting
them together we obtain that

n ≤
r−1∑
i=0

r(r − 1)(r − 2) · · · (r − i) =
r−1∑
i=0

r!
i! < r!

∞∑
i=0

1
i! = er! ��

Schur (1916) used Theorem 4.14 to show that Fermat’s Last Theorem is
false in the finite field Zp for any sufficiently large prime p.

Theorem 4.15. For every integer n ≥ 1, there exists p0 such that for any
prime p ≥ p0, the congruence

xn + yn = zn mod p

has a solution.

Proof. The multiplicative group Z
∗
p = {1, 2, . . . , p − 1} is known to be cyclic

and hence it has a generator g. Each element of Z∗p can be written as x = gnj+i

where 0 ≤ i < n. We color the elements of Z
∗
p by n colors, where χ(x) = i
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e

Fig. 4.2 What is the color of e?

if x = gnj+i. By Schur’s theorem, for p sufficiently large, there are elements
x′, y′, z′ ∈ Z

∗
p such that x′ + y′ = z′ and χ(x′) = χ(y′) = χ(z′). Therefore,

x′ = gnjx+i, y′ = gnjy+i, z′ = gnjz+i and

gnjx+i + gnjy+i = gnjz+i .

Setting x = gjx , y = gjy and z = gjz , we get a solution of xn + yn = zn

in Z
∗
p. ��

4.9 Ramseyan theorems for graphs

How many people can we invite to a party where among each three people
there are two who know each other and two who don’t know each other? It
turns out that at most five persons can attend such a party.
To show this, let us consider the following simple game. Mark six points

on the paper, no three in line. There are two players; one has a Red pencil the
other Blue. Each player’s turn consists in drawing a line with his/her pencil
between two of the points which haven’t already been joined. (The crossing
of lines is allowed). The player’s goal is to create a triangle in his/her color.
If you try to play it with a friend, you will notice that it always end in a win
for one player: a draw is not possible. Prove this! (Hint: see Fig. 4.2.)
We can generalize this argument to arbitrary graphs, not only those with

up to six vertices.
Let G = (V,E) be an undirected graph. A subset S ⊆ V is a clique of

G if any two vertices of S are adjacent. Similarly, a subset T ⊆ V is an
independent set of G if no two vertices of T are adjacent in G.
For integers s, t ≥ 1, let R(s, t) denote the smallest number n such that in

any(!) graph on n or more vertices, there exists either a clique of s vertices
or an independent set of t vertices.

Theorem 4.16.

R(s, t) ≤
(
s+ t − 2
s− 1

)
=

(
s+ t− 2
t− 1

)
.

Proof. By induction on s + t. It is clear form the definition that R(1, t) =
R(s, 1) = 1. For s > 1 and t > 1, let us prove that
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S T

x

Fig. 4.3 Splitting the graph into neighbors and non-neighbors of x

R(s, t) ≤ R(s, t− 1) + R(s− 1, t). (4.3)

Let G = (V,E) be a graph on n = R(s, t− 1) +R(s− 1, t) vertices. Take an
arbitrary vertex x ∈ V , and split V \ {x} into two subsets S and T , where
each vertex of S is nonadjacent to x and each vertex of T is adjacent to x
(see Fig. 4.3). Since

R(s, t− 1) +R(s− 1, t) = |S|+ |T |+ 1,

we have either |S| ≥ R(s, t− 1) or |T | ≥ R(s− 1, t).
Let |S| ≥ R(s, t − 1), and consider the induced subgraph G[S] of G: this

is a graph on vertices S, in which two vertices are adjacent if and only if
they are such in G. Since the graph G[S] has at least R(s, t − 1) vertices,
by the induction hypothesis, it contains either a clique on s vertices or an
independent set of t − 1 vertices. Moreover, we know that x is not adjacent
to any vertex of S in G. By adding this vertex to S, we conclude that the
subgraph G[S∪{x}] (and hence, the graph G itself) contains either a clique of
s vertices or an independent set of t vertices. The case when |T | ≥ R(s− 1, t)
is analogous.
Since

(
n−1
k

)
+

(
n−1
k−1

)
=

(
n
k

)
(see Proposition 1.3), the recurrence (4.3) im-

plies

R(s, t) ≤ R(s, t−1)+R(s−1, t)≤
(
s+ t − 3
s− 1

)
+
(
s+ t− 3
s− 2

)
=

(
s+ t− 2
s − 1

)
.

��
We have proved Theorem 4.16 by induction on s+ t. The same result can

also be proved using so-called induced coloring argument. This argument is
encountered frequently in Ramsey theory. To explain the idea, let us prove
the following weaker bound for s = t:

R(t, t) ≤ 22t .

That is, any graph on 4t or more vertices must contain either a clique or an
independent set on t vertices.

Proof via induced coloring argument. Take a complete graph on 22t vertices,
and fix an arbitrary coloring of its edges in red and blue. Let us suppose for
convenience that the vertices are totally ordered. Let x1 be the first vertex.
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Then by the pigeonhole principle there is a set of vertices S1 of size at least
22t−1 such that every edge from x1 to S1 has the same color. Now let x2 be
the least vertex of S1. By the pigeonhole principle again there is a set S2 ⊆ S1
of size at least 22t−2 such that every edge from x2 to S2 has the same color.
Continuing this process, we obtain a sequence x1, . . . , x2t of vertices and a
sequence S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ S2t of sets such that xi ∈ Si−1 for every i, and
every edge from xi to Si has the same color. (Here S0 is the set of all vertices.)
It follows that the color of the edge joining xi to xj depends only on min{i, j}.
That is, for each i = 0, 1, . . . , 2t− 1, all edges joining xi with the subsequent
vertices xi+1, . . . , x2t have the same color ci ∈ {red, blue}. Since we have 2t
distinct values for i and only two colors, the pigeonhole principle implies that
there must be a subset T ⊆ {1, . . . , 2t} of size |T | ≥ (2t)/2 = t such that
ci = cj for all i, j ∈ T . Thus, all edges joining vertices in {xi : i ∈ T } have
the same color. ��
A simple probabilistic argument yields the following lower bound.

Theorem 4.17 (Erdős 1947). R(t, t) > 2t/2 for all t ≥ 3.
That is, the edges of Kn can be colored in two colors so that we get no

monochromatic K2 logn.

Proof. Consider a random 2-coloring of the edges of Kn obtained by coloring
each edge independently either red or blue, where each color is equally likely.
For any fixed set T of t vertices, the probability that all

(
t
2
)
edges between

these vertices receive the same color (i.e., that either all edges are red or they
are blue) is 2 · 2−(t2). The number of t-element subsets of vertices (nt) and
therefore the probability that there is at least one monochromatic t-clique is
at most (

n

t

)
· 21−(t2) < nt

t! · 2
1+t/2

2t2/2 ,

which is < 1 if n ≤ 2t/2 and t ≥ 3. ��
Using Stirling’s Formula, the lower bound on R(t, t) can be improved to

about t2t/2. On the other hand, Theorem 4.16 gives an upper bound
(2t
t

)
on

R(t+1, t+1). This bound was recently improved by Conlon (2009) to about
t−�

(2t
t

)
with � ≥ c logn/ log logn. The gap is still large, and tight bounds are

known only for s = 3:

c1
t2

log t ≤ R(3, t) ≤ c2
t2

log t .

The upper bound is due to Ajtai, Komlós, and Szemerédi (1980) and the
lower bound was proved by Kim (1995) using a probabilistic argument.
In the case of bipartite graphs the following bounds are known. Let b(t)

be the smallest number n such that, in any two-coloring of the complete
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bipartite n × n graph Kn,n there is a monochromatic Kt,t. The best known
lower bound b(t) = Ω(k2k/2) is the same as for ordinary graphs. The best
known upper bound b(t) = O(2k log k) was proved by Conlon (2008).

4.10 Ramsey’s theorem for sets

We now consider colorings of k-element subsets of [n] for k > 2. The Ramsey
theorem for graphs (we just proved) speaks about the case k = 2: for every
s ≥ 1, there is an n such that it is not possible to color 2-element subsets of
[n] (edges) in red and blue so that every s-element subset of [n] will contain
two 2-element subsets of different colors. (In this case n ≥ 4s is enough.) In
its unabridged form, the celebrated result of Ramsey (1930) speaks about
colorings of larger subsets using any number of colors.

Theorem 4.18 (Ramsey’s theorem). For every natural numbers 1 ≤ k ≤ s
and r ≥ 2 there exists a natural number n = Rr(k; s) such that whenever
k-subsets of [n] are colored in r colors, there is an s-subset of [n] whose all
k-subsets receive the same color.

Proof. We first observe that it is enough to consider the case of r = 2 colors.

Claim 4.19. Rr+1(k; s) ≤ Rr (k; R2(k; s)).

Proof. Let N = Rr (k; R2(k; s)) and let an arbitrary coloring of k-subsets of
an N -element set X with r+1 colors 0, 1, . . . , r be given. Then consider this
as an r-coloring simply by identifying the colors 0 and 1. (This is known as
the “mixing colors” trick.) By the choice of N , either there exists an R2(k; s)-
element subset, all whose k-subsets receive one of the colors 2, . . . , r (and we
are done), or there exists an R2(k; s)-element subset Y with each its k-subsets
in color 0 or 1. According to the size of Y , all k-subsets of some its s-element
subset must be monochromatic. ��
By Claim 4.19, it is enough to show that R2(k; s) exists.
In order to argue by induction, we define a more “granulated” version of

the Ramsey number R2(k; s). Namely let R(k; s, t) be the smallest number n
with the following property: If k-subsets of an n-set are colored with two colors
0 and 1, then all k-subsets of some s-subset receive color 0 or all k-subsets of
some t-subset receive color 1. Thus, the theorem claims that R(k; s, s) exists
for all s ≥ k. We will prove a stronger statement that R(k; s, t) ≤ n, where

n := R (k − 1;R(k; s− 1, t), R(k; s, t− 1)) + 1.

We prove this recurrence by induction on k and on s, t. Observe that, by
the pigeonhole principle, R(1; s, t) = s + t − 1 for all s and t and, moreover,
R(k;x, k) = R(k; k, x) = x for all k and x ≥ k. By induction, we may assume
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that the numbers R(k; s− 1, t) and R(k; s, t− 1) exist, and take an arbitrary
n-element set X , where n is defined above.
Let χ be a coloring of k-subsets of X with two colors 0 and 1. Fix a

point x ∈ X , and let X ′ := X \ {x}. We define a new coloring χ′ of the
(k − 1)-subsets A of X ′ by

χ′(A) := χ (A ∪ {x}) .

By the choice of n and by symmetry, we can assume to have found a subset
Y ⊆ X ′ such that |Y | = R(k; s− 1, t) and

χ′(A) = 0 for all (k − 1)-subsets A of Y .

Now consider how the original coloring χ acts on the k-subsets of Y . Ac-
cording to its size, the set Y must either contain a t-element subset, all
whose k-subsets receive color 1 (and we are done), or it must contain an
(s− 1)-element subset Z, all whose k-subsets receive color 0. In this last case
consider the s-element subset Z ∪ {x} and take an arbitrary its subset B of
size k. If x �∈ B then B is a k-element subset of Z, and hence, χ(B) = 0. If
x ∈ B then the set A = B \ {x} is a (k − 1)-subset of Y , and hence again,
χ(B) = χ (A ∪ {x}) = χ′(A) = 0. ��
One of the earliest and most popular applications of Ramsey’s theorem is

due to Erdős and Szekeres (1935). In fact, this application was a first step in
popularizing Ramsey’s theorem.

Theorem 4.20 (Erdős–Szekeres 1935). Letm ≥ 3 be a positive integer. Then
there exists a positive integer n such that any set of n points in the Euclidean
plane, no three of which are collinear, containsm points which are the vertices
of a convex m-gon.

Proof (due to Johnson 1986). Choose n = R2(3;m), the number from the
Ramsey’s Theorem 4.18, and let A be any set of n points in the plane, no
three of which are collinear (i.e., lie on a line). For a, b, c ∈ A, let |abc| denote
the number of points of A which lie in the interior of the triangle spanned by
a, b and c. Define the 2-coloring χ of triples of points in A by χ(a, b, c) = 0
if |abc| is even and χ(a, b, c) = 1 otherwise. By the choice of n, there exists
an m-element subset B ⊆ A such that all its 3-element subsets receive the
same color. Then the points of B form a convex m-gon. Otherwise, there
would be four points a, b, c, d ∈ B such that d lies in the interior of the
triangle abc (see Fig. 4.4). Since no three points of B are collinear, we have
|abc| = |abd|+ |acd|+ |bcd|+ 1, contradicting that the coloring χ is constant
on all triples from B. ��
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d

a

b

c

Fig. 4.4 Point d lies in none of the lines ab, bc and ac.

Exercises

4.1. Suppose five points are chosen inside an equilateral triangle with side-
length 1. Show that there is at least one pair of points whose distance apart
is at most 1/2. Hint: Divide the triangle into four suitable boxes.

4.2. (D.R. Karger). Jellybeans of 8 different colors are in 6 jars. There are
20 jellybeans of each color. Use the pigeonhole principle to prove that there
must be a jar containing two pairs of jellybeans from two different colors of
jellybeans. Hint: For each color there is a jar containing a pair of jellybeans of that
color, and we have more colors than jars.

4.3. Show that for any positive integer n, there is a multiple of n that contains
only the digits 7 or 0. Hint: Consider the values modulo n of all the numbers ai of
the form 77 . . . 7, with i sevens, i = 1, . . . , n+ 1.

4.4. Prove that every set of n+1 distinct integers chosen from {1, 2, . . . , 2n}
contains a pair of consecutive numbers and a pair whose sum is 2n + 1. For
each n, exhibit two sets of size n to show that these results are the best
possible. Hint: Use pigeonholes (2i, 2i− 1) and (i, 2n − i+ 1), i = 1, . . . , n.

4.5. Prove that every set of n+1 distinct integers chosen from {1, 2, . . . , 2n}
contains two numbers such that one divides the other. Sketch: (due to Lajos
Pósa): Write every number x in the form x = kx2a, where kx is an odd number between
1 and 2n − 1. Take odd pigeonholes 1, 3, 5, . . . , 2n − 1 and put x into the pigeonhole
number kx. Some hole must have two numbers x < y.

4.6. Coin-weighing problem (Erdős–Spencer 1974). Let n coins of weights 0
and 1 be given. We are also given a scale with which we may weigh any
subset of the coins. The information from previous weighings may be used.
The object is to determine the weights of the coins with the minimal number
of weighings. Formally, the problem may be stated as follows. A collection
S1, . . . , Sm of subsets of [n] is called determining if an arbitrary subset T of
[n] can be uniquely determined by the cardinalities |Si ∩ T |, 1 ≤ i ≤ m. Let
D(n) be the minimum m for which such a determining collection exists. By
weighting each coin separately (Si = {i}) we see that D(n) ≤ n. Show that
D(n) ≥ n/ (log2(n+ 1)). Hint: Take a determining collection S1, . . . , Sm, observe
that for each i there are only n+1 possible |Si∩T |, and apply the pigeonhole principle.
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4.7. Suppose that n is a multiple of k. Construct a graph without (k + 1)-
cliques, in which the number of edges achieves the upper bound (4.1) given
by Turán’s theorem. Hint: Split the n vertices into k equal size parts and join all
pairs of vertices from different parts (this is a complete k-partite graph).

4.8. Recall that the independence number α(G) of a graphG is the maximum
number of pairwise nonadjacent vertices ofG. Prove the following dual version
of Turán’s theorem: if G is a graph with n vertices and nk/2 edges, k ≥ 1,
then α(G) ≥ n/(k + 1).

4.9. (Motzkin–Straus 1965). Prove Turán’s theorem using the shifting argu-
ment described in the fourth proof of Mantel’s theorem. Hint: Let G be a graph
with n vertices andm edges, and suppose that G has no (k+1)-clique. Assign weights wx
to the vertices as before. Setting wx = 1/n for all vertices, we obtain S ≥ m/n2. On the
other hand, the same shifting argument yields that the weight is concentrated on some
clique U with |U | = t ≤ k vertices. Setting wx = 1/t for x ∈ U , and wx = 0 otherwise,
the total weight becomes

(
t
2

)
/t2 = (1 − 1/t)/2. Since this expression is increasing in t,

the best we can do is to set t = k.

4.10. Derive the Erdős–Szekeres theorem from Lemma 4.6. Hint: Given a se-
quence A = (a1, . . . , an) of n ≥ rs + 1 real numbers, define a partial order � on A by
ai � aj if ai ≤ aj and i ≤ j, and apply Dilworth’s lemma.

4.11. Let n2+1 points be given in R
2. Prove that there is a sequence of n+1

points (x1, y1), . . . , (xn+1, yn+1) for which x1 ≤ x2 ≤ · · · ≤ xn+1 and y1 ≥
y2 ≥ · · · ≥ yn+1, or a sequence of n+1 points for which x1 ≤ x2 ≤ · · · ≤ xn+1
and y1 ≤ y2 ≤ · · · ≤ yn+1.

4.12. Show that, if n > srp, then any sequence of n real numbers must con-
tain either a strictly increasing subsequence of length greater than s, a strictly
decreasing subsequence of length greater than r, or a constant subsequence of
length greater than p. Hint: By the pigeonhole principle, if only sr or fewer distinct
values occur, then some value must be taken by more than p numbers in the sequence.
Otherwise, we can argue as in the Erdős–Szekeres theorem.

4.13. Let 0 < a1 < a2 < · · · < asr+1 be sr + 1 integers. Prove that we can
select either s + 1 of them, no one of which divides any other, or r + 1 of
them, each dividing the following one. Hint: Apply Dilworth’s lemma.

4.14. Show that the bound in the Erdős–Szekeres’ theorem is best possible.
Hint: Consider the sequence A = (Bs−1, Bs−2, . . . , B0), where

Bi = (ir + 1, ir + 2, . . . , ir + r).

4.15. Use the pigeonhole principle to prove the following fact, known as Chi-
nese remainder theorem. Let a1, . . . , ak, b be integers, and m = m1 · · ·mk

where mi and mj are relatively prime, for all i �= j. Then there exists exactly
one integer a, b ≤ a < b+m, such that a ≡ ai mod mi for all i = 1, . . . , k.
Hint: The integers x ∈ {b, b+1, . . . b+m−1} are different modulo m; hence their residues
(x mod m1, . . . , x mod mk) run through all m possible values.
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4.16. (Moon–Moser 1962). Let G = (V,E) be a graph on n vertices and t(G)
the number of triangles in it. Show that

t(G) ≥ |E|
3n

(
4 · |E| − n2) .

Hint: For an edge e = {x, y}, let t(e) be the number of triangles containing e. Let
B = V \ {x, y}. Among the vertices in B there are precisely t(e) vertices which are
adjacent to both x and y. Every other vertex in B is adjacent to at most one of these
two vertices. We thus obtain d(x) + d(y)− t(e) ≤ n. Summing over all edges e = {x, y}
we obtain ∑

e∈E
(d(x) + d(y))−

∑
e∈E

t(e) ≤ n · |E|.

Apply the Cauchy–Schwarz inequality to estimate the first sum.

Comment: This implies that a graph G on an even number n of vertices with |E| =
n2/4 + 1 edges not only contains one triangle (as it must be by Mantel’s theorem), but
more than n/3.

4.17. (Goodman 1959). Let G be a graph with n vertices and m edges. Let
t(G) denote the number of triangles contained in the graph G or in its com-
plement. Prove that

t(G) ≥
(
n

3

)
+ 2m

2

n
− m(n− 1).

Hint: Let ti be the number of triples of vertices {i, j, k} such that the vertex i is adjacent
to precisely one of j or k. Observe that t(G) ≥

(
n
3

)
− 1

2
∑

i
ti and that ti = di(n−1−di),

where di is the degree of the vertex i in G. Use the Cauchy–Schwarz inequality (13.3)
and Euler’s theorem (Theorem 1.8) to show that

∑
d2
i ≥ 1

n

(∑
di
)2 = 4m2

n .

4.18. A set S ⊆ V of vertices in a graph G = (V,E) spans an edge e ∈
E if both endpoints of e belong to S. Say that a graph is (k, r)-sparse if
every subset of k vertices spans at most r of its edges. Turán’s theorem
(Theorem 4.8) gives an upper bound on the maximal possible number of
edges in a (k, r)-sparse graph for r =

(
k
2
) − 1. Show that every (k, r)-sparse

graph on n vertices has at most α · (n2) edges, where α = r · (k2)−1. Hint:
Observe that every edge is spanned by precisely

(
n−2
k−2

)
of k-element subsets and use

Exercise 1.12.

4.19. Color all non-empty subsets (not the points!) of [n] = {1, . . . , n} with r
colors. Prove that, if n is large enough, then there are two disjoint non-empty
subsets A, B such that A, B and A ∪ B have the same color. Hint: Take n =
Rr(2; 3). Assume the non-empty subsets of [n] are colored with r colors. Now color each
pair {i, j} (1 ≤ i < j ≤ n) by the color of the interval {i, i+1, . . . , j−1}. By Theorem 4.18,
there exists a monochromatic triangle x < y < z. Take A = {x, x + 1, . . . , y − 1} and
B = {y, y + 1, . . . , z − 1}.
4.20. Show that for every r ≥ 2 there exists a constant c = c(r) such that, if
n is large enough, then for every r-coloring of the points 1, . . . , n, at least c·n2
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of the pairs {i, j} of points will receive the same color. Hint: By the pigeonhole
principle, every (r + 1)-subset of points contributes at least one monochromatic pair,
and every pair is contained only in

(
n−2
r−1

)
of such subsets.

4.21. Prove that R(3, 4) ≤ 9. Hint: Color the edges of K9 in red and blue, and
assume that there are no red triangles and no blue 4-cliques. Then each vertex is incident
to precisely three red edges and five blue edges. Thus, there are exactly (9 · 3)/2 many
red edges. But this should be an integer!

4.22. Derive the following weaker version of Schur’s theorem (Theorem 4.14)
from Ramsey’s theorem (Theorem 4.18): For any r ≥ 2 there is n > 3 such
that for any r-coloring of {1, 2, . . . , n}, there are three integers of the same
color and such that x+y = z. Hint: Choose n = Rr(2; 3). Given a coloring χ : [n] →
[r] of the points in [n], consider the coloring χ′ of the pairs defined by: χ′({x, y}) = χ(|x−
y|) What does it means to have a χ′-monochromatic triangle with vertices x < y < z?

4.23. Use the previous exercise to show that R(4, 4) ≤ 18. Hint: (4.3).

The next exercises are about the chromatic number χ(G) of graphs. Recall
that this is the smallest number of colors we need in order to color the vertices
of G in such a way that no two adjacent vertices receive the same color.

4.24. Show that any graph G must have at least
(
χ(G)

2
)
edges.

4.25. Let G1, G2 be two graphs. Prove that χ(G1 ∪G2) ≤ χ(G1) ·χ(G2). Hint:
Use pairs of colors to color G1 ∪G2.

4.26. Let G be a graph on n vertices. A complement G of a graph G is
a graph on the same set of vertices in which two vertices are adjacent if
and only if they are non-adjacent in G. Prove that χ(G) · χ(G) ≥ n and
χ(G) + χ(G) ≥ 2√n. Hint: (χ(G) − χ(G))2 ≥ 0.

4.27. Prove that χ(G) ≤ Δ(G) + 1, where Δ(G) is the maximum degree of a
vertex in G. Hint: Order the vertices v1, . . . , vn and use greedy coloring: assign to vi
the smallest-indexed color not already used on its lower-indexed neighbors.

4.28. (Welsh–Powell 1967). Let G be a graph on n vertices, whose degrees
are d1 ≥ d2 ≥ . . . ≥ dn. Prove that χ(G) ≤ 1 + maximin{di, i − 1}. Hint:
Apply the greedy algorithm from the previous exercise. When we color the i-th vertex,
at most min{di, i− 1} of its neighbors have already been colored, so its color is at most
1 +min{di, i− 1}.

4.29. Let G = (V,E) be a graph and S ⊆ V a subset of its vertices. The
induced subgraph of G is the graph G[S] on vertices S, in which two vertices
are adjacent if and only if they are such in the original graph G. Prove that
for any graph G we can find a partition V = S ∪ T of its vertices into two
disjoint non-empty subsets S and T such that χ(G[S]) + χ(G[T ]) = χ(G).
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{1,2} {3,4}

{2,4}{2,3}{1,4}{1,3}

{1,2} {1,3} {2,3}

{2,3}{1,3}{1,2}

Fig. 4.5 The graphs K2,4 and K3,3 with a particular lists of color sets

4.30. A graph G is k-critical if χ(G) = k but χ(H) < k for every proper
subgraph H of G. Let δ(G) denote the minimum degree of a vertex in G.
Prove the following: if G is a k-critical graph, then δ(G) ≥ k−1. Hint: Assume
there is a vertex x ∈ V of degree at most k − 2, and consider the induced subgraph
H = G[V \ {x}]. Graph H must have a legal (k − 1)-coloring, and at least one of these
k − 1 colors is not used to color the neighbors of x; we can use it for x.

4.31. (Szekeres–Wilf 1968). Prove that χ(G) ≤ 1 + maxH⊆G δ(H) holds for
any graph G. Hint: Let k = χ(G), take a k-critical subgraph H of G and use the
previous estimate.

4.32. Let G be a directed graph without cycles and suppose that G has no
path of length k. Prove that then χ(G) ≤ k. Hint: Let c(x) denote the maximum
length of a path starting from x. Then c is a coloration with colors 0, 1, . . . , k− 1. Show
that it is legal.

4.33. Let G be a graph on n vertices, and α(G) be its independence number,
i.e., the maximal number of vertices, no two of which are joined by an edge.
Show that n/α(G) ≤ χ(G) ≤ n− α(G) + 1.

4.34. It is clear that χ(G) ≥ ω(G), where ω(G) is the clique number of G, i.e.,
the maximum size of a clique in G. Erdős (1947) has proved that, for every
large enough n, there exists an n-vertex graph G such that ω(G) ≤ 2 log2 n
and ω(G) ≤ 2 log2 n (see Theorem 4.17 for a proof). Use this result to show
that the gap between χ(G) and ω(G) can be quite large: the maximum of
χ(G)/ω(G) over all n-vertex graphs G is Ω

(
n/(log2 n)2

)
. Hint: χ(G) ≥ n/ω(G).

4.35. Let G = (V,E) be a graph, and (Cv)v∈V be a sequence of (not neces-
sarily disjoint) sets. We can look at each set Cv as a color set (or a “palette”)
for the vertex v. Given such a list of color sets, we consider only colorings
c such that c(v) ∈ Cv for all v ∈ V , and call them list colorings of G. As
before, a coloring is legal if no two adjacent vertices receive the same color.
The list chromatic number χ�(G) is the smallest number k such that for any
list of color sets Cv with |Cv| = k for all v ∈ V , there always exists a legal list
coloring of G. Of course, χ�(G) ≤ |V |. Show that χ(G) ≤ χ�(G) ≤ Δ(G) + 1.

4.36. Let K2,4 be a complete bipartite graph with parts of size 2 and 4 (see
Fig. 4.5). Show that χ(K2,4) = 2 but χ�(K2,4) = 3. What is χ�(K3,3)? Hint:
Use the list of color sets given in Fig 4.5.

74



Exercises

4.37. Generalize the above construction for K3,3 to find graphs G where
χ(G) = 2, but χ�(G) is arbitrarily large. For this, consider the complete
bipartite graph G = V1 × V2 whose parts V1 and V2 consist of all k-subsets
v of {1, . . . , 2k − 1}. Define the pallete Cv of a vertex (k-subset) v to be the
subset v itself. Show that χ�(G) > k. Hint: Observe that we need at least k colors
to color V1 and at least k colors to color V2.

4.38. Let Sn be a graph which has vertex set the n2 entries of an n×n matrix
with two entries adjacent if and only if they are in the same row or in the
same column. Show that χ�(Sn) ≥ n. Hint: Any legal coloring of Sn corresponds
to Latin square.

Comment: The problem, whether χ�(Sn) = n, was raised by Jeff Dinitz in 1978.
Janssen (1992) has proved that χ�(Sn) ≤ n + 1, and the final solution χ�(Sn) = n
was found by Galvin (1995).
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5. Systems of Distinct Representatives

A system of distinct representatives for a sequence of (not necessarily distinct)
sets S1, S2, . . . , Sm is a sequence of distinct elements x1, x2, . . . , xm such that
xi ∈ Si for all i = 1, 2, . . . ,m.
When does such a system exist? This problem is called the “marriage

problem” because an easy reformulation of it asks whether we can marry
each of m girls to a boy she knows; boys are the elements and Si is the set
of boys known to the i-th girl.
Clearly, if the sets S1, S2, . . . , Sm have a system of distinct representatives

then the following Hall’s Condition is fulfilled:
(∗) for every k = 1, 2, . . . ,m the union of any k sets has at least k elements:∣∣∣∣ ⋃

i∈I
Si

∣∣∣∣ ≥ |I| for all I ⊆ {1, . . . ,m}.

Surprisingly, this obvious necessary condition is also sufficient.

5.1 The marriage theorem

The following fundamental result is known as Hall’s marriage theorem (Hall
1935), though an equivalent form of it was discovered earlier by König (1931)
and Egerváry (1931), and the result is also a special case of Menger’s theorem
(1927). The case when we have the same number of girls as boys was proved
by Frobenius (1917).

Theorem 5.1 (Hall’s Theorem). The sets S1, S2, . . . , Sm have a system of
distinct representatives if and only if (∗) holds.
Proof. We prove the sufficiency of Hall’s condition (∗) by induction on m.
The case m = 1 is clear. Assume that the claim holds for any collection with
less than m sets.
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5 Systems of Distinct Representatives

Case 1: For each k, 1 ≤ k < m, the union of any k sets contains more than
k elements.
Take any of the sets, and choose any of its elements x as its representative,

and remove x from all the other sets. The union of any s ≤ m − 1 of the
remaining m − 1 sets has at least s elements, and therefore the remaining
sets have a system of distinct representatives, which together with x give a
system of distinct representatives for the original family.

Case 2: The union of some k, 1 ≤ k < m, sets contains exactly k elements.
By the induction hypothesis, these k sets have a system of distinct rep-

resentatives. Remove these k elements from the remaining m − k sets. Take
any s of these sets. Their union contains at least s elements, since otherwise
the union of these s sets and the k sets would have less than s+ k elements.
Consequently, the remaining m− k sets also have a system of distinct repre-
sentatives by the induction hypothesis. Together these two systems of distinct
representatives give a system of distinct representatives for the original fam-
ily. ��
In general, Hall’s condition (∗) is hard to verify: we must check if the union

of any k, 1 ≤ k ≤ m, of the sets S1, . . . , Sm contains at least k elements. But
if we know more about these sets, then (sometimes) the situation is much
better. Here is an example.

Corollary 5.2. Let S1, . . . , Sm be r-element subsets of an n-element set such
that each element belongs to the same number d of these sets. If m ≤ n, then
the sets S1, . . . , Sm have a system of distinct representatives.

Proof. By the double counting argument (1.10), mr = nd, and hence, m ≤ n
implies that d ≤ r. Now suppose that S1, . . . , Sm does not have a system of
distinct representatives. By Hall’s theorem, the union Y = Si1 ∪ · · · ∪ Sik of
some k (1 ≤ k ≤ m) sets contains strictly less than k elements. For x ∈ Y ,
let dx be the number of these sets containing x. Then, again, using (1.10),
we obtain

rk =
k∑
j=1

|Sij | =
∑
x∈Y

dx ≤ d|Y | < dk,

a contradiction with d ≤ r. ��
Hall’s theorem was generalized in different ways. Suppose, for example,

that each of the elements of the underlying set is colored either in red or in
blue. Interpret red points as “bad” points. Given a system of subsets of this
(colored) set, we would like to come up with a system of distinct representa-
tives which has as few bad elements as possible.

Theorem 5.3 (Chvátal–Szemerédi 1988). The sets S1, . . . , Sm have a system
of distinct representatives with at most t red elements if and only if they have
a system of distinct representatives and for every k = 1, 2, . . . ,m the union
of any k sets has at least k − t blue elements.
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Proof. The “only if” part is obvious. To prove the “if” part, let R be the
set of red elements. We may assume that |R| > t (otherwise the conclusion
is trivial). Now enlarge S1, . . . , Sm to S1, . . . , Sm, Sm+1, . . . , Sm+r by adding
r = |R| − t copies of the set R. Observe that the sequence S1, . . . , Sm has
a system of distinct representatives with at most t red elements if and only
if the extended sequence has a system of distinct representatives (without
any restriction). Hence, Hall’s theorem reduces our task to proving that the
extended sequence fulfills Hall’s condition (∗), i.e., that for any set of indices
I ⊆ {1, . . . ,m+ r}, the union Y = ⋃

i∈I Si contains at least |I| elements. Let
J = I ∩ {1, . . . ,m}. If J = I then, by the first assumption, the sets Si (i ∈ I)
have a system of distinct representatives, and hence, |Y | ≥ |I|. Otherwise, by
the second assumption,

|Y | =
∣∣∣∣ ⋃
i∈J
(Si \ R)

∣∣∣∣+ |R| ≥ (|J | − t) + |R|

= |J |+ (|R| − t) ≥ |J |+ |I \ J | = |I|;

hence (∗) holds again. ��

5.2 Two applications

In this section we present two applications of Hall’s theorem to prove results
whose statement does not seem to be related at all to set systems and their
representatives.

5.2.1 Latin rectangles

An r × n Latin rectangle is an r × n matrix with entries in {1, . . . , n} such
that each of the numbers 1, 2, . . . , n occurs once in each row and at most once
in each column. A Latin square is a Latin r × n-rectangle with r = n. This
is one of the oldest combinatorial objects, whose study goes back to ancient
times.
Suppose somebody gives us an n × n matrix, some of whose entries are

filled with the numbers from {1, . . . , n} so that no number occurs more than
once in a row or column. Our goal is to fill the remaining entries so that to
get a Latin square. When is this possible? Of course, the fewer entries are
filled, the more chances we have to complete the matrix. Fig. 5.1 shows that,
in general, it is possible to fill n entries so that the resulting partial matrix
cannot be completed.
In 1960, Trevor Evans raised the following question: if fewer than n entries

in an n×nmatrix are filled, can one then always complete it to obtain a Latin
square? The assertion that a completion is always possible became known as
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1

3

5 2 4 ?

Fig. 5.1 A partial 2 × 5 Latin square that cannot be completed

the Evans conjecture, and was proved by Smetaniuk (1981) using a quite
subtle induction argument.
On the other hand, it was long known that if a partial Latin square has no

partially filled rows (that is, each row is either completely filled or completely
free) then it can always be completed. That is, we can build Latin squares by
adding rows one-by-one. And this can be easily derived from Hall’s theorem.

Theorem 5.4 (Ryser 1951). If r < n, then any given r × n Latin rectangle
can be extended to an (r + 1)× n Latin rectangle.

Proof. Let R be an r × n Latin rectangle. For j = 1, . . . , n, define Sj to be
the set of those integers 1, 2, . . . , n which do not occur in the j-th column of
R. It is sufficient to prove that the sets S1, . . . , Sn have a system of distinct
representatives. But this follows immediately from Corollary 5.2, because:
every set Sj has precisely n−r elements, and each element belongs to precisely
n− r sets Sj (since it appears in precisely r columns of the rectangle R). ��

5.2.2 Decomposition of doubly stochastic matrices

Using Hall’s theorem we can obtain a basic result of polyhedral combinatorics,
due to Birkhoff (1949) and von Neumann (1953).
An n × n matrix A = {aij} with real non-negative entries aij ≥ 0 is

doubly stochastic if the sum of entries along any row and any column equals
1. A permutation matrix is a doubly stochastic matrix with entries 0 and 1;
such a matrix has exactly one 1 in each row and in each column. Doubly
stochastic matrices arise in the theory of Markov chains: aij is the transition
probability from the state i to the state j. A matrix A is a convex combination
of matrices A1, . . . , As if there exist non-negative reals λ1, . . . , λs such that
A =

∑s
i=1 λiAi and

∑s
i=1 λi = 1.

Birkhoff–Von Neumann Theorem. Every doubly stochastic matrix is a
convex combination of permutation matrices.

Proof. We will prove a more general result that every n × n non-negative
matrix A = (aij) having all row and column sums equal to some positive
value γ > 0 can be expressed as a linear combination A =

∑s
i=1 λiPi of

permutation matrices P1, . . . , Ps, where λ1, . . . , λs are non-negative reals such
that

∑s
i=1 λi = γ.

To prove this, we apply induction on the number of non-zero entries in A.
Since γ > 0, we have at least n such entries. If there are exactly n non-zero
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entries then A = γP for some permutation matrix P , and we are done. Now
suppose that A has more than n non-zero entries and that the result holds
for matrices with a smaller number of such entries. Define

Si = {j : aij > 0}, i = 1, 2, . . . , n,

and observe that the sets S1, . . . , Sn fulfill Hall’s condition. Indeed, if the
union of some k (1 ≤ k ≤ n) of these sets contained less than k elements,
then all the non-zero entries of the corresponding k rows of A would occupy
no more than k − 1 columns; hence, the sum of these entries by columns
would be at most (k − 1)γ, whereas the sum by rows is kγ, a contradiction.
By Hall’s theorem, there is a system of distinct representatives

j1 ∈ S1, . . . , jn ∈ Sn.

Take the permutation matrix P1 = {pij} with entries pij = 1 if and only if
j = ji. Let λ1 = min{a1j1 , . . . , anjn}, and consider the matrix A1 = A−λ1P1.
By the definition of the sets Si, λ1 > 0. So, this new matrix A1 has less non-
zero entries than A. Moreover, the matrix A1 satisfies the condition of the
theorem with γ1 = γ − λ1. We can therefore apply the induction hypothesis
to A1, which yields a decomposition A1 = λ2P2 + · · · + λsPs, and hence,
A = λ1P1 +A1 = λ1P1 + λ2P2 + · · ·+ λsPs, as desired. ��

5.3 Min–max theorems

The early results of Frobenius and König have given rise to a large number of
min-max theorems in combinatorics, in which the minimum of one quantity
equals the maximum of another. Celebrated among these are:

• Menger’s theorem (Menger 1927): the minimum number of vertices sepa-
rating two given vertices in a graph is equal to the maximum number of
vertex-disjoint paths between them;

• König–Egerváry’s min-max theorem (König 1931, Egerváry 1931): the size
of a largest matching in a bipartite graph is equal to the smallest set of
vertices which together touch every edge;

• Dilworth’s theorem for partially ordered sets (Dilworth 1950): the mini-
mum number of chains (totally ordered sets) which cover a partially or-
dered set is equal to the maximum size of an antichain (set of incomparable
elements).

Here we present the proof of König–Egerváry’s theorem (stated not for bipar-
tite graphs but for their adjacency matrices); the proof of Dilworth’s theorem
is given in Sect. 8.1.
By Hall’s theorem, we know whether each of the girls can be married to a

boy she knows. If so, all are happy (except for the boys not chosen ...). But
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what if not? In this sad situation it would be nice to make as many happy
marriages as possible. So, given a sequence of sets S1, S2, . . . , Sm, we try to
find a system of distinct representatives for as many of these sets as possible.
In terms of 0-1 matrices this problem is solved by the following result.
Let A be an m × n matrix, all whose entries have value 0 or 1. Two 1s

are dependent if they are on the same row or on the same column; otherwise,
they are independent. The size of the largest set of independent 1s is also
known as the term rank of A.

Theorem 5.5 (König 1931, Egerváry 1931). Let A be an m × n 0-1 matrix.
The maximum number of independent 1s is equal to the minimum number of
rows and columns required to cover all the 1s in A.

Proof. Let r denote the maximum number of independent 1s and R the
minimum number of rows and columns required to cover all the 1s. Clearly,
R ≥ r, because we can find r independent 1s in A, and any row or column
covers at most one of them.
We need to prove that r ≥ R. Assume that some a rows and b columns

cover all the 1s and a + b = R. Because permuting the rows and columns
changes neither r nor R, we may assume that the first a rows and the first b
columns cover the 1s. Write A in the form

A =
(
Ba×b Ca×(n−b)
D(m−a)×b E(m−a)×(n−b)

)
.

We know that there are no 1s in E. We will show that there are a indepen-
dent 1s in C. The same argument shows – by symmetry – that there are b
independent 1s in D. Since altogether these a + b 1s are independent, this
shows that r ≥ a+ b = R, as desired.
We use Hall’s theorem. Define

Si = {j : cij = 1} ⊆ {1, 2, . . . , n− b},

as the set of locations of the 1s in the i-th row of C = (cij). We claim that
the sequence S1, S2, . . . , Sa has a system of distinct representatives, i.e., we
can choose a 1 from each row, no two in the same column. Otherwise, Hall’s
theorem tells us that the 1s in some k (1 ≤ k ≤ a) of these rows can all be
covered by less than k columns. But then we obtain a covering of all the 1s
in A with fewer than a+ b rows and columns, a contradiction. ��

5.4 Matchings in bipartite graphs

Let G be a bipartite graph with bipartition A,B. Two edges are disjoint if
they have no vertex in common. A matching in G is a set of pairwise disjoint
edges. The vertices belonging to the edges of a matching are matched, others
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are free. We may ask whether G has a matching which matches all the vertices
from A; we call this a matching of A into B. A perfect matching is a matching
of A into B in the case when |A| = |B|.
The answer is given by Hall’s theorem. A vertex x ∈ A is a neighbor of a

vertex y ∈ B in the graph G if (x, y) ∈ E. Let Sx be the set of all neighbors
of x in G. Observing that there is a matching of A into B if and only if the
sets Sx with x ∈ A have a system of distinct representatives, Hall’s theorem
immediately yields the following:

Theorem 5.6. If G is a bipartite graph with bipartition A,B, then G has a
matching of A into B if and only if, for every k = 1, 2, . . . , |A|, every subset
of k vertices from A has at least k neighbors.

To illustrate this form of Hall’s theorem, we prove the following (simple
but non-trivial!) fact.

Proposition 5.7. Let X be an n-element set. For any k ≤ (n − 1)/2 it is
possible to extend every k-element subset of X to a (k + 1)-element subset
(by adding some element to that set) so that the extensions of no two sets
coincide.

Proof. Consider the bipartite graph G = (A,B,E), where A consists of all k-
element subsets, B consists of all (k+1)-element subsets of X and (x, y) ∈ E
if and only if x ⊂ y. What we need is to prove that this graph has a matching
of A into B. Is the condition of Theorem 5.6 satisfied? Certainly, since for
I ⊆ A, every vertex of I is joined to n − k vertices in B and every vertex
of B is joined to at most k + 1 vertices in I. So, if S(I) is the union of all
neighbors of the vertices from I, and E′ = E ∩ (I ×B) is the set of edges in
the corresponding subgraph, then

|I|(n − k) = |E′| ≤ |S(I)|(k + 1).

Thus,
|S(I)| ≥ |I|(n − k)/(k + 1) ≥ |I|

for every I ⊆ A, and Theorem 5.6 gives the desired matching of A into B. ��
In terms of (bipartite) graphs, the König–Egerváry theorem is as follows.

A vertex cover in a bipartite graph G with bipartition A,B is a set of vertices
S ⊆ A ∪ B such that every edge is incident to at least one vertex from S. A
maximum matching is a matching of maximum size.

Theorem 5.8. The maximum size of a matching in a bipartite graph equals
the minimum size of a vertex cover.

How can we find such a matching of maximal size? To obtain a large
matching, we could iteratively select an edge disjoint from those previously
selected. This yields a matching which is “maximal” in a sense that no more
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M M’

P

Fig. 5.2 Enlarging the matching M by the M -augmenting path P

edges can be added to it. But this matching does not need to be a maximum
matching: some other matching may have more edges. A better idea is to
jump between different matchings so that the new matching will always have
one edge more, until we exhaust the “quota” of possible edges, i.e., until we
reach the maximal possible number of edges in a matching. This idea employs
the notion of “augmenting paths.”
Assume thatM is a (not necessarily maximum) matching in a given graph

G. The edges of M are called matched and other edges are called free. Simi-
larly, vertices which are endpoints of edges in M are called matched (in M);
all other vertices are called free (in M). An augmenting path with respect to
M (orM -augmenting path) is a path in G such that its edges are alternatively
matched and free, and the endpoints of the path are free.
If P is an M -augmenting path, then M is certainly not a maximum size

matching: the set M ′ of all free edges along this path form a matching with
one more edge (see Fig. 5.2). Thus, the presence of an augmenting path
implies that a matching is not a maximum matching. Interestingly (and it is
a key for the matching algorithm), the converse is also valid: the absence of an
augmenting path implies that the matching is, in fact, a maximum matching.
This result was proved by Berge (1957), and holds for arbitrary graphs.

Theorem 5.9 (Berge 1957). A matching M in a graph G is a maximum
matching if and only if G has no M -augmenting path.

Proof. We have noted that an M -augmenting path produces a larger match-
ing. For the converse, suppose that G has a matching M ′ larger than M ; we
want to construct an M -augmenting path. Consider the graph H =M ⊕M ′,
where ⊕ is the symmetric difference of sets. That is, H consists of precisely
those edges which appear in exactly one of the matchings M and M ′.
Since M and M ′ are matchings, every vertex has at most one incident

edge in each of them. This means that in H , every vertex has at most degree
2, and hence, the graph H consists of disjoint paths and cycles. Furthermore,
every path or cycle in H alternates between edges ofM and edges ofM ′. This
implies that each cycle in H has even length. As |M ′| > |M |, the graph H
must have a component with more edges ofM ′ than ofM . Such a component
can only be a path that starts and ends with an edge of M ′; it remains to
observe that every such path in H is an M -augmenting path in G. ��
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This theorem suggests the following algorithm to find a maximum match-
ing in a graph G: start with the empty matching M = ∅, and at each step
search for an M -augmenting path in G. In one step the matching is enlarged
by one, and we can have at most � such steps, where � is the size of a max-
imum matching. In general, the computation of augmenting paths is not a
trivial task, but for bipartite graphs it is quite easy.
Given a bipartite graph G = (A,B,E) and a matching M in it, construct

a directed graph GM by directing all matched edges from A to B and other
edges from B to A. Let A0, B0 denote the sets of free vertices in A and B,
respectively.

Proposition 5.10. A bipartite graph G has an M -augmenting path if and
only if there is a directed path in GM from a vertex in B0 to a vertex in A0.

We leave the proof of this fact as an exercise.
Using this fact, one may easily design an augmenting path algorithm run-

ning in time O(n2), where n is the total number of vertices. (One can apply,
for example, the “depth-first search” algorithm to find a path from B0 to A0.)
We need to find an augmenting path at most n/2 times, hence, the complex-
ity of this matching algorithm is O(n3). Using a trickier augmenting path
algorithm, Hopcroft and Karp (1973) have found a faster algorithm using
time O(n5/2).

Exercises

5.1. Let S1, . . . , Sm be a sequence of sets such that: (i) each set contains at
least r elements (where r > 0) and (ii) no element is in more than r of the
sets. Show that these sets have a system of distinct representatives. Hint: See
the proof of Corollary 5.2.

5.2. Show that in a group of m girls and n boys there exist some t girls for
whom husbands can be found if and only if any subset of the girls (k of them,
say) between them know at least k + t − m of the boys. Hint: Invite additional
m− t “very popular” boys who are known to all the girls. Show that at least t girls can
find husbands in the original situation if and only if all the girls can find husbands in
the new situation. Then apply Hall’s theorem to the new situation.

5.3. Show that any bipartite graph with maximum degree d is a union of d
matchings. Hint: Argue by induction on d and use Theorem 5.6 in the induction step.

5.4. Let S1, . . . , Sm be a sequence of sets satisfying Hall’s condition (∗). Sup-
pose that for some 1 ≤ k < m, the union S1 ∪ · · · ∪ Sk of the first k sets has
precisely k elements. Show that none of the remaining sets Sk+1, . . . , Sm can
lie entirely in this union.
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5.5. In Theorem 5.4 we have shown that (as long as r < n) we can add a
new row to every r × n Latin rectangle such that the resulting (r + 1) × n
matrix is still Latin. Prove that this can be done in at least (n − r)! ways.

5.6. Let G be a bipartite graph with bipartition A,B. Let a be the minimum
degree of a vertex in A, and b the maximum degree of a vertex in B. Prove
the following: if a ≥ b then there exists a matching of A into B.

5.7. Let S1, . . . , Sm be a sequence of sets each of cardinality at least r, and
assume that it has a system of distinctive representatives. Prove that then it
has at least

f(r,m) =
min{r,m}∏

i=1
(r + 1− i)

systems of distinctive representatives. Hint: Follow the proof of Hall’s theorem.
Case 1 gives at least r · f(r − 1,m − 1) ≥ f(r,m) and Case 2 at least f(r, k) ·
f (max{r − k, 1}, m− k) = f(r,m) systems of distinctive representatives.

5.8. Prove that every bipartite graph G with � edges has a matching of size
at least �/Δ(G), where Δ(G) is the maximum degree of a vertex in G. Hint:
Use Theorem 5.8.

5.9. Suppose that M,M ′ are matchings in a bipartite graph G with bipar-
tition A,B. Suppose that all the vertices of S ⊆ A are matched by M and
that all the vertices of T ⊆ B are matched by M ′. Prove that G contains a
matching that matches all the vertices of S ∪ T .

5.10. (Lovász et al. 1995). Let F be a family of sets, each of size at least 2.
Let A,B be two sets such that |A| = |B|, both A and B intersect all the
members of F , and no set of fewer than |A| elements does this. Consider a
bipartite graph G with parts A and B, where a ∈ A is connected to b ∈ B
if there is an F ∈ F containing both a and b. Show that this graph has a
perfect matching. Hint: For I ⊆ A, let S(I) ⊆ B be the set of neighbors of I in G;
show that the set A′ = (A \ I) ∪ S(I) intersects all the members of F .

5.11. (Sperner 1928). Let t < n/2 and let F be a family of subsets of an
n-element set X . Suppose that: (i) each member of F has size at most t, and
(ii) F is an antichain, i.e., no member of F is a subset of another one. Let Ft

be the family of all those t-element subsets of X , which contain at least one
member of F . Prove that then |F| ≤ |Ft|. Hint: Use Proposition 5.7 to extend
each member of F to a unique member in the family Ft.

5.12. Let A be a 0-1 matrix with m 1s. Let s be the maximal number of
1s in a row or column of A, and suppose that A has no square r × r all-1
sub-matrix. Use the König–Egerváry theorem to show that we then need at
least m/(sr) all-1 (not necessarily square) sub-matrices to cover all 1s in A.
Hint: There are at least m/s independent 1s, and at most r of them can be covered by
one all-1 sub-matrix.
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6. Sunflowers

One of most beautiful results in extremal set theory is the so-called Sunflower
Lemma discovered by Erdős and Rado (1960) asserting that in a sufficiently
large uniform family, some highly regular configurations, called “sunflowers,”
must occur, regardless of the size of the universe. In this chapter we will
consider this result as well as some of its modifications and applications.

6.1 The sunflower lemma

A sunflower (or Δ-system) with k petals and a core Y is a collection of sets
S1, . . . , Sk such that Si ∩ Sj = Y for all i �= j; the sets Si \ Y are petals, and
we require that none of them is empty. Note that a family of pairwise disjoint
sets is a sunflower (with an empty core).

Y

Fig. 6.1 A sunflower with 8 petals

Sunflower Lemma. Let F be family of sets each of cardinality s.
If |F| > s!(k − 1)s then F contains a sunflower with k petals.

Proof. We proceed by induction on s. For s = 1, we have more than k − 1
points (disjoint 1-element sets), so any k of them form a sunflower with k
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6 Sunflowers

petals (and an empty core). Now let s ≥ 2, and take a maximal family
A = {A1, . . . , At} of pairwise disjoint members of F .
If t ≥ k, these sets form a sunflower with t ≥ k petals (and empty core),

and we are done.
Assume that t ≤ k − 1, and let B = A1 ∪ · · · ∪ At. Then |B| ≤ s(k − 1).

By the maximality of A, the set B intersects every member of F . By the
pigeonhole principle, some point x ∈ B must be contained in at least

|F|
|B| >

s!(k − 1)s
s(k − 1) = (s − 1)!(k − 1)s−1

members of F . Let us delete x from these sets and consider the family

Fx := {S \ {x} : S ∈ F , x ∈ S}.

By the induction hypothesis, this family contains a sunflower with k petals.
Adding x to the members of this sunflower, we get the desired sunflower in
the original family F . �	
It is not known if the bound s!(k − 1)s is the best possible. Let f(s, k)

denote the least integer so that any s-uniform family of f(s, k) sets contains
a sunflower with k petals. Then

(k − 1)s < f(s, k) ≤ s!(k − 1)s + 1. (6.1)

The upper bound is the sunflower lemma, the lower bound is Exercise 6.2.
The gap between the upper and lower bound for f(s, k) is still huge (by a
factor of s!).

Conjecture 6.1 (Erdős and Rado). For every fixed k there is a constant C =
C(k) such that f(s, k) < Cs.

The conjecture remains open even for k = 3 (note that in this case the
sunflower lemma requires at least s!2s ≈ ss sets). Several authors have slightly
improved the bounds in (6.1). In particular, J. Spencer has proved

f(s, 3) ≤ ec
√
ss!.

For s fixed and k sufficiently large, Kostochka et al. (1999) have proved

f(s, k) ≤ ks
(
1 + ck−2−s)

,

where c is a constant depending only on s.
But the proof or disproof of the conjecture is nowhere in sight.
A family F = {S1, . . . , Sm} is called a weak Δ-system if there is some λ

such that |Si ∩ Sj | = λ whenever i �= j. Of course, not every such system
is a sunflower: in a weak Δ-system it is enough that all the cardinalities of
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mutual intersections coincide whereas in a sunflower we require that these
intersections all have the same elements. However, the following interesting
result due to M. Deza states that if a weak Δ-system has many members then
it is, in fact, “strong,” i.e., forms a sunflower. We state this result without
proof.

Theorem 6.2 (Deza 1973). Let F be an s-uniform weak Δ-system. If |F| ≥
s2 − s+ 2 then F is a sunflower.

The family of lines in a projective plane of order s − 1 shows that this
bound is optimal (see Exercise 6.1).
A related problem is to estimate the maximal possible number F (n, k) of

members in a family F of subsets of an n-element set such that F does not
contain a weak Δ-system with k members. It is known that

20.01(n lnn)1/3 ≤ F (n, 3) ≤ 1.99n.

The upper bound was proved by Frankl and Rödl (1987), and the lower bound
by Kostochka and R"odl (1998).

6.2 Modifications

Due to its importance, the sunflower lemma was modified in various directions.
If S1, . . . , Sk form a sunflower with a core Y , then we have two nice properties:

(a) the core Y lies entirely in all the sets S1, . . . , Sk;
(b) the sets S1 \ Y, . . . , Sk \ Y are mutually disjoint.
It is therefore natural to look at what happens if we relax any of these two

conditions.

6.2.1 Relaxed core

We can relax property (a) and require that only the differences Si \ Y be
non-empty and mutually disjoint for some set Y .
Given distinct finite sets S1, . . . , Sk, their common part is the set

Y :=
⋃
i�=j
(Si ∩ Sj) .

Note that, if |Y | < mini |Si| then all the sets S1 \Y, . . . , Sk \Y are nonempty
and mutually disjoint.

Lemma 6.3 (Füredi 1980). Let F be a finite family of sets, and s =
maxS∈F |S|. If |F| > (k−1)s then the common part of some k of its members
has fewer than s elements.
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Proof. We prove a contraposition of this claim: If the common part of every
k members of F has at least s = maxS∈F |S| elements, then |F| ≤ (k − 1)s.
The cases k = 2 and s = 1 are trivial. Apply induction on k. Once k is fixed,
apply induction on s. Let S0 be an arbitrary member of F of size s. We have

|F| = 1 +
∑
X⊂S0

|{S ∈ F : S ∩ S0 = X}| . (6.2)

Fix now an arbitrary X ⊂ S0, and consider the family

FX := {S \ S0 : S ∈ F , S ∩ S0 = X} .

The maximum size of its member is s′ ≤ s−|X |. Moreover, the common part
of any its k′ = k − 1 members S1 \ S0, . . . , Sk−1 \ S0 is the common part of
k members S0, S1, . . . , Sk−1 of F minus X , and hence is at least s− |X | ≥ s′.
We can therefore apply the induction hypothesis with s′ ≤ s−|X |, k′ = k−1
and deduce

|FX | ≤ (k − 2)s−|X| . (6.3)

Combining (6.2) and (6.3) we obtain

|F| ≤ 1 +
∑
X⊂S0

(k − 2)s−|X| ≤
s∑
i=0

(
s

i

)
(k − 2)s−i = (k − 1)s ,

as desired. �	

6.2.2 Relaxed disjointness

What if we relax the disjointness property (b) of sunflowers, and only require
that the differences S1 \Y, . . . , Sk \Y cannot be intersected (blocked) by a set
of size smaller than some number t? In this case we say that sets S1, . . . , Sk
form a “flower” with t petals.
A blocking set of a family F is a set which intersects all the members of F ;

the minimum number of elements in a blocking set is the blocking number of
F and is denoted by τ(F); if ∅ ∈ F then we set τ(F) = 0. A restriction of a
family F onto a set Y is the family

FY := {S \ Y : S ∈ F , S ⊇ Y } .

A flower with k petals and a core Y is a family F such that τ(FY ) ≥ k. Note
that every sunflwover is a flower with the same number of petals, but not
every flower is a sunflower (give an example).
Håstad et al. (1995) observed that the proof of the sunflower lemma can

be easily modified to yield a similar result for flowers.

Lemma 6.4. Let F be a family of sets each of cardinality s, and k ≥ 1 and
integer. If |F| > (k − 1)s then F contains a flower with k petals.
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Proof. Induction on s. The basis s = 1 is trivial since then F consists of at
least k distinct single-element sets. Now suppose that the lemma is true for
s − 1 and prove it for s. Take a family F of sets each of cardinality s, and
assume that |F| > (k − 1)s. If τ(F) ≥ k then the family F itself is a flower
with at least (k−1)s+1 ≥ k petals (and an empty core). Otherwise, some set
of size k − 1 intersects all the members of F , and hence, at least |F|/(k − 1)
of the members must contain some point x. The family

Fx := {S \ {x} : S ∈ F , x ∈ S}

has
|Fx| ≥ |F|

k − 1 > (k − 1)s−1

members, each of cardinality s − 1. By the induction hypothesis, the family
Fx contains a flower with k petals and some core Y , x �∈ Y . Adding the
element x back to the sets in this flower, we obtain a flower in F with the
same number of petals and the core Y ∪ {x}. �	

6.3 Applications

The sunflower lemma and its modifications have many applications in com-
plexity theory. In particular, the combinatorial part of the celebrated lower
bounds argument for monotone circuits, found by Razborov (1985), is based
on this lemma and on its modification due to Füredi (Lemma 6.3). Andreev
(1987) has also used his modification (Exercise 6.5) to prove exponential lower
bounds for such circuits. In this section we will show how the last modification
(Lemma 6.4) can be used to obtain some information about the number of
minterms and to prove lower bounds for small depth non-monotone circuits.

6.3.1 The number of minterms

Let x1, . . . , xn be boolean variables taking their values in {0, 1}. A monomial
is an And of literals, and a clause is an Or of literals, where a literal is either
a variable xi or its negation xi = xi ⊕ 1. Thus, we have 2s(ns) monomials and
that many clauses of size s.
A 1-term of a boolean function f : {0, 1}n → {0, 1} is a monomialM such

that M(a) ≤ f(a) for all inputs a ∈ {0, 1}n. That is, if we set all literals of
M to 1, then the function f is forced to take value 1 independent on what
values we assign to the remaining variables. Dually, a 0-term of f is a clause
C such that C(a) ≥ f(a) for all inputs a ∈ {0, 1}n. A minterm of f is a
1-termM of f which is minimal in the sense that deleting every single literal
from M already violates this property.
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A boolean function f is a t-And-Or (or a t-CNF) if it can be written as
an And of an arbitrary number of clauses, each of size at most t.

Lemma 6.5. Let f be a t-And-Or function on n variables. Then for every
s = 1, . . . , n the function f has at most ts minterms of size s.

Proof. Let f = C1 ∧ · · · ∧ Cm, where each clause Ci has size at most t. We
interpret the clauses as sets of their literals, and let C = {C1, . . . , Cm} be the
corresponding family of these sets. Let F be the family of all minterms of f
that have size s (we look at minterms as sets of their literals). Then every
set in C intersects each set in F (see Exercise 6.9).
Suppose that |F| > ts. Then, by Lemma 6.4, F has a flower with t + 1

petals. That is, there exists a set of literals Y such that no set of at most t
literals can intersect all the members of the family

FY = {M \ Y : M ∈ F , M ⊇ Y }.

The set Y is a proper part of at least one minterm of f , meaning that Y cannot
intersect all the clauses in C. Take a clause C ∈ C such that C ∩Y = ∅. Since
this clause intersects all the sets in F , this means that it must intersect all
the sets in FY . But this is impossible because C has size at most t. �	

6.3.2 Small depth formulas

An s-threshold function is a monotone boolean function T ns which accepts a
0-1 vector if and only if it has at least s ones. That is,

T ns (x1, . . . , xn) = 1 if and only if x1 + · · ·+ xn ≥ s.

This function can be computed by the following formula:

T ns (x1, . . . , xn) =
∨

I : |I|=s

∧
i∈I

xi.

This formula is monotone (has no negated literals) and has depth 2 (there
are only two alternations between And and Or operations). But the size of
this formula (the number of literals in it) is s

(
n
s

)
. Can T ns be computed by

a substantially smaller formula if we allow negated literals and/or a larger
depth?
Håstad (1986) proved that, for s = �n/2�, each such formula computing

T ns must have size exponential in n, even if we allow any constant depth, i.e.,
any constant number of alternations of And’s and Or’s. Razborov (1987) has
proved that the same holds even if we allow sum modulo 2 as an additional
operation. Both these proofs employ non-trivial machinery: the switching
lemma and approximations of boolean functions by low-degree polynomials.
On the other hand, Håstad et al. (1995) have shown that, at least for

depth-3, one can deduce the same lower bound in an elementary way using
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the flower lemma (Lemma 6.4). In fact, their proof holds for depth-3 circuits
but, to demonstrate the idea, it is enough to show how it works for special
depth-3 formulas.
An Or-And-Or formula is a formula of the form

F = F1 ∨ F2 ∨ · · · ∨ Ft, (6.4)

where each Fi is an And-Or formula, that is, each Fi is an And of an arbitrary
number of clauses, each clause being an Or of literals (variables or their
negations). We say that such a formula has bottom fan-in k if each of its
clauses has at most k positive literals (the number of negated variables may
be arbitrary). The size of a formula is the total number of literals in it.
At this point, let us note that the condition on bottom fan-in is not crucial:

if the size of F is not too large then it is possible to set some small number
of variables to constant 1 so that the resulting formula will already satisfy
this condition (see Exercise 6.10).
The idea of Håstad et al. (1995) is accumulated in the following lemma.

Lemma 6.6. Let F = F1 ∨F2 ∨ · · · ∨Ft be an Or-And-Or formula of bottom
fan-in k. Suppose that F rejects all vectors with fewer than s ones. Then F
cannot accept more than tks vectors with precisely s ones.
Note that this lemma immediately implies that every Or-And-Or formula

of bottom fan-in k computing the threshold function T ns has size at least(
n

s

)
k−s >

( n

ks

)s
.

Proof. Suppose that F accepts more than tks vectors with precisely s ones.
Then some of its And-Or subformulas Fi accepts more than ks of such vectors.
Let A be this set of vectors with s ones accepted by Fi; hence

|A| > ks.

The formula Fi has the form

Fi = C1 ∧ C2 ∧ · · · ∧ Cr,

where C1, . . . , Cr are clauses with at most k positive literals in each of them.
Let B be the set of all vectors with at most s−1 ones. All these vectors must
be rejected by Fi, since they are rejected by the whole formula F . Our goal
is to show that the set B contains a vector v on which each of the clauses
C1, . . . , Cr outputs the same value as on some vector from A; this will mean
that the formula Fi makes an error on this input – it is forced to accept v.
Say that a vector v is a k-limit for A if, for every subset S of k coordinates,

there exists a vector u ∈ A such that v ≤ u (vector comparision) and v
coincides with u in all the coordinates from S; that is, vi ≤ ui for all i and
vi = ui for all i ∈ S.
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6 Sunflowers

Claim 6.7. There exists a vector v ∈ B which is a k-limit for A.

Proof of Claim 6.7. For a vector u ∈ {0, 1}n, let Eu be the corresponding
subset of {1, . . . , n}, whose incidence vector is u, that is, Eu = {i : ui = 1}.
Consider the family F = {Eu : u ∈ A}. This family is s-uniform and has
more than ks members. By Lemma 6.4, F has a flower with k + 1 petals.
That is, there exists a set Y such that no set of size at most k can intersect
all the members of the family FY = {E \ Y : E ∈ F , E ⊇ Y }. Let v be the
incidence vector of Y . We claim that v is a k-limit for A.
To show this, take an arbitrary subset S of {1, . . . , n} of size at most k.

Then
S ∩ (Eu \ Y ) = ∅ (6.5)

for at least one set Eu ∈ F such that Y ⊆ Eu. The last condition implies
that v ≤ u, and hence, v coincides with u on all coordinates from S \Eu and
from S ∩ Y . But, by (6.5), there are no other coordinates in S, and hence, v
coincides with u on all coordinates from S, as desired. �	
Fix a vector v guaranteed by the claim. To get the desired contradiction we

will show that the formula Fi will be forced to (wrongly) accept this vector.
Suppose the opposite that v is rejected by Fi. Then C(v) = 0 for some clause
C of Fi. This clause has a form

C =
( ∨
i∈S

xi

)
∨
( ∨
j∈T

xj

)

for some two disjoint sets of S, T such that |S| ≤ k. By Claim 6.7, there is a
vector u in A such that v ≤ u and v coincides with u on all the coordinates
from S. The vector u must be accepted by the formula Fi, and hence, by
the clause C. This can happen only if this vector has a 1 in some coordinate
i ∈ S or has a 0 in some coordinate j ∈ T (or both). In the first case C(v) = 1
because v coincides with u on S, and in the second case C(v) = 1 because,
due to the condition v ≤ u, vector v has 0s in all coordinates where vector u
has them. Thus, in both cases, C(v) = 1, a contradiction. �	

Exercises

6.1. A projective plane of order s− 1 is a family of n = s2 − s+ 1 s-element
subsets (called lines) of an n-element set of points such that each two lines
intersect in precisely one point and each point belongs to precisely s lines
(cf. Sect. 12.4). Show that the equality in Deza’s theorem (Theorem 6.2) is
attained when a projective plane of order s− 1 exists.
6.2. Take s pairwise disjoint (k− 1)-element sets V1, . . . , Vs and consider the
family
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F = {S : |S| = s and |S ∩ Vi| = 1 for all i = 1, . . . , s}.
This family has (k − 1)s sets. Show that it has no sunflower with k petals.
6.3. Show that the bounds in Lemmas 6.3, and 6.4 are optimal. Hint: Consider
the family defined in the previous exercise.

6.4. A matching of size k in a graph is a set of its k pairwise disjoint edges
(two edges are disjoint if they have no vertex in common). A star of size k is
a set of k edges incident to one vertex. Argue as in the proof of the sunflower
lemma to show that any set of more than 2(k − 1)2 edges either contains a
matching of size k or a star of size k.

6.5. (Andreev 1987). Let F be a family of sets each of cardinality at most s,
and suppose that |F| > (k − 1)s. Use the argument of Lemma 6.3 to prove
that then there exist k sets S1, . . . , Sk in F such that all the sets Si\(S1 ∩S2),
i = 1, . . . , k are pairwise disjoint.

6.6. Let n−k+1 < s ≤ n and consider the family F of all s-element subsets
of a n-element set. Prove that F has no sunflower with k petals. Hint: Suppose
the opposite and count the number of elements used in such a sunflower.

6.7. Given a graph G = (V,E) and a number 2 ≤ s ≤ |V |, let Gs denote the
graph whose vertices are all s-element subsets of V , and two such subsets A
and B are connected by an edge if and only if there is an edge (u, v) ∈ E
such that u ∈ A \B and v ∈ B \A. Suppose that the graph G is “sparse” in
the following sense: every subset of at most ks vertices spans fewer that

(
k
2
)

edges. Use Lemma 6.4 to show that then Gs has no clique of size larger than
(k−1)s. Hint: Let F be a clique in Gs, and suppose that F forms a flower with k petals.
Then each member A ∈ F contains an element vA which is not contained in any other
member of F . Use the fact that F was a clique in Gs to argue that {vA : A ∈ F} is a
clique in G.

6.8. For a graphG, let G be a graph whose vertices are all maximum cliques of
G, and where two such cliques A and B are connected by an edge if and only
if there is an edge (u, v) ∈ E such that u ∈ A\B and v ∈ B \A. Recall that a
clique is a maximum clique if each of remaining vertices is not connected to at
least one of its edges (i.e. we cannot add any new vertices). Let α(G) denote
the independence number of G, that is, the maximum number of vertices no
two of which are adjacent in G. Show that α(G) ≤ α(G). Hint: Let F be an
independent set in G. Show that then for any three distinct members A,B and K of F ,
the intersections A ∩ K and B ∩ K must be comparable by set-inclusion. Argue that
then each member K ∈ F must contain an element vK which belongs to none of the
remaining members. Why is then the set {vK : K ∈ F} an independent set in G?

6.9. Show that every 0-term C and every 1-term K of a boolean function
f must share at least one literal in common. Hint: Take a restriction (a partial
assignment to variables) which evaluates all the literals of K to 1. If C has no literal of
K, then this restriction can be extended to an input a such that f(a) = 0.
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6 Sunflowers

6.10. Let F be a set of clauses on n variables. Say that a clause is long if it
has at least k + 1 positive literals. Let � be the number of long clauses in F ,
and suppose that

� <

(
n+ 1
m+ 1

)k
.

Prove that then it is possible to assign some n−m variables to constant 1 so
that the resulting set F ′ will have no long clauses. Hint: Construct the desired
set assignment via the following “greedy” procedure: Take the variable xi1 which occurs
in the largest number of long clauses and set it to 1; then take the variable xi2 which
occurs in the largest number of remaining long clauses and set it to 1, and so on, until all
long clauses dissapear (get value 1). In computations use the estimate

∑n

i=1 i
−1 ∼ lnn.

6.11. Consider the following function on n = sr variables:

f =
s∧
i=1

r∨
j=1

xij .

Let F be an Or-And-Or formula of bottom fan-in k (k ≤ r) computing this
function. Show that then F has size at least (r/k)s. Hint: Observe that f rejects
all vectors with fewer than s ones and accepts rs vectors with precisely s ones; apply
Lemma 6.6.

6.12. (Håstad et al. 1995). Consider the function on n = m2 variables defined
by the formula

f =
m∧
i=1

m∨
j=1

xij ∧ yij .

This formula is a depth-3 And-Or-And formula of size only 2n. Prove that any
depth-3 Or-And-Or formula for this function has size at least 2Ω(

√
n). Hint:

Assume that f has such a formula F of size at most 2m/3. Reduce the bottom fan-in of F
to k = �m/2� by setting one half of the variables to constants at random as follows: for
each pair of variables xij , yij , pick one of them at random (with probability 1/2) and set
it to 1. If some clause has more than k positive literals, then none of these literals is set
to 1 with probability at most 2−k−1. The probability, that some of the clauses with more
than k positive literals is not evaluated to 1, does not exceed 2m/3 ·2−(k+1) ≤ 2−m/6 < 1,
and in particular such a setting exists. The resulting function has the same form as that
considered in the previous exercise.
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7. Intersecting Families

A basic interrelation between sets is their intersection. The size (or other
characteristics) of mutual intersections between the members of a given family
reflects some kind of “dependence” between them. In this chapter we will
study the weakest kind of this dependence – the members are required to be
non-disjoint. A family is intersecting if any two of its sets have a non-empty
intersection.

7.1 Ultrafilters and Helly property

We start with two simple structural properties of intersecting families.
An ultrafilter over a set X is a collection F of its subsets such that: (i) F

is upwards-closed, that is, A ∈ F and A ⊆ B implies B ∈ F , and (ii) for
every subset A of X , exactly one of A or its complement A = X \A belongs
to F .
Theorem 7.1. Every ultrafilter is an intersecting family, and every inter-
secting family is contained in some ultrafilter.

Proof. To prove the first claim, let F be an ultrafilter. If some two members
A,B of F were disjoint, then the complement of B would contain the set A,
and hence, would belong to F (by (i)). But this is impossible since, by (ii),
F cannot contain the set B together with its complement.
To prove the second claim, take an arbitrary intersecting family and extend

it to an ultrafilter as follows. If there are some sets not in the family and
such that their addition does not destruct the intersection property, add all
them. After that, add all supersets of the sets we already have. We claim
that the resulting family F is an ultrafilter. Indeed, if it is not, there must
be a set A such that neither A nor its complement A belongs to F . By the
construction, A must be disjoint from at least one member B of our initial
family (for otherwise A would be added during the first phase), and hence,
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7 Intersecting Families

B is contained in the complement A. But B ∈ F and F is upwards-closed, a
contradiction. ��
In 1923, E. Helly proved the following result: if n ≥ k + 1 convex sets in

R
k have the property that any k + 1 of them have a nonempty intersection,
then there is a point common to all of them.
It is natural to ask if objects other than convex sets obey Helly-type laws.

For arbitrary families of sets we have the following Helly-type result.

Theorem 7.2. Let F be a family and k be the minimum size of its member.
If any k+ 1 members of F intersect (i.e., share a common point) then all of
them do.

Proof. Suppose the opposite that the intersection of all sets in F is empty,
and take a set A = {x1, . . . , xk} ∈ F . For every i = 1, . . . , k there must be a
set Bi ∈ F such that xi �∈ Bi. Hence, A∩B1∩· · ·∩Bk = ∅, a contradiction. ��

7.2 The Erdős–Ko–Rado theorem

Let F be an intersecting family of k-element subsets of {1, . . . , n}. The basic
question is: how large can such a family be? To avoid trivialities, we assume
n ≥ 2k since otherwise any two k-element sets intersect, and there is nothing
to prove.
We can obtain an intersecting family by taking all

(
n−1
k−1

)
k-element subsets

containing a fixed element. Can we find larger intersecting families? The
whole number of k-element subsets is

(
n
k

)
= n

k

(
n−1
k−1

)
, so the question is not

trivial.
The following result, found by Erdős, Ko, and Rado in 1938 (but published

only 23 years later), answers the question.

Theorem 7.3 (Erdős–Ko–Rado 1961). If 2k ≤ n then every intersecting
family of k-element subsets of an n-element set has at most

(
n−1
k−1

)
members.

Proof. (Due to G.O.H. Katona 1972.) Let [n] = {0, 1, . . . , n − 1} be the
underlying set. The idea is to study all permutations of the elements of [n],
estimating how often the consecutive elements of these permutations can
constitute one of the sets in our family. For s ∈ [n], let Bs denote the set of k
consecutive numbers s, s+ 1, . . . , s+ k − 1, where the addition is modulo n.
Claim 7.4. At most k of the sets Bs can belong to F .
We can suppose that B0 ∈ F . The only sets Bs that intersect B0 other

than B0 itself are the 2k− 2 sets Bs with −(k− 1) ≤ s ≤ k− 1, s �= 0 (where
the indices are taken modulo n). These sets can be partitioned into k − 1
pairs of disjoint sets, Bi, Bi+k, where −(k − 1) ≤ i ≤ −1.
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1-1

- (k-2)

- (k-1)

k-2

k-1

2-2

.
.
.

.

.

.

0

Since F can contain at most one set of each such pair the assertion of the
claim follows.
We now count in two ways the number L of pairs (f, s), where f is a

permutation of [n] and s is a point in [n], such that the set

f(Bs) := {f(s), f(s+ 1), . . . , f(s+ k − 1)}

belongs to F . By the claim, for each fixed permutation f , the family F can
contain at most k of the sets f(Bs). Hence, L ≤ kn!. On the other hand,
exactly nk!(n − k)! of the pairs (f, s) yield the same set f(Bs): there are n
possibilities for s, and for each fixed s, there are k!(n − k)! possibilities to
choose the permutation f . Hence, L = |F| ·nk!(n− k)!. Combining this with
the previous estimate, we obtain

|F| ≤ kn!
nk!(n− k)! =

k

n

(
n

k

)
=

(
n− 1
k − 1

)
. ��

7.3 Fisher’s inequality

A fundamental result of design theory–known as Fisher’s inequality—states
that, if each two clubs in a town share the same number of members in
common, then the number of clubs cannot exceed the total number of inhab-
itants in the town. In the proof of this result we will use (for the first time)
a powerful tool: linear algebra.
The general frame for the linear algebra method in combinatorics is the

following: if we want to come up with an upper bound on the size of a set of
objects, associate them with elements in a vector space V of relatively low
dimension, and show that these elements are linearly independent; hence, we
cannot have more objects in our set than the dimension of V . This fact—
there cannot be more linearly independent vectors in V than the dimension
of V—is usually called the “linear algebra bound.” We will consider this tool
in great details in Part III. Here we restrict ourselves with just one important
application.
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7 Intersecting Families

Theorem 7.5 (Fisher’s inequality). Let A1, . . . , Am be distinct subsets of
{1, . . . , n} such that |Ai ∩ Aj | = k for some fixed 1 ≤ k ≤ n and every i �= j.
Then m ≤ n.

Proof. For two vectors x, y ∈ R
n, let 〈x, y〉 = x1y1 + · · ·+ xnyn denote their

scalar product. Let v1, . . . , vm ∈ {0, 1}n be incidence vectors of A1, . . . , Am.
By the linear algebra bound it is enough to show that these vectors are
linearly independent over the reals. Assume the contrary, i.e., that the linear
relation

∑m
i=1 λivi = 0 exists, with not all coefficients being zero. Obviously,

〈vi, vj〉 = |Ai| if j = i, and 〈vi, vj〉 = k if j �= i. Consequently,

0 =
( m∑
i=1

λivi

)( m∑
j=1

λjvj

)
=

m∑
i=1

λ2
i 〈vi, vi〉+

∑
1≤i�=j≤m

λiλj〈vi, vj〉

=
m∑
i=1

λ2
i |Ai|+

∑
1≤i�=j≤m

λiλjk =
m∑
i=1

λ2
i (|Ai| − k) + k ·

( m∑
i=1

λi

)2
.

Clearly, |Ai| ≥ k for all i and |Ai| = k for at most one i, since otherwise
the intersection condition would not be satisfied. But then the right-hand is
greater than 0 (because the last sum can vanish only if at least two of the
coefficients λi are nonzero), a contradiction. ��
This theorem was first proved by the statistician R. A. Fisher in 1940 for

the case when k = 1 and all sets Ai have the same size (such configurations
are known as balanced incomplete block designs). In 1948, de Bruijn and
Erdős relaxed the uniformity condition for the sets Ai (see Theorem 12.4).
This was generalized by R. C. Bose in 1949, and later by several other authors.
But it was the two-page paper of Bose where the linear argument was first
applied to solve a combinatorial problem. The general version, stated above,
was first proved by Majumdar (1953); the proof we presented is a variation
of a simplified argument found by Babai and Frankl (1992).

7.4 Maximal intersecting families

Let F be a k-uniform family of sets of some n-element set. Say that F is
maximal intersecting if

(i) F is intersecting;
(ii) the addition of any new k-element set to F destroys this property, that
is, for every k-element subset E �∈ F , the family F ∪ {E} is no longer
intersecting.

The case when n ≤ 2k − 1 is not interesting, because then the only maximal
intersecting family is the family of all k-element subsets. But what if n ≥ 2k?
Intuitively, any maximal intersecting family must be large enough, because
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7.4 Maximal intersecting families

every k-element set not in the family must be avoided by at least one of
its members. It is therefore interesting to investigate the minimal possible
number f(k) of members which such a family can have.
To give an upper bound on f(k), consider the family F of lines in a pro-

jective plane of order k − 1 (see Sect. 12.4). For our current purposes it is
enough to know that F is a family of |F| = n = k2 − k+1 k-element subsets
(called lines) of an n-element set of points such that each two lines intersect
in precisely one point and each point belongs to precisely k lines. It is easy
to show that this family is maximal intersecting (see Exercise 7.7). Hence,
f(k) ≤ k2 − k + 1 for all those values of k for which a projective plane of
order k − 1 exists.
In the case of projective planes, we have a k-uniform family with about k2

sets. But the number of points in this case is also the same. What if we take
a lot fewer than k2 points? Can we then still find a k-uniform and maximal
intersecting family of size at most k2? Using double-counting we can answer
this question negatively.

Theorem 7.6 (Füredi 1980). Let F be a maximal intersecting family of k-
element sets of an n-element set. If n ≤ k2/2 log k, then F must have more
than k2 members.

Proof. To simplify computations, we only prove the theorem under a slightly
stronger assumption that n ≤ k2/(1 + 2 log k). The idea is to count in two
ways the number N of pairs (F,E) where F ∈ F and E is a k-element subset
disjoint from F (and hence, E �∈ F). Since every such set E must be avoided
by at least one member of F , N ≥ (

n
k

)−|F| . On the other hand, each member
of F can avoid at most (n−kk )

of the sets E; hence N ≤ |F| · (n−kk )
. These

two inequalities, together with the estimate (1.23), imply

|F| ≥
(
n
k

)
1 +

(
n−k
k

) ≥ 12 ·
(

n

n− k

)k
> ek

2/n−1 ≥ e2 log k ≥ k2 . ��

Now suppose that F1, . . . ,Fm are intersecting (not necessarily uniform)
families of an n-element set {1, . . . , n}. How many sets can we have in their
union?
Taking each Fi to be the family of all 2n−1 subsets containing the element i,

we see that the union will have 2n − 2n−m sets.
A beautiful result, due to Kleitman, says that this bound is best possible.

Theorem 7.7 (Kleitman 1966). The union of m intersecting families con-
tains at most 2n − 2n−m sets.

Proof. We apply induction onm. The casem = 1 being trivial, we turn to the
induction step. We say that a family A is monotone increasing (monotone
decreasing) if A ∈ A and B ⊇ A (respectively, B ⊆ A) implies B ∈ A.
A famous result, also due to Kleitman (we will prove it in Sect. 10.2; see
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Theorem 10.6 and Exercise 10.8) says that, if A is a monotone decreasing
and B is a monotone increasing family of subsets of an n-element set, then

|A ∩ B| ≤ 2−n|A| · |B| . (7.1)

Now let F = ⋃m
i=1 Fi, with each Fi being an intersecting family. Since

our aim is to bound |F| from the above, we may assume that each Fi is
maximal intersecting family; in particular, |Fm| = 2n−1. Let A be the com-
plement of Fm, i.e., the family of all |A| = 2n−1 subsets not in Fm, and
B = ⋃m−1

i=1 Fi. Since F1, . . . ,Fm are maximal intersecting families, A is
monotone decreasing and B is monotone increasing. By the induction hy-
pothesis, |B| ≤ 2n − 2n−m+1, and, by (7.1),

|A ∩ B| ≤ 2−n2n−1(2n − 2n−m+1) = 2n−1 − 2n−m .

Therefore,
|B ∩ Fm| = |B| − |A ∩ B| ≥ |B| − 2n−1 + 2n−m

and

|F| =
∣∣∣∣ m⋃
i=1

Fi

∣∣∣∣ = |B|+ |Fm| − |B ∩ Fm| ≤ 2n − 2n−m . ��

7.5 Cross-intersecting families

A pair of families A,B is cross-intersecting if every set in A intersects every
set in B. The rank of A is the maximum cardinality of a set in A. The degree
dA(x) of a point x in A is the number of sets in A containing x.
If A has rank a, then, by the pigeonhole principle, each set in A contains

a point x which is “popular” for the members of B in that dB(x) ≥ |B|/a.
Similarly, if B has rank b, then each member of B contains a point y for which
dA(y) ≥ |A|/b. However, this alone does not imply that we can find a point
which is popular in both families A and B. It turns out that if we relax the
“degree of popularity” by one-half, then such a point exists.

Theorem 7.8 (Razborov–Vereshchagin 1999). Let A be a family of rank a
and B be a family of rank b. Suppose that the pair A,B is cross-intersecting.
Then there exists a point x such that

dA(x) ≥ |A|
2b and dB(x) ≥ |B|

2a .

Proof. Assume the contrary and let A,B be independent random sets that
are uniformly distributed in A,B respectively. That is, for each A ∈ A and
B ∈ B, Pr [A = A] = 1/|A| and Pr [B = B] = 1/|B|. Since the pair A,B is
cross-intersecting, the probability of the event “∃x(x ∈ A ∩ B)” is equal to
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1. Since the probability of a disjunction of events is at most the sum of the
probabilities of the events, we have∑

x

Pr [x ∈ A ∩ B] ≥ 1.

Let X0 consist of those points x for which

dA(x)
|A| = Pr [x ∈ A] < 12b ,

and X1 consist of the remaining points. Note that by our assumption, for any
x ∈ X1,

Pr [x ∈ B] = dB(x)
|B| <

1
2a

holds. By double counting (see Proposition 1.7),
∑

x dA(x) =
∑

A∈A |A|.
Hence,∑

x∈X1

Pr [x ∈ A ∩B] =
∑
x∈X1

Pr [x ∈ A] · Pr [x ∈ B]

<
1
2a ·

∑
x∈X1

Pr [x ∈ A] ≤ 1
2a ·

∑
x

Pr [x ∈ A]

= 12a ·
∑
x

dA(x)
|A| =

1
2a|A| ·

∑
x

dA(x) =
1
2a|A| ·

∑
A∈A

|A| ≤ a|A|
2a|A| =

1
2 .

In a similar way we obtain
∑
x∈X0

Pr [x ∈ A ∩ B] < 12 ,

a contradiction. ��
We mention (without proof) the following related result.

Theorem 7.9 (Füredi 1995). Let a+ b ≤ n, A be a family of a-element sets
and B a family of b-element sets on the common underlying set [n] such that
|A| ≥ (

n−1
a−1

) − (
n−b−1
a−1

)
+ 1 and |B| ≥ (

n−1
b−1

) − (
n−a−1
b−1

)
+ 1. If the pair A,B

is cross-intersecting, then some element x ∈ [n] belongs to all members of A
and B.

Exercises

7.1. Let F be a family of subsets of an n-element set. Prove that if F is
intersecting then |F| ≤ 2n−1. Is this the best bound? If so, then exhibit an
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7 Intersecting Families

intersecting family with |F| = 2n−1. Hint: A set and its complement cannot both
be the members of F .

7.2. Let F be an intersecting family of subsets of an n-element set X . Show
that there is an intersecting family F ′ ⊇ F such that |F| = 2n−1. Hint: Show
that for any set A such that neither A nor A belongs to F , exactly one of A and A can
be added to F .

7.3. Let n ≤ 2k and let A1, . . . , Am be a family of k-element subsets of [n]
such that Ai ∪ Aj �= [n] for all i, j. Show that m ≤ (

1− k
n

) (
n
k

)
. Hint: Apply

the Erdős–Ko–Rado theorem to the complements Ai = [n] −Ai.

7.4. The upper bound
(
n−1
k−1

)
given by Erdős–Ko–Rado theorem is achieved

by the families of sets containing a fixed element. Show that for n = 2k there
are other families achieving this bound. Hint: Include one set out of every pair of
sets formed by a k-element set and its complement.

7.5. One can generalize the intersection property and require that |A∩B| ≥ t
for all A �= B ∈ F . Such families are called t-intersecting. The first example
of a t-intersecting family which comes to mind, is the family of all subsets
of [n] containing some fixed set of t elements. This family has 2n−t sets.
Are there larger t-intersecting families? Hint: Let n + t be even and take F ={
A ⊆ [n] : |A| = n+t

2

}
.

7.6. Let =. {B1, . . . , Bb} be a (v, k, λ) design, i.e., a family of k-element subsets
of a v-element set of points X = {x1, . . . , xv} such that every two points
belong to exactly λ sets. Use Fisher’s inequality to show that b ≥ v. Hint:
Take Ai := {j : xi ∈ Bj}.

7.7. Consider the k-uniform family of all n = k2 − k + 1 lines in the set of
points of a projective plane of order k− 1. Clearly, this family is intersecting.
Show that it is also maximal intersecting, i.e., that every k-element set E,
which intersects all the lines, must be a line. Hint: Assume that E is not a line,
draw a line L through some two points x �= y of E, and take a point z ∈ L \ {x, y}. This
point belongs to k lines, and each of them intersect E.

7.8. (Razborov–Vereshchagin 1999). Show that the bound in Theorem 7.8 is
tight up to a multiplicative factor of 2. Hint: Consider the following pair of families

A = {A1, . . . , Ab}, where Ai = {(i, 1), (i, 2), . . . , (i, a)},
B = {B1, . . . , Ba}, where Bj = {(1, j), (2, j), . . . , (b, j)}.
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8. Chains and Antichains

Partial ordered sets provide a common frame for many combinatorial con-
figurations. Formally, a partially ordered set (or poset, for short) is a set P
together with a binary relation < between its elements which is transitive
and antysymmetric: if x < y and y < z then x < z, but x < y and y < x
cannot both hold. We write x ≤ y if x < y or x = y. Elements x and y are
comparable if either x ≤ y or y ≤ x (or both) hold.
A chain in a poset P is a subset C ⊆ P such that any two of its points

are comparable. Dually, an antichain is a subset A ⊆ P such that no two of
its points are comparable. Observe that |C ∩ A| ≤ 1, i.e., every chain C and
every antichain A can have at most one element in common (for two points
in their intersection would be both comparable and incomparable).
Here are some frequently encountered examples of posets: a family of sets is

partially ordered by set inclusion; a set of positive integers is partially ordered
by division; a set of vectors in R

n is partially ordered by (a1, . . . , an) <
(b1, . . . , bn) iff ai ≤ bi for all i, and ai < bi for at least one i.
Small posets may be visualized by drawings, known as Hasse diagrams: x

is lower in the plane than y whenever x < y and there is no other point z ∈ P
for which both x < z and z < y. For example:

{a,c} {a,b}

{b}{a} {c}

O

{b,c}

{a,b,c}

1

2
3

6
9

18
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8 Chains and Antichains

8.1 Decomposition in chains and antichains

A decomposition of a poset is its partition into mutually disjoint chains or
antichains. Given a poset P , our goal is to decompose it into as few chains
(or antichains) as possible. One direction is easy: if a poset P has a chain
(antichain) of size r then it cannot be partitioned into fewer than r antichains
(chains). The reason here is simple: any two points of the same chain must
lie in different members of a partition into antichains.
Is this optimal? If P has no chain (or antichain) of size greater than r, is it

then possible to partition P into r antichains (or chains, respectively)? One
direction is straightforward (see Exercise 8.8 for an alternative proof):

Theorem 8.1. Suppose that the largest chain in the poset P has size r. Then
P can be partitioned into r antichains.

Proof. Let Ai be the set of points x ∈ P such that the longest chain, whose
greatest element is x, has i points (including x). Then, by the hypothesis,
Ai = ∅ for i ≥ r + 1, and hence, P = A1 ∪ A2 ∪ · · · ∪ Ar is a partition
of P into r mutually disjoint subsets (some of them may be also empty).
Moreover, each Ai is an antichain, since if x, y ∈ Ai and x < y, then the
longest chain x1 < . . . < xi = x ending in x could be prolonged to a longer
chain x1 < . . . < xi < y, meaning that y 	∈ Ai. 
�
The dual result looks similar, but its proof is more involved. This result,

uniformly known as Dilworth’s Decomposition Theorem (Dilworth 1950) has
played an important role in motivating research into posets. There are several
elegant proofs; the one we present is due to F. Galvin.

Theorem 8.2 (Dilworth’s theorem). Suppose that the largest antichain in
the poset P has size r. Then P can be partitioned into r chains.
Proof (due to Galvin 1994). We use induction on the cardinality of P . Let
a be a maximal element of P , and let r be the size of a largest antichain in
P ′ = P \ {a}. Then P ′ is the union of r disjoint chains C1, . . . , Cr. We have
to show that P either contains an (r + 1)-element antichain or else is the
union of r disjoint chains. Now, every r-element antichain in P ′ consists of
one element from each Ci. Let ai be the maximal element in Ci which belongs
to some r-element antichain in P ′. It is easy to see that A = {a1, . . . , ar} is
an antichain in P ′. If A ∪ {a} is an antichain in P , we are done: we have
found an antichain of size r+1). Otherwise, we have a > ai for some i. Then
K = {a} ∪ {x ∈ Ci : x ≤ ai} is a chain in P , and there are no r-element
antichains in P \K (since ai was the maximal element of Ci participating in
such an antichain), whence P \ K is the union of r − 1 chains. 
�
To recognize the power of this theorem, let us show that it contains Hall’s

Marriage Theorem 5.1 as a special case!
Suppose that S1, . . . , Sm are sets satisfying Hall’s condition, i.e., |S(I)| ≥

|I| for all I ⊆ {1, . . . ,m}, where S(I) := ⋃
i∈I Si. We construct a poset P as
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8.1 Decomposition in chains and antichains

follows. The points of P are the elements of X := S1 ∪ · · · ∪ Sm and symbols
y1, . . . , ym, with x < yi if x ∈ Si, and no other comparabilities. It is clear
that X is an antichain in P . We claim that there is no larger antichain. To
show this, let A be an antichain, and set I := {i : yi ∈ A}. Then A contains
no point of S(I), for if x ∈ Si then x is comparable with yi, and hence,
A cannot contain both of these points. Hence, Hall’s condition implies that
|A| ≤ |I|+ |X | − |S(I)| ≤ |X |, as claimed.
Now, Dilworth’s theorem implies that P can be partitioned into |X | chains.

Since the antichain X is maximal, each of the chains in the partition must
contain a point of X . Let the chain through yi be {xi, yi}. Then (x1, . . . , xm)
is a desired system of distinct representatives: for xi ∈ Si (since xi < yi) and
xi 	= xj (since the chains are disjoint).
In general, Dilworth’s theorem says nothing more about the chains, form-

ing the partition, except that they are mutually disjoint. However, if we
consider special posets then we can extract more information about the par-
tition. To illustrate this, let us consider now the poset 2X whose points are all
subsets of an n-element set X partially ordered by set inclusion. De Bruijn,
Tengbergen, and Kruyswijk (1952) have shown that 2X can be partitioned
into disjoint chains that are also “symmetric.”
Let C = {A1, . . . , Ak} be a chain in 2X , i.e., A1 ⊂ A2 ⊂ . . . ⊂ Ak. This

chain is symmetric if |A1| + |Ak| = n and |Ai+1| = |Ai| + 1 for all i =
1, . . . , k−1. “Symmetric” here means symmetric positioned about the middle
level n2 . Symmetric chains with k = n are maximal. Maximal chains are in
one-to-one correspondence with the permutations of the underlying set: every
permutation (x1, . . . , xn) gives the maximal chain

{x1} ⊂ {x1, x2} ⊂ . . . ⊂ {x1, . . . , xn}.

Theorem 8.3. The family of all subsets of an n-element set can be parti-
tioned into

(
n

�n/2�
)
mutually disjoint symmetric chains.

Proof. Take an n-element set X , and assume for a moment that we already
have some partition of 2X into symmetric chains. Every such chain contains
exactly one set from the middle level; hence there are

(
n

�n/2�
)
chains in that

partition.
Let us now prove that such a partition is possible at all. We argue by

the induction on n = |X |. Clearly the result holds for the one point set
X . So, suppose that it is true for all sets with fewer points then n. Pick a
point x ∈ X , and let Y := X \ {x}. By induction, we can partition 2Y into
symmetric chains C1, . . . , Cr. Each of these chains over Y

Ci := A1 ⊂ A2 ⊂ . . . ⊂ Ak

produce the following two chains over the whole set X :

C′i := A1 ⊂ A2 ⊂ . . . ⊂ Ak−1 ⊂ Ak ⊂ Ak ∪ {x}
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8 Chains and Antichains

C′′i := A1 ∪ {x} ⊂ A2 ∪ {x} ⊂ . . . ⊂ Ak−1 ∪ {x}.
These chains are symmetric since

|A1|+ |Ak ∪ {x}| = (|A1|+ |Ak|) + 1 = (n− 1) + 1 = n

and

|A1 ∪ {x}|+ |Ak−1 ∪ {x}| = (|A1|+ |Ak−1|) + 2 = (n − 2) + 2 = n.

Is this a partition? It is indeed. If A ⊆ Y then only C′i contains A where Ci is
the chain in 2Y containing A. If A = B ∪ {x} where B ⊆ Y then B ∈ Ci for
some i. If B is the maximal element of Ci then C′i is the only chain containing
A, otherwise A is contained only in C′′i . 
�

8.2 Application: the memory allocation problem

The following problem arises in information storage and retrieval. Suppose
we have some list (a sequence) L = (a1, a2, . . . , am) of not necessarily distinct
elements of some set X . We say that this list contains a subset A if it contains
A as a subsequence of consecutive terms, that is, if

A = {ai, ai+1, . . . , ai+|A|−1}

for some i. A sequence is universal for X if it contains all the subsets of X .
For example, if X = {1, 2, 3, 4, 5} then the list

L = (1 2 3 4 5 1 2 4 1 3 5 2 4)

of length m = 13 is universal for X .
What is the length of a shortest universal sequence for an n-element set?

Since any two sets of equal cardinality must start from different places of
this string, the trivial lower bound for the length of universal sequence is(

n
�n/2�

)
, which is about

√
2
πn2

n, according to Stirling’s formula (1.7). A trivial
upper bound for the length of the shortest universal sequence is obtained by
considering the sequence obtained simply by writing down each subset one
after the other. Since there are 2n subsets of average size n/2, the length of
the resulting universal sequence is at most n2n−1. Using Dilworth’s theorem,
we can obtain a universal sequence, which is n times (!) shorter than this
trivial one.
Theorem 8.4 (Lipski 1978). There is a universal sequence for {1, . . . , n} of
length at most 2

π2
n.

Proof. We consider the case when n is even, say n = 2k (the case of odd n
is similar). Let S = {1, . . . , k} be the set of the first k elements and T =
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8.3 Sperner’s theorem

{k+1, . . . , 2k} the set of the last k elements. By Theorem 8.3, both S and T
have symmetric chain decompositions of their posets of subsets intom =

(
k
k/2

)
symmetric chains: 2S = C1 ∪ · · · ∪ Cm and 2T = D1 ∪ · · · ∪ Dm. Corresponding
to the chain

Ci = {x1, . . . , xj} ⊂ {x1, . . . , xj , xj+1} ⊂ . . . ⊂ {x1, . . . , xh} (j + h = k)

we associate the sequence (not the set!) Ci = (x1, x2, . . . xh). Then every sub-
set of S occurs as an initial part of one of the sequences C1, . . . , Cm. Similarly
let D1, . . . , Dm be sequences corresponding to the chains D1, . . . ,Dm. If we
let Di denote the sequence obtained by writing Di in reverse order, then
every subset of T occurs as a final part of one of the Di. Next, consider the
sequence

L = D1C1D1C2 . . .D1Cm . . . DmC1DmC2 . . .DmCm.

We claim that L is a universal sequence for the set {1, . . . , n}. Indeed, each
of its subsets A can be written as A = E ∪ F where E ⊆ S and F ⊆ T .
Now F occurs as the final part of some Df and E occurs as the initial part
of some Ce; hence, the whole set A occurs in the sequence L as the part of
DfCe. Thus, the sequence L contains every subset of {1, . . . , n}. The length
of the sequence L is at most km2 = k

(
k
k/2

)2. Since, by Stirling’s formula,(
k
k/2

) ∼ 2k
√

2
kπ , the length of the sequence is km

2 ∼ k 2
kπ · 22k = 2

π2
n. 
�

8.3 Sperner’s theorem

A set system F is an antichain (or Sperner system) if no set in it contains
another: if A,B ∈ F and A 	= B then A 	⊆ B. It is an antichain in the sense
that this property is the other extreme from that of the chain in which every
pair of sets is comparable.
Simplest examples of antichains over {1, . . . , n} are the families of all sets of

fixed cardinality k, k = 0, 1, . . . , n. Each of these antichains has
(
n
k

)
members.

Recognizing that the maximum of
(
n
k

)
is achieved for k = �n/2�, we conclude

that there are antichains of size
(

n
�n/2�

)
. Are these antichains the largest ones?

The positive answer to this question was found by Emanuel Sperner in
1928, and this result is known as Sperner’s Theorem.

Theorem 8.5 (Sperner 1928). Let F be a family of subsets of an n element
set. If F is an antichain then |F| ≤ (

n
�n/2�

)
.

A considerably sharper result, Theorem 8.6 below, is due to Lubell (1966).
The same result was discovered by Meshalkin (1963) and (not so explicitly)
by Yamamoto (1954). Although Lubell’s result is also a rather special case
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8 Chains and Antichains

of an earlier result of Bollobás (see Theorem 8.8 below), inequality (8.1) has
become known as the LYM inequality.

Theorem 8.6 (LYM Inequality). Let F be an antichain over a set X of n
elements. Then ∑

A∈F

(
n

|A|
)−1

≤ 1. (8.1)

Note that Sperner’s theorem follows from this bound: recognizing that
(
n
k

)
is maximized when k = �n/2�, we obtain

|F| ·
(

n

�n/2�
)−1

≤
∑
A∈F

(
n

|A|
)−1

≤ 1.

We will give an elegant proof of Theorem 8.6 due to Lubell (1966) together
with one of its reformulations which is pregnant with further extensions.

First proof. For each subset A, exactly |A|!(n − |A|)! maximal chains over
X contain A. Since none of the n! maximal chains meet F more than once,
we have

∑
A∈F |A|!(n − |A|)! ≤ n!. Dividing this inequality by n! we get the

desired result. 
�
Second proof. The idea is to associate with each subset A ⊆ X , a permutation
on X , and count their number. For an a-element set A let us say that a
permutation (x1, x2, . . . , xn) of X contains A if {x1, . . . , xa} = A. Note that
A is contained in precisely a!(n− a)! permutations. Now if F is an antichain,
then each of n! permutations contains at most one A ∈ F . Consequently,∑

A∈F a!(n − a)! ≤ n!, and the result follows. To recover the first proof,
simply identify a permutation (x1, x2, . . . , xn) with the maximal chain {x1} ⊂
{x1, x2} ⊂ . . . ⊂ {x1, x2 . . . , xn} = X . 
�

8.4 The Bollobás theorem

The following theorem due to B. Bollobás is one of the cornerstones in ex-
tremal set theory. Its importance is reflected, among other things, by the list
of different proofs published as well as the list of different generalizations.
In particular, this theorem implies both Sperner’s theorem and the LYM
inequality.

Theorem 8.7 (Bollobás’ theorem). Let A1, . . . , Am be a-element sets and
B1, . . . , Bm be b-element sets such that Ai∩Bj = ∅ if and only if i = j. Then
m ≤ (

a+b
a

)
.

This is a special case of the following result.
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8.4 The Bollobás theorem

Theorem 8.8 (Bollobás 1965). Let A1, . . . , Am and B1,. . ., Bm be two se-
quences of sets such that Ai ∩ Bj = ∅ if and only if i = j. Then

m∑
i=1

(
ai + bi
ai

)−1
≤ 1, (8.2)

where ai = |Ai| and bi = |Bi|.
As we already mentioned, due to its importance, there are several different

proofs of this theorem. We present two of them.

First proof. Our goal is to prove that (8.2) holds for every family F =
{(Ai, Bi) : i = 1, . . . ,m} of pairs of sets such that Ai ∩ Bj = ∅ precisely
when i = j. Let X be the union of all sets Ai ∪ Bi. We argue by induction
on n = |X |. For n = 1 the claim is obvious, so assume it holds for n− 1 and
prove it for n. For every point x ∈ X , consider the family of pairs

Fx := {(Ai, Bi \ {x}) : x 	∈ Ai}.

Since each of these families Fx has less than n points, we can apply the induc-
tion hypothesis for each of them, and sum the corresponding inequalities (8.2).
The resulting sum counts n−ai − bi times the term

(
ai+bi
ai

)−1, corresponding
to points x 	∈ Ai ∪ Bi, and bi times the term

(
ai+bi−1

ai

)−1, corresponding to
points x ∈ Bi; the total is ≤ n. Hence we obtain that

m∑
i=1
(n− ai − bi)

(
ai + bi
ai

)−1
+ bi

(
ai + bi − 1

ai

)−1
≤ n.

Since
(
k−1
l

)
= k−l

k

(
k
l

)
, the i-th term of this sum is equal to n · (ai+biai

)−1.
Dividing both sides by n we get the result. 
�
Second proof. Lubell’s method of counting permutations. Let, as before, X
be the union of all sets Ai ∪ Bi. If A and B are disjoint subsets of X then
we say that a permutation (x1, x2, . . . , xn) of X separates the pair (A,B) if
no element of B precedes an element of A, i.e., if xk ∈ A and xl ∈ B imply
k < l.
Each of the n! permutations can separate at most one of the pairs (Ai, Bi),

i = 1, . . . ,m. Indeed, suppose that (x1, x2, . . . , xn) separates two pairs
(Ai, Bi) and (Aj , Bj) with i 	= j, and assume that max{k : xk ∈ Ai} ≤
max{k : xk ∈ Aj}. Since the permutation separates the pair (Aj , Bj),

min{l : xl ∈ Bj} > max{k : xk ∈ Aj} ≥ max{k : xk ∈ Ai}

which implies that Ai ∩Bj = ∅, contradicting the assumption.
We now estimate the number of permutations separating one fixed pair.

If |A| = a and |B| = b and A and B are disjoint then the pair (A,B) is
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separated by exactly(
n

a+ b

)
a!b!(n− a− b)! = n!

(
a+ b
a

)−1

permutations. Here
(
n
a+b

)
counts the number of choices for the positions of

A ∪ B in the permutation; having chosen these positions, A has to occupy
the first a places, giving a! choices for the order of A, and b! choices for the
order of B; the remaining elements can be chosen in (n− a− b)! ways.
Since no permutation can separate two different pairs (Ai, Bi), summing

up over all m pairs we get all permutations at most once
m∑
i=1

n!
(
ai + bi
ai

)−1
≤ n!

and the desired bound (8.2) follows. 
�
Tuza (1984) observed that Bollobás’s theorem implies both Sperner’s the-

orem and the LYM inequality. Let A1, . . . , Am be an antichain over a set X .
Take the complements Bi = X \ Ai and let ai = |Ai| for i = 1, . . . ,m. Then
bi = n− ai and by (8.2)

m∑
i=1

(
n

|Ai|
)−1

=
m∑
i=1

(
ai + bi
ai

)−1
≤ 1.

Due to its importance, the theorem of Bollobás was extended in several
ways.

Theorem 8.9 (Tuza 1985). Let A1, . . . , Am and B1, . . . , Bm be collections of
sets such that Ai∩Bi = ∅ and for all i 	= j either Ai ∩Bj 	= ∅ or Aj ∩Bi 	= ∅
(or both) holds. Then for any real number 0 < p < 1, we have

m∑
i=1

p|Ai|(1 − p)|Bi| ≤ 1.

Proof. Let X be the union of all sets Ai ∪ Bi. Choose a subset Y ⊆ X at
random in such a way that each element x ∈ X is included in Y independently
and with the same probability p. Let Ei be the event that Ai ⊆ Y ⊆ X \
Bi. Then for their probabilities we have Pr [Ei] = p|Ai|(1 − p)|Bi| for every
i = 1, . . . ,m (see Exercise 8.4). We claim that, for i 	= j, the events Ei
and Ej cannot occur at the same time. Indeed, otherwise we would have
Ai ∪ Aj ⊆ Y ⊆ X \ (Bi ∪ Bj), implying Ai ∩ Bj = Aj ∩ Bi = ∅, which
contradicts our assumption.
Since the events E1, . . . , Em are mutually disjoint, we conclude that

Pr [E1] + · · ·+ Pr [Em] = Pr [E1 ∪ · · · ∪Em] ≤ 1, as desired. 
�
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The theorem of Bollobás also has other important extensions. We do not
intend to give a complete account here; we only mention some of these results
without proof. More information about Bollobás-type results can be found,
for example, in a survey by Tuza (1994).
A typical generalization of Bollobás’s theorem is its following “skew ver-

sion.” This result was proved by Frankl (1982) by modifying an argument of
Lovász (1977) and was also proved in an equivalent form by Kalai (1984).
Theorem 8.10. Let A1, . . . , Am and B1, . . ., Bm be finite sets such that
Ai∩Bi = ∅ and Ai∩Bj 	= ∅ if i < j. Also suppose that |Ai| ≤ a and |Bi| ≤ b.
Then m ≤ (

a+b
a

)
.

We also have the following “threshold version” of Bollobás’s theorem.
Theorem 8.11 (Füredi 1984). Let A1, . . . , Am be a collection of a-sets and
B1, . . . , Bm be a collection of b-sets such that |Ai ∩Bi| ≤ s and |Ai ∩Bj | > s

for every i 	= j. Then m ≤ (
a+b−2s
a−s

)
.

8.5 Strong systems of distinct representatives

Recall that a system of distinct representatives for the sets S1, S2, . . . , Sk is
a k-tuple (x1, x2, . . . , xk) where the elements xi are distinct and xi ∈ Si for
all i = 1, 2, . . . , k. Such a system is strong if we additionally have xi 	∈ Sj for
all i 	= j.
Theorem 8.12 (Füredi–Tuza 1985). In any family of more than

(
r+k
k

)
sets

of cardinality at most r, at least k + 2 of its members have a strong system
of distinct representatives.
Proof. Let F = {A1, . . . , Am} be a family of sets, each of cardinality at
most r. Suppose that no k + 2 of these sets have a strong system of distinct
representatives. We will apply the theorem of Bollobás to prove that then
m ≤ (

r+k
k

)
. Let us make an additional assumption that our sets form an

antichain, i.e., that no of them is a subset of another one. By Theorem 8.8
it is enough to prove that, for every i = 1, . . . ,m there exists a set Bi, such
that |Bi| ≤ k, Bi ∩ Ai = ∅ and Bi ∩ Aj 	= ∅ for all j 	= i.
Fix an i and let Bi = {x1, . . . , xt} be a minimal set which intersects all

the sets Aj \ Ai, j = 1, . . . ,m, j 	= i. (Such a set exists because none of
these differences is empty.) By the minimality of Bi, for every ν = 1, . . . , t
there exists a set Sν ∈ F such that Bi ∩Sν = {xν}. Fix an arbitrary element
yi ∈ Ai. Then (yi, x1, . . . , xt) is a strong system of distinct representatives
for t+1 sets Ai, S1, . . . , St. By the indirect assumption, we can have at most
k + 1 such sets. Therefore, |Bi| = t ≤ k, as desired.
In the case when our family F is not an antichain, it is enough to order

the sets so that Ai 	⊆ Aj for i < j, and apply the skew version of Bollobás’s
theorem. 
�
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8.6 Union-free families

A family of sets F is called r-union-free if A0 	⊆ A1 ∪ A2 ∪ · · · ∪Ar holds for
all distinct A0, A1, . . . , Ar ∈ F . Thus, antichains are r-union-free for r = 1.
Let T (n, r) denote the maximum cardinality of an r-union-free family F

over an n-element underlying set. This notion was introduced by Kautz and
Singleton (1964). They proved that

Ω(1/r2) ≤ log2 T (n, r)
n

≤ O(1/r).

This result was rediscovered several times in information theory, in combina-
torics by Erdős, Frankl, and Füredi (1985), and in group testing by Hwang
and Sós (1987). Dyachkov and Rykov (1982) obtained, with a rather involved
proof, that

log2 T (n, r)
n

≤ O(log2 r/r
2).

Recently, Ruszinkó (1994) gave a purely combinatorial proof of this upper
bound. Shortly after, Füredi (1996) found a very elegant argument, and we
present it below.
Theorem 8.13 (Füredi 1996). Let F be a family of subsets of an n-element
underlying set X, and r ≥ 2. If F is r-union-free then |F| ≤ r +

(
n
t

)
where

t :=
⌈
(n − r)

/(r + 1
2

)⌉
.

That is,
log2 |F|/n ≤ O

(
log2 r/r

2) .
Proof. Let Ft be the family of all members of F having their own t-subset.
That is, Ft contains all those members A ∈ F for which there exists a t-
element subset T ⊆ A such that T 	⊆ A′ for every other A′ ∈ F . Let Tt be
the family of these t-subsets; hence |Tt| = |Ft|. Let F0 := {A ∈ F : |A| < t},
and let T0 be the family of all t-subsets of X containing a member of F0, i.e.,

T0 := {T : T ⊆ X, |T | = t and T ⊃ A for some A ∈ F0}.

The family F is an antichain. This implies that Tt and T0 are disjoint. The
family F0 is also an antichain, and since t < n/2, we know from Exercise 5.11
that |F0| ≤ |T0|. Therefore,

|F0 ∪ Ft| ≤ |Tt|+ |T0| ≤
(
n

t

)
. (8.3)

It remains to show that the family

F ′ := F \ (F0 ∪ Ft)
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Exercises

has at most r members. Note that A ∈ F ′ if and only if A ∈ F , |A| ≥ t and
for every t-subset T ⊆ A there is an A′ ∈ F such that A′ 	= A and A′ ⊇ T .
We will use this property to prove that A ∈ F ′, A1, A2, . . . , Ai ∈ F (i ≤ r)
imply

|A \ (A1 ∪ · · · ∪ Ai)| ≥ t(r − i) + 1. (8.4)

To show this, assume the opposite. Then the set A \ (A1 ∪ · · · ∪ Ai) can be
written as the union of some (r − i) t-element sets Ti+1, . . . Tr. Therefore, A
lies entirely in the union of A1, . . . , Ai and these sets Ti+1, . . . , Tr. But, by
the choice of A, each of the sets Tj lies in some other set Aj ∈ F different
from A. Therefore, A ⊆ A1 ∪ · · · ∪ Ar, a contradiction.
Now suppose that F ′ has more than r members, and take any r + 1 of

them A0, A1, . . . , Ar ∈ F ′. Applying (8.4) we obtain

|
r⋃
i=0

Ai| = |A0|+ |A1 \ A0|+ |A2 \ (A0 ∪A1)|+ · · ·

+|Ar \ (A0 ∪A1 ∪ · · · ∪Ar−1)|
≥ (

tr + 1
)
+

(
t(r − 1) + 1)+ (

t(r − 2) + 1)+ · · ·+ (
t · 0 + 1)

= t · r(r + 1)2 + r + 1 = t

(
r + 1
2

)
+ r + 1.

By the choice of t, the right-hand side exceeds the total number of points n,
which is impossible. Therefore, F ′ cannot have more than r distinct members.
Together with (8.3), this yields the desired upper bound on |F|. 
�

Exercises

8.1. Let F be an antichain consisting of sets of size at most k ≤ n/2. Show
that |F| ≤ (

n
k

)
.

8.2. Derive from Bollobás’s theorem the following weaker version of Theo-
rem 8.11. Let A1, . . . , Am be a collection of a-element sets and B1, . . . , Bm be
a collection of b-element sets such that |Ai∩Bi| = t for all i, and |Ai∩Bj | > t

for i 	= j. Then m ≤ (
a+b−t
a−t

)
.

8.3. Show that the upper bounds in Bollobás’s and Füredi’s theorems (The-
orems 8.7 and 8.11) are tight. Hint: Take two disjoint sets X and S of respective
sizes a+ b − 2s and s. Arrange the s-element subsets of X in any order: Y1, Y2, . . .. Let
Ai = S ∪ Yi and Bi = S ∪ (X \ Yi).

8.4. Use the binomial theorem to prove the following. Let 0 < p < 1 be a real
number, and C ⊂ D be any two fixed subsets of {1, . . . , n}. Then the sum of
p|A|(1−p)n−|A| over all sets A such that C ⊆ A ⊆ D, equals p|C|(1−p)n−|D|.
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8 Chains and Antichains

8.5. (Frankl 1986). Let F be a k-uniform family, and suppose that it is inter-
section free, i.e., that A∩B 	⊂ C for any three sets A,B and C of F . Prove that
|F| ≤ 1+(

k
�k/2�

)
. Hint: Fix a set B0 ∈ F , and observe that {A∩B0 : A ∈ F , A �= B0}

is an antichain over B0.

8.6. Let A1, . . . , Am be a family of subsets of an n-element set, and suppose
that it is convex in the following sense: if Ai ⊆ B ⊆ Aj for some i, j, then B
belongs to the family. Prove that the absolute value of the sum

∑m
i=1(−1)|Ai|

does not exceed
(

n
�n/2�

)
. Hint: Use the chain decomposition theorem. Observe that

the contribution to the sum from each of the chains is of the form ±(1 − 1 + 1 − 1 . . .),
and so this contribution is 1,−1 or 0.

8.7. Let x1, . . . , xn be real numbers, xi ≥ 1 for each i, and let S be the set of
all numbers, which can be obtained as a linear combinations α1x1+. . .+αnxn
with αi ∈ {−1,+1}. Let I = [a, b) be any interval (in the real line) of length
b − a = 2. Show that |I ∩ S| ≤ (

n
�n/2�

)
. Hint: Associate with each such sum

ξ = α1x1 + . . .+ αnxn the corresponding set Aξ = {i : αi = +1} of indices i for which
αi = +1. Show that the family of sets Aξ for which ξ ∈ I , forms an antichain and
apply Sperner’s theorem. Note: Erdős (1945) proved a more general result that
if b − a = 2t then |I ∩ S| is less than or equal to the sum of the t largest
binomial coefficients

(
n
i

)
.

8.8. Let P be a finite poset and suppose that the largest chain in it has size
r. We know (see Theorem 8.1) that P can be partitioned into r antichains.
Show that the following argument also gives the desired decomposition: let
A1 be the set of all maximal elements in P ; remove this set from P , and let
A2 be the set of all maximal elements in the reduced set P \ A1, etc.

8.9. Let F = {A1, . . . , Am} and suppose that

|Ai ∩ Aj | < 1
r
min{|Ai|, |Aj |} for all i 	= j.

Show that F is r-union-free.
8.10. Let F = {A1, . . . , Am} be an r-union-free family. Show that then⋃
i∈I Ai 	= ⋃

j∈J Aj for any two distinct non-empty subsets I, J of size at
most r.
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9. Blocking Sets and the Duality

In this chapter we will consider one of the most basic properties of set sys-
tems — their duality. The dual of a family F consists of all (minimal under
set-inclusion) sets that intersect all members of F . Dual families play an im-
portant role in many applications, boolean function complexity being just
one example.

9.1 Duality

A blocking set of a family F is a set T that intersects (blocks) every member
of F . A blocking set of F is minimal if none of its proper subsets is such.
(Minimal blocking sets are also called transversals of F .) The family of all
minimal blocking sets of F is called its dual and is denoted by b (F).
Proposition 9.1. For every family F we have b (b (F)) ⊆ F . Moreover, if F
is an antichain then b (b (F)) = F .

Proof. To prove the first claim, take a set B ∈ b (b (F)). Observe that none of
the sets A\B with A ∈ F can be empty: Since B is a minimal blocking set of
b (F), it cannot contain any member A of F as a proper subset, just because
each member of F is a blocking set of b (F ). Assume now that B �∈ F . Then,
for each set A ∈ F , there is a point xA ∈ A \B. The set {xA : A ∈ F} of all
such points is a blocking set of F , and hence, contains at least one minimal
blocking set T ∈ b (F). But this is impossible, because then B must intersect
the set T which, by it definition, can contain no element of B.
To prove the second claim, let F be an antichain, and take any A ∈ F .

We want to show A is in b (b (F)). Each element of b (F) intersects A, so A
is a blocking set for b (F). Therefore A contains (as a subset) some minimal
blocking set B ∈ b (b (F)). Since b (b (F)) is a subset of F (by the first part
of the proof), the set B must belong to F . Hence, A and its subset B are
both in F . But F is an antichain, therefore A = B, so A ∈ b (b (F)). ��
S. Jukna,                                         , Texts in Theoretical Computer Science.
An EATCS Series, DOI
© Springer-Verlag Berlin Heidelberg 2011

,10.1007/978-3-642-17364-6_9
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9 Blocking Sets and the Duality

.  .  .1 2 r

Fig. 9.1 Example of a self-dual family.

Let us consider the following problem of “keys of the safe” (Berge 1989).
An administrative council is composed of a set X of individuals. Each of
them carries a certain weight in decisions, and it is required that only subsets
A ⊆ X carrying a total weight greater than some threshold fixed in advance,
should have access to documents kept in a safe with multiply locks. The
minimal “coalitions” which can open the safe constitute an antichain F . The
problem consists in determining the minimal number of locks necessary so
that by giving one or more keys to every individual, the safe can be opened
if and only if at least one of the coalitions of F is present.
Proposition 9.2. For every family F of minimal coalitions, |b (F) | locks are
enough.

Proof. Let b (F) = {T1, . . . , T�}. Then give the key of the i-th lock to all the
members of Ti. It is clear that then every coalition A ∈ F will have the keys
to all � locks, and hence, will be able to open the safe. On the other hand, if
some set B of individuals does not include a coalition then, by Proposition 9.1,
the set B is not a blocking set of b (F), that is, B ∩ Ti = ∅ for some i. But
this means that people in B lack the i-th key, as desired. ��
A family F is called self-dual if b (F) = F .
For example, the family of all k-element subsets of a (2k − 1)-element set

is self-dual. Another example is the family of r + 1 sets, one of which has r
elements and the remaining r sets have 2 elements (see Fig. 9.1).
What other families are self-dual? Our nearest goal is to show that a family

is self-dual if and only if it is intersecting and not 2-colorable. Let us first
recall the definition of these two concepts.
A family is intersecting if any two of its sets have a non-empty intersection.

The chromatic number χ(F) of F ⊆ 2X is the smallest number of colors
necessary to color the points in X so that no set of F of cardinality > 1 is
monochromatic. It is clear that χ(F) ≥ 2 (as long as F is non-trivial, i.e.,
contains at least one set with more than one element).
The families with χ(F) = 2 are of special interest and are called 2-colorable.

In other words, F is 2-colorable iff there is a subset S such that neither S
nor its complement X \S contain a member of F . It turns out that χ(F) > 2
is a necessary condition for a family F to be self-dual.
For families of sets F and G, we write F 
 G if every member of F contains

at least one member of G.
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9.2 The blocking number

Proposition 9.3. (i) A family F is intersecting if and only if F 
 b (F).
(ii) χ(F) > 2 if and only if b (F) 
 F .

Proof. (i) If F is intersecting then every A ∈ F is also a blocking set of F , and
hence, contains at least one minimal blocking set. Conversely, if F 
 b (F)
then every set of F contains a blocking set of F , and hence, intersects all
other sets of F .
(ii) Let us prove that χ(F) > 2 implies b (F) 
 F . If not, then there must

be a blocking set T of F which contains no set of F . But its complement
X \ T also contains no set of F , since otherwise T would not block all the
members of F . Thus (T,X \ T ) is a 2-coloring of F with no monochromatic
set, a contradiction with χ(F) > 2.
For the other direction, assume that b (F) 
 F but χ(F) = 2. By the

definition of χ(F) there exists a set S such that neither S nor X \ S contain
a set of F . This, in particular, means that S is a blocking set of F which
together with b (F) 
 F implies that S ⊇ A for some A ∈ F , a contradiction.

��
Corollary 9.4. Let F be an antichain. Then the following three conditions
are equivalent:

(1) b (F) = F ;
(2) F is intersecting and χ(F) > 2;
(3) both F and b (F) are intersecting.

Proof. Equivalence of (1) and (2) follows directly from Proposition 9.3. Equiv-
alence of (1) and (3) follows from the fact that both F and b (F) are an-
tichains. ��

9.2 The blocking number

Recall that the blocking number τ(F) of a family F is the minimum number
of elements in a blocking set of F , that is,

τ(F) := min {|T | : T ∩A �= ∅ for every A ∈ F } .

We make two observations concerning this characteristic:

If F contains a k-matching, i.e., k mutually disjoint sets, then τ(F) ≥ k.
If F is intersecting, then τ(F) ≤ minA∈F |A|.
A family F can have many smallest blocking sets, i.e., blocking sets of

size τ(F). The following result says how many. The rank of a family F is the
maximum cardinality of a set in F .
Theorem 9.5 (Gyárfás 1987). Let F be a family of rank r, and let τ = τ(F).
Then the number of blocking sets of F with τ elements is at most rτ .
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9 Blocking Sets and the Duality

Proof. We will prove by backward induction on i that every i-element set
I is contained in at most rτ−i τ -element blocking sets. It is obvious for
i = τ and the case i = 0 gives the theorem. If i < τ then there exists a set
A ∈ F such that A ∩ I = ∅ (because |I| < τ(F)). Now apply the induction
hypothesis for the sets I ∪ {x}, x ∈ A. Observe that every blocking set T
of F , containing the set I, must contain at least one of the extended sets
I ∪{x}, with x ∈ A (because I ∩A = ∅ whereas T ∩A �= ∅). By the induction
hypothesis, each of the sets I ∪ {x} with x ∈ A, is contained in at most
rτ−(i+1) τ -element blocking sets of F . Thus, the set I itself is contained in
at most |A| · rτ−i−1 ≤ rτ−i τ -element blocking sets, as desired. ��
Considering τ pairwise disjoint sets of size r shows that Theorem 9.5 is

best possible.

Corollary 9.6 (Erdős–Lovász 1975). Let F be an intersecting r-uniform fam-
ily with τ(F) = r. Then |F| ≤ rr.

Proof. Each A ∈ F is a blocking set of size r. ��

9.3 Helly-type theorems

In terms of the blocking number τ , the simplest Helly-type result for families
of sets (Theorem 7.2) says that if F is r-uniform and each set of ≤ r+1 of its
members intersect then τ(F) = 1. This result can be generalized as follows.
Theorem 9.7 (Lovász 1979). Let F be r-uniform. If each collection of k
members (k ≥ 2) of F intersect then τ(F) ≤ (r − 1)/(k − 1) + 1.
Proof. By construction. For j = 1, . . . , k we will select j sets A1, . . . , Aj in F
such that

1 ≤ |A1 ∩ · · · ∩ Aj | ≤ r − (j − 1)(τ(F) − 1), (9.1)

which for j = k gives the desired upper bound on τ = τ(F).
For j = 1 take A1 ∈ F arbitrarily.
Assume A1, . . . , Aj have been selected (j ≤ k − 1). The set A1 ∩ · · · ∩ Aj

intersects every set of F (why?), thus |A1 ∩ · · · ∩ Aj | ≥ τ(F). Take a subset
S ⊆ A1 ∩ · · · ∩ Aj with |S| = τ − 1. Since |S| < τ(F), there must be a set
Aj+1 ∈ F such that S ∩Aj+1 = ∅ (this set is different from A1, . . . , Aj since
S intersects all of them). Thus

|A1 ∩ · · · ∩ Aj ∩Aj+1| ≤ |A1 ∩ · · · ∩Aj ∩ S| = |A1 ∩ · · · ∩Aj − S|
= |A1 ∩ · · · ∩ Aj | − (τ − 1) ≤ r − (j − 1)(τ − 1)− τ + 1 = r − j(τ − 1).

��
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9.4 Blocking sets and decision trees

For graphs (i.e., for 2-uniform families) Helly’s theorem (Theorem 7.2)
says that, if in a finite graph any three edges share a common vertex, then
this graph is a star. Erdős, Hajnal, and Moon (1964) generalized this easy
observation about graphs in a different direction. A set of vertices S covers
a set of edges F ⊆ E of a graph G = (V,E) if every edge in F has at least
one of its endpoints in S.

Theorem 9.8. If each family of at most
(
s+2

2
)
edges of a graph can be covered

by s vertices, then all edges can.

The complete graph on s+2 vertices shows that this bound is best possible.
Graphs are 2-uniform families. The question was how to generalize the result
to r-uniform families for arbitrary r. The conjecture was easy to formulate:
the formula

(
s+r
r

)
. This turns out to be the correct answer.

Theorem 9.9 (Bollobás 1965). If each family of at most
(
s+r
r

)
members of

an r-uniform family can be blocked by s points then all members can.

Proof. Let F be an r-uniform family, satisfying the assumption of the the-
orem, and suppose that τ(F) ≥ s + 1. Then there is a subfamily F ′ =
{A1, . . . , Am} ⊆ F such that τ(F ′) = s+ 1 and F ′ is τ -critical, that is,

τ(F ′ \ {Ai}) ≤ s

for all i = 1, . . . ,m. Our goal is to show that m ≤ (
r+s
s

)
, contradicting the

assumption (that every subfamily with so few members can be blocked by s
points).
Since τ(F ′) = s+ 1 and F ′ is τ -critical, for each i = 1, . . . ,m, the family

F ′ \ {Ai} has a blocking set Bi of size s. Hence, Aj ∩ Bi �= ∅ for all j �= i.
Moreover, Ai ∩ Bi = ∅ since Bi has too few elements to intersect all the
members of F ′. Thus, we can apply the Bollobás theorem (Theorem 8.8)
with a1 = . . . = am = r and b1 = . . . = bm = s, which yields

m ·
(
s+ r
s

)−1
=

m∑
i=1

(
ai + bi
ai

)−1
≤ 1,

and the desired upper bound on m follows. ��

9.4 Blocking sets and decision trees

Blocking sets play an important role in the theory of boolean functions. In
the next sections we will present some results in that direction.
Fix an arbitrary boolean function f(x1, . . . , xn). Given a vector a =

(a1, . . . , an) in {0, 1}n, a certificate for a (with respect to the function f)
is a subset S ⊆ [n] = {1, . . . , n} of positions such that f(b) = f(a) for all
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9 Blocking Sets and the Duality

vectors b ∈ {0, 1}n with bi = ai for all i ∈ S. That is, if we set the variables xi
with i ∈ S to the corresponding bits of a, then the function will take the value
f(a) independent of the values of other variables. The certificate complexity
of f on a vector a, C(f, a), is the minimum size |S| of a certificate S for a.
Define

C1(f) = max{C(f, a) : f(a) = 1} and C0(f) = max{C(f, a) : f(a) = 0} .

That is, C1(f) is the smallest number k such that, for every input a with
f(a) = 1, there is a subset S of |S| ≤ k positions such that, if we set xi := ai
for all i ∈ S, then the function f takes value 1 independent of the values of
other variables.
Let Fi be the family of all certificates for inputs a ∈ f−1(i), i = 0, 1. Then

we have the following cross-intersection property:

S ∩ T �= ∅ for all S ∈ F0 and T ∈ F1. (9.2)

Proof. Assume that there is a certificate S for a vector a ∈ f−1(0) and a
certificate T for a vector b ∈ f−1(1) such that S ∩ T = ∅. Take a vector
c ∈ {0, 1}n such that ci = ai for all i ∈ S, ci = bi for all i ∈ T , and ci = 0
for all i �∈ S ∪ T . Since S is a certificate for a, and since vector c coincides
with a in all position i ∈ S, we have that f(c) = f(a) = 0. But by the same
reason we also have that f(c) = f(b) = 1, a clear contradiction. ��
One can describe the certificates of a given boolean function f by so-called

“decision trees.”
A decision tree for a boolean function f(x1, . . . , xn) is a binary tree whose

internal nodes have labels from x1, . . . , xn and whose leaves have labels from
{0, 1}. If a node has label xi then the test performed at that node is to
examine the i-th bit of the input. If the result is 0, one descends into the left
subtree, whereas if the result is 1, one descends into the right subtree. The
label of the leaf so reached is the value of the function (on that particular
input). The depth of a decision tree is the number of edges in a longest path
from the root to a leaf, or equivalently, the maximum number of bits tested
on such a path. Let DT (f) denote the minimum depth of a decision tree
computing f .
It is not difficult to show (do this!) that, for every boolean function f , we

have that
max{C0(f), C1(f)} ≤ DT (f) .

This upper bound is, however, not optimal: there are boolean functions f for
which

max{C0(f), C1(f)} ≤
√
DT (f) .

Such is, for example, the monotone boolean function f(X) on n = m2 boolean
variables defined by: f =

∧m
i=1

∨m
j=1 xij . For this function we have C0(f) =

C1(f) = m but DT (f) = m2 (see Exercise 9.9), implying that DT (f) =
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9.4 Blocking sets and decision trees

C0(f) ·C1(f). It turns out that the example given above is, in fact, the worst
possible case.

Theorem 9.10. For every boolean function f ,

DT (f) ≤ C0(f) · C1(f) .

Proof. Induction on the number of variables n. If n = 1 then the inequality
is trivial.
Let (say) f(0, . . . , 0) = 0; then some set Y of k ≤ C0(f) variables can be

chosen such that by fixing their value to 0, the function f is 0 independently
of the other variables. We can assume w.l.o.g. that the set

Y = {x1, . . . , xk}

of the first k variables has this property.
Take a complete deterministic decision tree T0 of depth k on these k vari-

ables. Each of its leaves corresponds to a unique input a = (a1, . . . , ak) ∈
{0, 1}k reaching this leaf. Replace such a leaf by a minimal depth determin-
istic decision tree Ta for the sub-function

fa := f(a1, . . . , ak, xk+1, . . . , xn) .

Obviously, D0(fa) ≤ C0(f) and D1(fa) ≤ C1(f). We claim that the latter
inequality can be strengthened:

C1(fa) ≤ C1(f)− 1 (9.3)

The argument is essentially the same as that in the proof of (9.2). Take
an arbitrary input (ak+1, . . . , an) of fa which is accepted by fa. Together
with the bits (a1, . . . , ak), this gives an input of the whole function f with
f(a1, . . . , an) = 1. According to the definition of the quantity C1(f), there
must be a set Z = {xi1 , . . . , xim} ofm ≤ C1(f) variables such that fixing them
to the corresponding values xi1 = ai1 , . . . , xim = aim , the value of f becomes
1 independently of the other variables. A simple (but crucial) observation is
that

Y ∩ Z �= ∅. (9.4)

Indeed, if Y ∩ Z = ∅ then the value of f(0, . . . , 0, ak+1, . . . , an) should be
0 because fixing the variables in Y to 0 forces f to be 0, but should be 1,
because fixing the variables in Z to the corresponding values of ai forces f
to be 1, a contradiction.
By (9.4), only |Z \Y | ≤ m−1 of the bits of (ak+1, . . . , an) must be fixed to

force the sub-function fa to obtain the constant function 1. This completes
the proof of (9.3).
Applying the induction hypothesis to each of the sub-functions fa with

a ∈ {0, 1}k, we obtain
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9 Blocking Sets and the Duality

DT (fa) ≤ C0(fa) · C1(fa) ≤ C0(f)(C1(f)− 1) .

Altogether,

DT (f) ≤ k +max
a

DT (fa) ≤ C0(f) + C0(f)(C1(f)− 1) = C0(f)C1(f) .

��

9.5 Blocking sets and monotone circuits

A boolean function f(x1, . . . , xn) ismonotone if f(x1, . . . , xn) = 1 and xi ≤ yi
for all i, imply f(y1, . . . , yn) = 1. A monotone circuit is a sequence f1, . . . , ft
of monotone boolean functions, called gates, each of which is either one of the
variables x1, . . . , xn or is obtained from some previous gates via an And or Or
operation. That is, each gate fi has either the form fi = xl for some 1 ≤ l ≤ n,
or one of the forms f = g ∨ h or f = g ∧ h for some g, h ∈ {0, 1, f1, . . . , fi−1}.
The size of a circuit is the number t of gates in it. The function computed by
such a circuit is the last function ft.
The problem (known as the lower bounds problem) is, given an explicit

boolean function, to prove that it cannot be computed by a circuit of small
size. It is clear that every function can be computed by a circuit of size
exponential in the number of variables. However, even in the case of monotone
circuits, it is difficult to show that some function is indeed hard, i.e., requires
many gates.
In this section we will show that, using some combinatorial properties of

blocking sets, one may obtain exponential lower bounds in a relatively easy
and direct way.
A monotone k-CNF (conjunctive normal form) is an And of an arbitrary

number of monotone clauses, each being an Or of at most k variables. Dually,
a monotone k-DNF is an Or of an arbitrary number of monomials, each being
an And of at most k variables. Note that in k-CNFs we allow clauses shorter
than k.
In an exact k-CNF we require that all clauses have exactly k distinct

variables; exact k-DNF is defined similarly. For two boolean functions f and
g in n variables, we write f ≤ g if f(x) ≤ g(x) for all input vectors x. For a
CNF/DNF C we will denote by |C| the number of clauses/monomials in it.
Our goal is to show that complex monotone functions, that is, monotone

functions requiring large monotone circuits cannot be “simple” in the sense
that they cannot be approximated by small CNFs and DNFs. The proof of this
is based on the following “switching lemma” allowing us to switch between
CNFs and DNFs, and vice versa.

Lemma 9.11 (Monotone Switching Lemma). For every s-CNF f0 there is
an r-DNF f1 and an exact (r + 1)-DNF D such that
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9.5 Blocking sets and monotone circuits

f1 ≤ f0 ≤ f1 ∨ D and |D| ≤ sr+1 . (9.5)

Dually, for every r-DNF f1 there is an s-CNF f0 and an exact (s+ 1)-CNF
C such that

f0 ∧ C ≤ f1 ≤ f0 and |C| ≤ rs+1 . (9.6)

Proof. We prove the first claim (the second is dual). Let f0 = C1 ∧· · ·∧C� be
an s-CNF; hence, each clause Ci has |Ci| ≤ s variables. It will be convenient
to identify clauses and monomials with the sets of indices of their variables.
We associate with the CNF f0 the following tree T of fan-out at most

s. The first node of T corresponds to the first clause C1, and the outgoing
|C1| edges are labeled by the variables from C1. Suppose we have reached a
node v, and let M be the monomial consisting of the labels of edges on the
path from the root to v. If M intersects all the clauses of f0, then v is a leaf.
Otherwise, let Ci be the first clause such that M ∩Ci = ∅. Then the node v
has |Ci| outgoing edges labeled by the variables in Ci.
Note that each path from the root to a leaf of T corresponds to a monomial

of f0 (since each such path intersects all clauses). More important is that also
the converse holds: each monomial of f0 must contain all labels of at least
one path from the root to a leaf. Thus, we have just represented the DNF
of f0 as a tree, implying that T (x) = f0(x) for all input vectors x ∈ {0, 1}n.
But some paths (monomials) may be longer than r + 1. So, we now cut off
these long paths.
Namely, let f1 be the Or of all paths of length at most r ending in leafs,

and D be the set of all paths of length exactly r + 1. Observe that:
(i) every monomial of f1 is also a monomial of f0, and
(ii) every monomial of f0, which is not a monomial of f1, must contain (be
an extension of) at least one monomial of D.

For every input x ∈ {0, 1}n, we have f1(x) ≤ f0(x) by (i), and f0(x) ≤
f1(x) ∨ D(x) by (ii). Finally, we also have that |D| ≤ sr+1, because every
node of T has fan-out at most s. ��
Most important in the Switching Lemma is that the (r + 1)-DNF D, cor-

recting possible errors, contains only sr+1 monomials instead of all
(
n
r+1

)
possible monomials.
We now give a general lower bounds criterion for monotone circuits.

Definition 9.12. Let f(x1, . . . , xn) be a monotone boolean function. We say
that f is t-simple if for every pair of integers 1 ≤ r, s ≤ n− 1 there exists an
exact (s+ 1)-CNF C, an exact (r + 1)-DNF D, and a subset I ⊆ {1, . . . , n}
of size |I| ≤ s such that
(a) |C| ≤ t · rs+1 and |D| ≤ t · sr+1, and
(b) either C ≤ f or f ≤ D ∨ ∨

i∈I xi (or both) hold.

Theorem 9.13 (Lower bounds criterion). If a monotone boolean function
can be computed by a monotone circuit of size t, then it is t-simple.
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9 Blocking Sets and the Duality

Proof. Given a monotone circuit, the idea is to approximate every interme-
diate gate (more exactly – the function computed at the gate) by an s-CNF
and an r-DNF, and to show that when doing so we do not introduce too many
errors. If the function computed by the whole circuit is not t-simple, then it
cannot be approximated well by such a CNF/DNF pair meaning that every
such pair must make many errors. Since the number of errors introduced
at each separate gate is small, the total number of gates must be large. To
make as few errors at each gate as possible we will use the Switching Lemma
(Lemma 9.11) which allows us to approximate an s-CNF by small r-DNFs
and vice versa.
Let F (x1, . . . , xn) be a monotone boolean function, and suppose that F

can be computed by a monotone circuit of size t. Our goal is to show that
the function F is t-simple. To do this, fix an arbitrary pair of integers 1 ≤
s, r ≤ n − 1.
Let f = g ∗ h be a gate in our circuit. By an approximator of this gate we

will mean a pair f0, f1, where f0 is an s-CNF (a left approximator of f) and
f1 is an r-DNF (a right approximator of f) such that f1 ≤ f0.
We say that such an approximator f0, f1 of f introduces a new error on

input x ∈ {0, 1}n if the approximators of g and of h did not make an error
on x, but the approximator of f does. That is, g0(x) = g1(x) = g(x) and
h0(x) = h1(x) = h(x), but either f0(x) �= f(x) or f1(x) �= f(x).
We define approximators inductively as follows.

Case 1: f is an input variable, say, f = xi. In this case we take f0 = f1 := xi.
It is clear that this approximator introduces no errors.

Case 2: f is an And gate, f = g ∧ h. In this case we take f0 := g0 ∧ h0 as
the left approximator of f ; hence, f0 introduces no new errors. To define the
right approximator of f we use Lemma 9.11 to convert f0 into an r-DNF f1;
hence, f1 ≤ f0. Let Ef be the set of inputs on which f1 introduces a new
error, i.e.,

Ef := {x : f(x) = f0(x) = 1 but f1(x) = 0} .
By Lemma 9.11, all these errors can be “corrected” by adding a relatively
small exact (r+1)-DNF: there is an exact (r+1)-DNF D such that |D| ≤ sr+1

and D(x) = 1 for all x ∈ Ef .
Case 3: f is an Or gate, f = g ∨ h. This case is dual to Case 2. We take
f1 := g1 ∨ h1 as the right approximator of f ; hence, f1 introduces no new
errors. To define the left approximator of f we use Lemma 9.11 to convert f1
into an s-CNF f0; hence, f1 ≤ f0. Let Ef be the set of inputs on which f0
introduces a new error, i.e.,

Ef := {x : f(x) = f1(x) = 0 but f0(x) = 1} .

By Lemma 9.11, all these errors can be “corrected” by adding a relatively
small exact (s+1)-CNF: there is an exact (s+1)-CNF C such that |C| ≤ rs+1

and C(x) = 0 for all x ∈ Ef .

128



9.5 Blocking sets and monotone circuits

Proceeding in this way we will reach the last gate of our circuit computing
the given function F . Let F0, F1 be its approximator, and letE be the set of all
inputs x ∈ {0, 1}n on which F differs from at least one of the functions F0 or
F1. Since at input gates (= variables) no error was made, for every such input
x ∈ E, the corresponding error must be introduced at some intermediate gate.
That is, for every x ∈ E there is a gate f such that x ∈ Ef (approximator of
f introduces an error on x for the first time). But we have shown that, for
each gate, all these errors can be corrected by adding an exact (s+ 1)-CNF
of size at most rs+1 or an exact (r + 1)-DNF of size at most sr+1. Since we
have only t gates, all such errors x ∈ E can be corrected by adding an exact
(s+1)-CNF C of size at most t · rs+1 and an exact (r+ 1)-DNF D of size at
most t · sr+1, that is, for all inputs x ∈ {0, 1}n, we have

C(x) ∧ F0(x) ≤ F (x) ≤ F1(x) ∨ D(x) .

This already implies that the function F is t-simple. Indeed, if the CNF F0
is empty (i.e., if F0 ≡ 1) then C ≤ F , and we are done. Otherwise, F0 must
contain some clause S of length at most s, say, S =

∨
i∈I xi for some I of size

|I| ≤ s. Since F0 ≤ S, the condition F1 ≤ F0 implies F ≤ F1 ∨D ≤ F0 ∨D ≤
S ∨ D, as desired. This completes the proof of Theorem 9.13. ��
In applications, boolean functions f are usually defined as set-theoretic

predicates. In this case we say that f accepts a set S ⊆ {1, . . . , n} if and only
if f accepts its incidence vector.
A set S is a positive input for f if f(S) = 1, and a negative input if f(S) = 0,

where S is the complement of S. Put otherwise, a positive (negative) input is
a set of variables which, if assigned the value 1 (0), forces the function to take
the value 1 (0) regardless of the values assigned to the remaining variables.
Note that one set S can be both positive and negative input! For example, if
f(x1, x2, x3) outputs 1 iff x1 + x2 + x3 ≥ 2, then S = {1, 2} is both positive
and negative input for f , because f(1, 1, x3) = 1 and f(0, 0, x3) = 0.
To translate the definition of t-simplicity of f (Definition 9.12) in terms

of positive/negative inputs, note that if C is a CNF, then C ≤ f means that
every negative input of f must contain at least one clause of C (looked at as
set of indices of its variables). Similarly, f ≤ D ∨ ∨

i∈I xi means that every
positive input must either intersect the set I or contain at least one monomial
of D.
We begin with the simplest example. We will also present a more re-

spectable applications—a 2Ω(n1/4) lower bound—but this special case already
demonstrates the common way of reasoning pretty well.
Let us consider a monotone boolean function Δm, whose input is an undi-

rected graph on m vertices, represented by n =
(
m
2
)
variables, one for each

possible edge. The value of the function is 1 if and only if the graph con-
tains a triangle (three incident vertices). Clearly, there is a monotone circuit
of size O(m3) computing this function: just test whether any of

(
m
3
)
trian-
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9 Blocking Sets and the Duality

gles is present in the graph. Thus, the following theorem is tight, up to a
poly-logarithmic factor.

Theorem 9.14. Any monotone circuit, detecting whether a given m-vertex
graph is triangle-free, must have Ω

(
m3/ log4 m

)
gates.

Proof. Let t be the minimal number for which Δm is t-simple. By Theo-
rem 9.13, it is enough to show that t ≥ Ω

(
m3/ log4 m

)
. For this proof we

take
s := �5 log2 m� and r := 1 .

According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for Δm either intersects a fixed set I of s edges,
or contains at least one of L ≤ tsr+1 = ts2 2-element sets of edges R1, . . . , RL.
As positive inputs for Δm we take all triangles, i.e., graphs on m vertices

with exactly one triangle; we have
(
m
3
)
such graphs. At most s(m−2) of them

will have an edge in I. Each of the remaining triangles must contain one of
ts2 given pairs of edges Ri. Since two edges can lie in at most one triangle,
we conclude that, in this case,

t ≥
(
m
3
) − s(m− 2)

s2 = Ω
(
m3/ log4 m

)
.

Case 2: Every negative input for Δm contains at least one of trs+1 = t sets
of edges S1, . . . , St, each of size |Si| = s+ 1.
In this case we consider the graphs E = E1 ∪E2 consisting of two disjoint

non-empty cliques E1 and E2 (we look at graphs as sets of their edges). Each
such graphE is a negative input for Δm, because its complement is a bipartite
graph, and hence, has no triangles. The number of such graphs is a half of
the number 2m of all binary strings of length m excluding 0 and 1. Hence,
We have 2m−1 − 1 such graphs, and each of them must contain at least one
of the sets S1, . . . , St. Every of these sets of edges Si is incident to at least√
2s vertices, and if E ⊇ Si then all these vertices must belong to one of the
cliques E1 or E2. Thus, at most 2m−

√
2s − 1 of our negative inputs E can

contain one fixed set Si, implying that, in this case,

t ≥ 2m−1 − 1
2m−

√
2s − 1 ≥ 2

√
2s−1 ≥ 23 logm ≥ m3 .

Thus, in both cases, t ≥ Ω
(
m3/ log4 m

)
, and we are done. ��

Our next example is the following monotone boolean function introduced
by Andreev (1985). Let q ≥ 2 be a prime power, and set d := �(q/ ln q)1/2/2�.
Consider q × q (0, 1) matrices A = (ai,j). Given such a matrix A, we are
interested in whether it contains a graph of a polynomial h : GF (q)→ GF (q),
that is, whether ai,h(i) = 1 for all rows i ∈ GF (q).
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9.5 Blocking sets and monotone circuits

Let fn be a monotone boolean function in n = q2 variables such that
fn(A) = 1 iff A contains a graph of at least one polynomial over GF (q) of
degree at most d − 1. That is,

fn(X) =
∨
h

∧
i∈GF (q)

xi,h(i) ,

where h ranges over all polynomials over GF (q) of degree at most d − 1.
Since we have at most qd such polynomials, the function fn can be com-
puted by a monotone boolean circuit of size at most qd+1, which is at most
nO(d) = 2O(n1/4√lnn). We will now show that this trivial upper bound is
almost optimal.

Theorem 9.15. Any monotone circuit computing the function fn has size at
least 2Ω(n1/4√lnn).

Proof. Take a minimal t for which the function fn is t-simple. Since n = q2

and (by our choice) d = Θ(n1/4√
lnn), it is enough by Theorem 9.13 to show

that t ≥ qΩ(d). For this proof we take

s := �d ln q� and r := d ,

and look at input matrices as bipartite q × q graphs. In the proof we will
essentially use the well-known fact that no two distinct polynomials of degree
at most d − 1 can coincide on d points. According to the definition of t-
simplicity, we have only two possibilities.

Case 1: Every positive input for fn either intersects a fixed set I of at most
s edges, or contains at least one of L ≤ tsr+1 (r + 1)-element sets of edges
R1, . . . , RL.
Graphs of polynomials of degree at most d − 1 are positive inputs for fn.

Each set of l (1 ≤ l ≤ d) edges is contained in either 0 or precisely qd−l
of such graphs. Hence, at most sqd−1 of these graphs can contain an edge
in I, and at most qd−(r+1) of them can contain any of the given graphs Ri.
Therefore, in this case we again have

t ≥
(
1− s

q

)
qd

sr+1 · qd−(r+1) ≥
(q
s

)Ω(r)
≥ qΩ(d) .

Case 2: Every negative input for fn contains at least one of K ≤ trs+1

(s+ 1)-element sets of edges S1, . . . , SK .
LetE be a random bipartite graph, with each edge appearing inE indepen-

dently with probability γ := (2d ln q)/q. Since there are only qd polynomials
of degree at most d − 1, the probability that the complement of E will con-
tain the graph of at least one of them does not exceed qd(1− γ)q ≤ q−d, by
our choice of γ. Hence, with probability at least 1 − q−d, the graph E is a
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9 Blocking Sets and the Duality

negative input for f . On the other hand, each of the sets Si is contained in
E with probability γ|Si| = γs+1. Thus, in this case,

t ≥ 1− q−d

rs+1γs+1 ≥
(

q

2d2 ln q

)Ω(s)
≥ 2Ω(s) ≥ qΩ(d) ,

where the third inequality holds for all d ≤ (q/ ln q)1/2/2.
We have proved that the function f can be t-simple only if t ≥ qΩ(d). By

Theorem 9.13, this function cannot be computed by monotone circuits of size
smaller than qΩ(d). ��

Exercises

9.1. The independence number α(F) of a family F ⊆ 2X is defined as the
maximum cardinality |S| of a set S ⊆ X which does not contain any member
of F . Prove that α(F) = |X | − τ(F).
9.2. Let T be a minimal blocking set of a family F . Show that, for every
x ∈ T , there exists an A ∈ F such that T ∩A = {x}.
9.3. Show that the solution to Proposition 9.2 is optimal: if F is an antichain,
then at least |b (F) | locks are also necessary.
9.4. Let F be an r-uniform family and suppose that τ(F \ {A}) < τ(F) for
all A ∈ F . Prove that |F| ≤ (

r+τ(F)−1
r

)
. Hint: Observe that, for each A ∈ F , there

is a set B of size τ(F) − 1 which is disjoint from A but intersects all other members of
F ; apply the Bollobás theorem (Theorem 8.7).

9.5. Let F and H be antichains over some set X . Prove that:
(i) H = b (F) if and only if for every coloring of the points in X in Red and
in Blue, either F has a Red set (i.e., all points in this set are red), or
(exclusive) H has a Blue set.

(ii) F 
 H if and only if b (H) 
 b (F).
9.6. Consider the following family F . Take k disjoint sets V1, . . . , Vk such
that |Vi| = i for i = 1, . . . , k. The members of F are all the sets of the form
Vi ∪ T , where T is any set such that |T | = k − i and |T ∩ Vj | = 1 for all
j = i+1, . . . , k. Show that this family is self-dual, i.e., that F = b (F). (This
construction is due to Erdős and Lovász.)

9.7. A pair of sets (A,B) separates a pair of elements (x, y) if x ∈ A \B and
y ∈ B \ A. A family F = {A1, . . . , Am} of subsets of X = {x1, . . . , xn} is a
complete separator if every pair of elements in X is separated by at least one
pair of sets in F . Let F∗ be the family of all non-empty sets Xi := {j : xi ∈
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Aj}. Prove that F is a complete separator if and only if F∗ is an antichain.
Hint: Xi �⊆ Xj means that there exists k such that k ∈ Xi and k �∈ Xj , i.e., that xi ∈ Ak
and xj �∈ Ak.

9.8. Let F be a family of rank r. Show that then, for any s ≥ 1, the family
F has at most rs minimal blocking sets of size s.
9.9. Prove that any decision tree for the function f =

∧m
i=1

∨m
j=1 xij has

depth m2. Hint: Take an arbitrary decision tree for f and construct a path from the
root by the following “adversary” rule. Suppose we have reached a node v labeled by
xij . Then follow the outgoing edge marked by 1 if and only if all the variables xil with
l �= j were already tested before we reached the node v.

9.10. The storage access function is a boolean function f(x, y) on n + k
variables x = (x0, . . . , xn−1) and y = (y0, . . . , yk−1) where n = 2k, and is
defined as follows: f(x, y) := xint(y), where int(y) :=

∑k−1
i=0 yi2i is the integer

whose binary representation is the vector y. Prove that f is a (k + 1)-DNF
function although some of its minterms have length 2k. Hint: For the first claim
observe that the value of f only depends on k+ 1 bits y0, . . . , yk−1 and xint(y). For the
lower bound, consider the monomial x0x1 · · ·xn−1 and show that it is a minterm of f .

9.11. A partial b–(n, k, λ) design is a family F of k-element subsets of
{1, . . . , n} such that any b-element set is contained in at most λ of its mem-
bers. We can associate with each such design F a monotone boolean function
fF such that fF(S) = 1 if and only if S ⊇ F for at least one F ∈ F . Assume
that ln |F| < k − 1 and that each element belongs to at most N members of
F . Use Theorem 9.13 to show that for every integer a ≥ 2, every monotone
circuit computing fF has size at least

� := min
{
1
2

(
k

2b ln |F|
)a

,
|F| − a · N

λ · ab ,

}
.

Hint: Take s = a, r = b and show that under this choice of parameters, the function fF
can be t-simple only if t ≥ �. When doing this, note that the members of F are positive
inputs for fF . To handle the case of negative inputs, take a random subset in which
each element appears independently with probability p = (1 + ln |F|)/k, and show that
its complement can contain a member of F with probability at most |F|(1−p)k ≤ e−1.

9.12. Derive Theorem 9.15 from the previous exercise. Hint: Observe that the
family of all qd graphs of polynomials of degree at most d − 1 over Fq forms a partial
b–(n, k, λ) design with parameters n = q2, k = q and λ = qd−b.

9.13. Andreev (1987) has shown how, for any prime power q ≥ 2 and d ≤ q,
to construct an explicit family D of subsets of {1, . . . , n} which, for every
b ≤ d+ 1, forms a partial b–(n, k, λ) design with parameters n = q3, k = q2,
λ = q2d+1−b and |D| = q2d+1. Use Exercise 9.11 to show that the corre-
sponding boolean function fD requires monotone circuits of size exponential
in Ω

(
n1/3−o(1)).
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9.14. (due to Berkowitz). A k-threshold is a monotone boolean function
T nk (x1, . . . , xn) which outputs 1 if and only if the input vector x = (x1, . . . , xn)
has weight at least k, i.e., if |x| := x1 + · · ·+ xn ≥ k. Show that

T n−1
k (x1, . . . , xi−1, xi+1, . . . , xn) = xi,

for all inputs (x1, . . . , xn) such that x1 + · · ·+ xn = k.

9.15. A boolean function f is a slice function if there is some 0 ≤ k ≤ n such
that for every input x ∈ {0, 1}n,

f(x) =
{
0 if |x| < k;
1 if |x| > k.

That is, f can be non-trivial only on inputs with exactly k ones; in this case
we also say that f is the k-slice function. Use the previous exercise and the
fact that the threshold function T nk has a monotone circuit of size O(n2) to
prove that for such functions, using the negations cannot help much. Namely,
prove that if a slice function f has a non-monotone circuit of size �, then f
can also be computed by a monotone circuit of size at most �+O(n3).
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10. Density and Universality

In many applications (testing logical circuits, construction of k-wise inde-
pendent random variables, etc.), vector sets A ⊆ {0, 1}n with the following
property play an important role:

For any subset of k coordinates S = {i1, . . . , ik} the projection of A onto
the indices in S contains all possible 2k configurations.

Such sets are called (n, k)-universal. If the same holds not for all but only
for at least one subset S of k indices, then A is called (n, k)-dense. The
maximal number k, for which A is (n, k)-dense, is also known as the Vapnik–
Chervonenkis dimension of A.
Given n and k, the problem is to find a universal (or dense) set A with as

few vectors as possible. In this chapter we will discuss several approaches to
its solution.

10.1 Dense sets

Given a vector v = (v1, . . . , vn), its projection onto a set of coordinates S =
{i1, . . . , ik} is the vector v�S := (vi1 , . . . , vik). The projection of a set of
vectors A ⊆ {0, 1}n onto S is the set of vectors A�S := {v�S : v ∈ A}. Thus,
A is (n, k)-dense iff A�S = {0, 1}k for at least one subset of k coordinates S.
It is clear that every (n, k)-dense set must contain at least 2k vectors. On

the other hand, if A is the set of all vectors in {0, 1}n with less than k ones,
then A has

H(n, k) :=
k−1∑
i=0

(
n

i

)

vectors but is not (n, k)-dense. It turns out, however, that every larger set
already is (n, k)-dense! This interesting fact, whose applications range from
probability theory to computational learning theory, was discovered indepen-
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10 Density and Universality

dently by three sets of authors in remarkable simultaneity: Perles and Shelah
(see Shelah 1972), Sauer (1972), and Vapnik and Chervonenkis (1971). No
less remarkable is the range of contexts in which the results arose: logic, set
theory, and probability theory.

Theorem 10.1. If A ⊆ {0, 1}n and |A| > H(n, k) then A is (n, k)-dense.

Proof. Induction on n and k. If k = 1 then A has at least two different
vectors and hence is (n, 1)-dense. For the induction step take an arbitrary set
A ⊆ {0, 1}n of size |A| > H(n, k). Let B be the projection of A onto the first
n − 1 coordinates, and C be the set of all vectors u in {0, 1}n−1 for which
both vectors (u, 0) and (u, 1) belong to A. A simple but crucial observation
is that

|A| = |B|+ |C|.
Now, if |B| > H(n−1, k) then the set B is (n−1, k)-dense by induction, and
hence the whole set A is also (n, k)-dense. If |B| ≤ H(n − 1, k) then, using
the identity

(
n
i

) − (
n−1
i

)
=

(
n−1
i−1

)
(see Proposition 1.3) we obtain

|C| = |A| − |B| > H(n, k)− H(n− 1, k)

=
k−1∑
i=0

(
n

i

)
−

k−1∑
i=0

(
n− 1
i

)
=

k−2∑
i=0

(
n − 1
i

)
= H(n − 1, k − 1).

By the induction hypothesis, the set C is (n − 1, k − 1)-dense, and since
C × {0, 1} lies in A, the whole set A is also (n, k)-dense. ��

10.2 Hereditary sets

Alon (1983) and Frankl (1983) have independently made an intriguing obser-
vation that for results like Theorem 10.1, we can safely restrict our attention
to sets with a very special structure.
A set A ⊆ {0, 1}n is hereditary or downwards closed if v ∈ A and u ≤ v

implies u ∈ A. (Here, as usual, u ≤ v means that ui ≤ vi for all i.) Thus, being
hereditary means that we can arbitrarily switch 1s to 0s, and the resulting
vectors will still belong to the set.
For a set S ⊆ {1, . . . , n} of coordinates, let tS(A) denote the number of

vectors in the projection A�S . If v is a vector and i is any of its coordinates,
then the i-th neighbor of v is the vector vi→0 obtained from v by switching
its i-th bit to 0; if this bit is 0 then we let vi→0 = v.

Theorem 10.2. For every subset A of the n-cube {0, 1}n there is a hereditary
subset B such that |B| = |A| and tS(B) ≤ tS(A) for all sets S of coordinates.
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10.2 Hereditary sets

Before we prove this result, observe that it immediately implies Theo-
rem 10.1: if B is hereditary and |B| > H(n, k), then B must contain a vector
v with at least k ones, and so, must contain all the 2k vectors obtained from
v by changing any subset of these ones to zeroes.

Proof. If A itself is hereditary, there is nothing to do. Otherwise, we have
some “bad”coordinates, i.e., coordinates i such that vi→0 �∈ A for some v ∈ A.
To correct the situation, we will apply for each such bad coordinate i, the
following transformation Ti. Take a vector v ∈ A with vi = 1, and see if vi→0
belongs to A. If so, do nothing; otherwise, replace the vector v in A by vi→0.
Apply this transformation as long as possible, and let B denote the resulting
set. It is clear that |B| = |A|. We also claim that tS(B) ≤ tS(A) for every
S ⊆ {1, . . . , n}.
Indeed, if i �∈ S then tS(B) = tS(A), and we are done. Suppose that i ∈ S

and let S′ = S \ {i}. Assume, for notational convenience, that i was the first
coordinate, i.e., that i = 1. Now, if tS(B) ≥ tS(A) + 1, this can happen only
when A has two vectors x = (1, u, w1) and y = (1, u, w2) with u ∈ {0, 1}S′

and w1 �= w2, and such that exactly one of them, say x, was altered by Ti.
That is, the S-projection of B contains both vectors (1, u) and (0, u), whereas
(0, u) does not appear in the S-projection of A. But this is impossible because
the fact that the other vector y = (1, u, w2) was not altered by Ti means that
its i-th neighbor (0, u, w2) belongs to A, and hence vector (0, u) must appear
among the vectors in the S-projection of A. This contradiction proves that
tS(B) ≤ tS(A).
Thus, starting with A, we can apply the transformations Ti along all n

coordinates i = 1, . . . , n, and obtain the set B = Tn(Tn−1(· · ·T1(A) · · · )),
which is hereditary, has the same number of vectors as the original set A and
satisfies the condition tS(B) ≤ tS(A) for all S. ��
Frankl (1983) observed that this result also has other interesting conse-

quences. For a set A ⊆ {0, 1}n, let ts(A) = max tS(A) over all S ⊆ {1, . . . , n}
with |S| = s; hence, tn(A) = |A|.
Theorem 10.3 (Bondy 1972). If |A| ≤ n then tn−1(A) = |A|.
Proof. We will give a direct proof of this result in Sect. 11.1; here we show
that it is a consequence of Theorem 10.2.
By this theorem we may assume that A is hereditary. If A is empty, there

is nothing to prove. Otherwise, A must contain the all-0 vector. Hence, at
least one of n unit vectors

ei = (0, . . . , 0, 1, 0, . . . , 0),

with the 1 in the i-th coordinate, does not belong to A. As A is hereditary,
this implies that |A| = tn(A) = tS(A) for S = {1, . . . , n} \ {i}. ��
Bollobás (see Lovász 1979, Problem 13.10) extended this result to larger

sets.
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Theorem 10.4. If |A| ≤ 	 3
2n
 then tn−1(A) ≥ |A| − 1.

Proof. By Theorem 10.2 we may assume that A is hereditary. If there is an
i such that ei �∈ A, then again tn−1(A) = |A|, and we are done. Otherwise,
A contains the all-0 vector and all unit vectors e1, . . . , en. Let A′ be the set
of all vectors in A with precisely two 1s. Each such vector covers only two of
the unit vectors. Therefore, some ei must remain uncovered, for otherwise we
would have |A| ≥ 1 + n + 	n/2
 > 	 3

2n
. But this means that ei is the only
vector in A with 1 in the i-th coordinate, implying that for S = {1, . . . , n}\{i},
tS(A) = |A \ {ei}| = |A| − 1. ��
Combining Theorem 10.2 with the deep Kruskal–Katona theorem about

the shadows of arbitrary families of sets (see Theorem 10.16 below), Frankl
(1983) derived the following general result, which is the best possible whenever
t divides n (see Exercise 10.9). We state it without proof.

Theorem 10.5 (Frankl 1983). If A ⊆ {0, 1}n and |A| ≤ 	n(2t − 1)/t
, then
tn−1(A) ≥ |A| − 2t−1 + 1.

The following result concerning the intersection of hereditary sets, due
to Kleitman, has many generalizations and applications (see, for example,
Exercise 10.8 and Theorem 7.7):

Theorem 10.6 (Kleitman 1966). Let A,B be downwards closed subsets of
{0, 1}n. Then

|A ∩ B| ≥ |A| · |B|
2n .

Proof. Apply induction on n, the case n = 0 being trivial. For ε ∈ {0, 1}, set
cε = |Aε| and dε = |Bε|, where

Aε := {(a1, . . . , an−1) : (a1, . . . , an−1, ε) ∈ A}

and
Bε := {(b1, . . . , bn−1) : (b1, . . . , bn−1, ε) ∈ B} .

Then

|A ∩ B| = |A0 ∩ B0|+ |A1 ∩ B1|
≥ (c0d0 + c1d1)/2n−1 (by induction)
= (c0 + c1)(d0 + d1)/2n + (c0 − c1)(d0 − d1)/2n.

Since sets A, B are downwards closed, we have A1 ⊆ A0 and B1 ⊆ B0,
implying that (c0 − c1)(d0 − d1) ≥ 0. Since c0 + c1 = |A| and d0 + d1 = |B|,
we are done. ��
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10.3 Matroids and approximation

Given a family F of subsets of some finite set X , called the ground-set, and
a weight function assigning each element x ∈ X a non-negative real number
w(x), the optimization problem for F is to find a member A ∈ F whose weight
w(A) =

∑
x∈Aw(x) is maximal. For example, given a graph G = (V,E) with

non-negative weights on edges, we might wish to find a matching (a set of
vertex-disjoint edges) of maximal weight. In this case X = E is the set
of edges, and members of F are matchings. As it happens in many other
situations, the resulting family is hereditary, that is, A ∈ F and B ⊆ A
implies B ∈ F .
In general, some optimization problems are extremely hard—the so-called

“NP-hard problems.” In such situations one is satisfied with an “approxima-
tive” solution, namely, with a member A ∈ F whose weight is at least 1/k
times the weight of an optimal solution, for some real constant k ≥ 1.
One of the simplest algorithms to solve an optimization problem is the

greedy algorithm. It first sorts the elements x1, x2, . . . , xn of X by weight,
heaviest first. Then it starts with A = ∅ and in the i-th step adds the element
xi to the current set A if and only if the result still belongs to F . A basic
question is: for what families F can this trivial algorithm find a good enough
solution?
Namely, say that a family F is greedy k-approximative if, for every weight

function, the weight of the solution given by the greedy algorithm is at
least 1/k times the weight of an optimal solution. Note that being greedy
1-approximative means that for such families the greedy algorithm always
finds an optimal solution.
Given a real number k ≥ 1, what families are greedy k-approximative?
In the case k = 1 (when greedy is optimal) a surprisingly tight answer

was given by introducing a notion of “matroid.” This notion was motivated
by the following “exchange property” in linear spaces: If A,B are two sets of
linearly independent vectors, and if |B| > |A|, then there is a vector b ∈ B\A
such that the set A ∪ {b} is linearly independent.
Now let F be a family of subsets of some finite set X ; we call members

of F independent sets. A k-matroid is a hereditary family F satisfying the
following k-exchange property: For every two independent sets A,B ∈ F , if
|B| > k|A| then there exists b ∈ B \ A such that∗ A + b is independent
(belongs to F). Matroids are k-matroids for k = 1.
Matroids have several equivalent definitions. One of them is in terms of

maximum independent sets. Let F be a family of subsets of X (whose mem-
bers we again call independent sets), and Y ⊆ X . An independent set A ∈ F
is a maximum independent subset of Y (or a basis of Y in F) if A ⊆ Y and
A+x �∈ F for all x ∈ Y \A. A family is k-balanced if for every subset Y ⊆ X

∗ Here and in what follows, A+ b will stand for the set A ∪ {b}.
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and any two of its maximum independent subsets A,B ⊆ Y we have that
|B| ≤ k|A|.
Lemma 10.7. A hereditary family is k-balanced if and only if it is a k-
matroid.

Proof. (⇐) Let Y ⊆ X , and let A,B ⊆ Y be two sets in F that are maximum
independent subsets of Y . Suppose that |B| > k|A|. Then by the k-exchange
property, we can add some element b of B \A to A and keep the result A+ b
in F . But since A and B are both subsets of Y , the set A+ b is also a subset
of Y and thus A is not maximum independent in Y , a contradiction.
(⇒) We will show that if F does not satisfy the k-exchange property,

then it is not k-balanced. Let A and B be two independent sets such that
|B| > k|A| but no element of B \ A can be added to A to get a result in F .
We let Y be A ∪ B. Now A is a maximum independent set in Y , since we
cannot add any of the other elements of Y to it. The set B may not be a
maximum independent set in Y , but if it isn’t there is some subset B′ of Y
that contains it and is maximum independent in Y . Since this set is at least
as big as B, it is strictly bigger than k|A| and we have a violation of the
k-balancedness property. ��
For k = 1, the (⇐) direction of the following theorem was proved by Rado

(1942), and the (⇒) direction by Edmonds (1971).
Theorem 10.8. A hereditary family is greedy k-approximative if and only if
it is a k-matroid.

Proof. (⇐) Let F be a k-matroid over some ground-set X . Fix an arbitrary
weight function, and order the elements of the ground-set X according to
their weight, w(x1) ≥ w(x2) ≥ . . . ≥ w(xn). Let A be the solution given by
the greedy algorithm, and B an optimal solution. Our goal is to show that
w(B)/w(A) ≤ k.
Let Yi := {x1, . . . , xi} be the set of the first i elements considered by the

greedy algorithm. The main property of the greedy algorithm is given by the
following simple claim.

Claim 10.9. For every i, the set A ∩ Yi is a maximum independent subset
of Yi.

Proof. Suppose that the independent set A ∩ Yi is not a maximum indepen-
dent subset of Yi. Then there must exist an element xj ∈ Yi \A (an element
not chosen by the algorithm) such that the set A∩Yi+xj is independent. But
then A ∩ Yj−1 + xj (as a subset of an independent set) is also independent,
and should have been chosen by the algorithm, a contradiction. ��
Now let Ai := A ∩ Yi. Since Ai \ Ai−1 is either empty or is equal to {xi},
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w(A) = w(x1)|A1|+
n∑
i=2

w(xi)(|Ai| − |Ai−1|)

=
n−1∑
i=1
(w(xi)− w(xi+1))|Ai|+ w(xn)|An| .

Similarly, letting Bi := B ∩ Yi, we get

w(B) =
n−1∑
i=1
(w(xi)− w(xi+1))|Bi|+ w(xn)|Bn| .

Using the inequality (a + b)/(x + y) ≤ max{a/x, b/y} we obtain that
w(B)/w(A) does not exceed |Bi|/|Ai| for some i. By Claim 10.9, the set
Ai is a maximum independent subset of Yi. Since Bi is also a (not necessar-
ily maximum) independent subset of Yi, the k-balancedness property implies
that |Bi| ≤ k|Ai|. Hence, w(B)/w(A) ≤ |Bi|/|Ai| ≤ k, as desired.
(⇒) We will prove that if our family F fails to satisfy the k-exchange

property, then there is some weight function on which the greedy algorithm
fails to approximate an optimal solution by a factor of 1/k.
Suppose there are two sets A and B in F , with |B| > k|A|, such that no

element of B\A can be added to A while keeping the result in F . Letm = |A|.
Take any two positive numbers a and b such that 0 < a − b ≤ 1/k. Define
the weight function as follows: elements in A have weight m + a, elements
in B \ A have weight m + b, and other elements have weight 0. Then the
greedy algorithm tries elements of weight m+ a first, gets all m of them, but
then is stuck because no element of weight m+ b fits; hence, the total score
of the greedy algorithm is m(m + a). But the optimum is at least the total
weight (m + b)|B| ≥ (m + b)(km + 1) of elements in B. Thus, the greedy
algorithm can (1/k)-approximate this particular optimization problem only
if (m+ b)(km+ 1) ≤ km(m+ a), or equivalently, if k(a− b) ≥ 1 + b/m. But
this is impossible because a− b ≤ 1/k and b > 0. ��
When trying to show that a given family is a k-matroid, the following

somewhat easier to verify property, suggested by Mestre (2006), is often useful.
We say that a family F is k-extendible if for every sets A ⊂ B ∈ F and for
every element x �∈ B the following holds: If the set A + x is independent
then the set B + x can be made independent by removing from B at most k
elements not in A, that is, there exists Y ⊆ B \A such that |Y | ≤ k and the
set B \ Y + x is independent.
Lemma 10.10. Every k-extendible hereditary family is a k-matroid.

Proof. Given two independent sets A and B with |B| > k|A|, we need to
find an element z ∈ B \ A such that the set A+ z is independent. If A ⊂ B
then we are done since all subsets of B are independent. Suppose now that
A �⊆ B. The idea is to pick an element x ∈ A\B and apply the k-extendibility
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property to the sets C := A∩B andD := B to find a subset Y ⊆ D\C = B\A
with at most k elements such that the set B′ = B \ Y + x is independent.
If A is still not a subset of B′, then repeat the same procedure. Since, due
to the condition Y ⊆ B \ A, at any step none of the already added elements
of A are removed, after at most |A \ B| steps we will obtain an independent
set B′ such that A ⊆ B′. From |B| > k|A|, we have that |B \ A| > k|A \ B|.
Since in each step at most k elements of B are removed, at least one element
z ∈ B \ A must remain in B′, that is, A is a proper subset of B′. But then
the set A+ z is independent, because B′ is such, and we are done. ��
In the case of matroids (k = 1) we also have the converse.

Lemma 10.11. Every matroid is 1-extendible.

Proof. Let F be a matroid. Given sets A ⊂ B ∈ F and an element x �∈ B
such that the set A+ x is independent, we need to find an element y ∈ B \A
such that B− y+x is independent. If necessary, we can repeatedly apply the
matroid property to add elements of B \A to A until we get a subset A′ such
that A ⊆ A′ ⊂ B, A′ + x ∈ F and |A′ + x| = |B|. Since x �∈ B, this implies
that B \ A′ consists of just one element y. But then B − y + x = A′ + x
belongs to F , as desired. ��
It can be shown (see Exercise 10.12) that for k ≥ 2 the converse of

Lemma 10.10 does not hold, that is, not every k-matroid is k-extendible.
Still, together with Theorem 10.8, Lemma 10.10 gives us a handy tool to
show that some unrelated optimization problems can be approximated quite
well by using the trivial greedy algorithm.

Example 10.12 (Maximum weight f -matching). Given a graph G = (V,E)
with non-negative weights on edges and degree constraints f : V → N for
vertices, an f -matching is a set of edgesM such that for all v ∈ V the number
degM (v) of edges in M incident to v is at most f(v). The corresponding
optimization problem is to find an f -matching of maximal weight.
In this case we have a family F whose ground-set is the set X = E of

edges of G and f -matchings are independent sets (members of F). Note that
F is already not a matroid when f(v) = 1 for all v ∈ V : if A = {a, b} and
B = {{c, a}, {b, d}} are two matchings, then |B| > |A| but no edge of B can
be added to A. We claim that this family is 2-extendible, and hence, is a
2-matroid.
To show this, let A+ x and B be any two f -matchings, where A ⊂ B and

x = {u, v} is an edge not in B. If B + x is an f -matching, we are done. If
not, then degB(u) = f(u) or degB(v) = f(v) (or both). But we know that
degA(u) < f(u) and degA(v) < f(v), for otherwise A + x would not be an
f -matching. Thus, we can remove at most two edges of B not in A so that
the resulting graph plus the edge x forms a f -matching.
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Example 10.13 (Maximum weight traveling salesman problem).We are given
a complete directed graph with non-negative weights on edges, and we must
find a maximum weight Hamiltonian cycle, that is, a cycle that visits every
vertex exactly once. This problem is very hard: it is a so-called “NP-hard”
problem. On the other hand, using Theorem 10.8 and Lemma 10.10 we can
show that the greedy algorithm can find a Hamiltonian cycle whose weight
is at least one third of the maximum possible weight of a Hamiltonian cycle.
The ground-setX of our family F in this case consists of the directed edges

of the complete graph. A set is independent if its edges form a collection of
vertex-disjoint paths or a Hamiltonian cycle. It is enough to show that F is
3-extendible.
To show this, let A+x and B be any two members of F , where A ⊂ B and

x = (u, v) is an edge not in B. First remove from B the edges (if any) out of
u and into v. There can be at most two such edges, and neither of them can
belong to A since otherwise A+(u, v) would not belong to F . If we add (u, v)
to B then every vertex has in-degree and out-degree at most one. Hence, the
only reason why the resulting set may not belong to F is that there may be
a non-Hamiltonian cycle which uses (u, v). But then there must be an edge
in the cycle, not in A, that we can remove to break it: if all edges, except for
(u, v), of the cycle belong to A, then A + (u, v) contains a non-Hamiltonian
cycle and could not belong to F . Therefore we need to remove at most three
edges in total.

10.4 The Kruskal–Katona theorem

A neighbor of a binary vector v is a vector which can be obtained from v by
flipping one of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}n of vectors
is the set ∂(A) of all its neighbors. A set A is k-regular if every vector in A
contains exactly k 1-entries. Note that in this case ∂(A) is (k − 1)-regular.
A basic question concerning shadows is the following one: What can one

say about |∂(A)| in terms of the total number |A| of vectors in a k-regular
set A?
In general one cannot improve on the trivial upper bound |∂(A)| ≤ k|A|.

But what about lower bounds? The question is non-trivial because one and
the same vector with k− 1 ones may be a neighbor of up to n− k+1 vectors
in A. Easy counting shows that

|∂(A)| ≥ k

n− k + 1
|A| = |A|(

n
k

)( n

k − 1
)
.

This can be shown by estimating the number N of pairs (u, v) of vectors
such that v ∈ A and u is a neighbor of v. Since every v ∈ A has exactly
k neighbors, we have that N = k|A|. On the other hand, every vector u
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with k − 1 ones can be a neighbor of at most n − k + 1 vectors of A. Hence,
k|A| = N ≤ (n− k+1)|∂(A)|, and the desired lower bound on |∂(A)| follows.
Best possible lower bounds on |∂(A)| were obtained by Kruskal (1963) and

Katona (1966). The idea, again, is to show that the minimum of |∂(A)| over
all sets A with |A| = m is achieved by sets of a very special structure, and use
the Pascal identity for binomial coefficients

(
x
k

)
= x(x − 1) · · · (x− k + 1)/k!:

for every real number x ≥ k(
x

k − 1
)
+

(
x

k

)
=

(
x+ 1
k

)
. (10.1)

In Proposition 1.3 we gave a combinatorial proof of this identity in the case
when x is a natural number. The case when x is not necessarily an integer
can be shown by a simple algebraic manipulation:(

x

k − 1
)
+

(
x

k

)
= x!
(x − (k − 1))!(k − 1)! +

x!
(x − k)!k!

= kx! + (x+ 1− k)x!
(x+ 1− k)!k! =

(
x+ 1
k

)
.

The following lemma allows us to restrict our attention to sets with a very
special structure. For a set of vectors A ⊆ {0, 1}n, let A0 and A1 denote the
sets of vectors in A starting, respectively, with 0 and 1. Hence, A = A0 ∪A1.
Let also ei denote the vector in {0, 1}n with exactly one 1-entry in the i-th
position.

Proposition 10.14. For every set B ⊆ {0, 1}n there is a set A ⊆ {0, 1}n of
the same size such that |∂(B)| ≥ |∂(A)| and

∂(A0) + e1 ⊆ A1 . (10.2)

That is, if we take a vector v in A with v1 = 0, flip any of its 1s to 0 and
at the same time flip its first bit to 1, then the obtained vector will again
belong to A.

Proof. For 1 < j ≤ n, the j-th shift of B is the set sj(B) of vectors defined as
follows. First, we include in sj(B) all vectors v ∈ B1. For the vectors v ∈ B0
we look whether vj = 1. If yes, we include in sj(B) the vector v ⊕ e1 ⊕ ej
(obtained from vector v by flipping its 1-st and j-th bits), but only if this
vector does not already belong to B; if v ⊕ e1 ⊕ ej belongs to B, we include
in sj(B) the vector v itself. This last requirement ensures that |sj(B)| = |B|
for every 1 < j ≤ n. For example, if

B =

1 0 1 0
1 1 0 1
0 1 1 0
0 1 0 1

then s2(B) =

1 0 1 0
1 1 0 1
0 1 1 0
1 0 0 1
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We claim that the shifting operation preserves the neighborhood. Namely, for
every 1 < j ≤ n,

∂(sj(B)) ⊆ sj(∂(B)) .

The following diagram sketches the proof idea:

(0 . . . 1 . . . 1 . . .) shift−−−→ (1 . . . 0 . . . 1 . . .)
↓ neighbor ↓ neighbor
(0 . . . 1 . . . 0 . . .) shift−−−→ (1 . . . 0 . . . 0 . . .)

If we repeatedly apply the shift operators sj, j = 2, . . . , n to B, the number
of vectors containing 1 in the first position increases, so that after a finite
number of applications the shifts must therefore cease to make any change.
We have then obtained a new set A of the same size as B, with sj(A) = A
for each j ≥ 2, and with |∂(B)| ≥ |∂(A)|. We claim that A satisfies (10.2).
To show this, take a vector u ∈ ∂(A0). Then u+ej belongs to A0 for some

j ≥ 2, and hence, u+ e1 belongs to sj(A) = A. ��
We first state and prove a slightly weaker but much more handy version

of the Kruskal–Katona theorem.

Theorem 10.15. If A ⊆ {0, 1}n is k-regular, and if

|A| ≥
(
x

k

)
= x(x − 1) · · · (x − k + 1)/k!

for some real number x ≥ k, then

|∂(A)| ≥
(

x

k − 1
)
. (10.3)

Note that this is the best possible: If A ⊆ {0, 1}n is the set of all (nk)
vectors with exactly k ones, then |∂(A)| = (

n
k−1

)
.

Proof (due to Lovász 1979). By Proposition 10.14, we can assume that A
satisfies (10.2). Consider the set

A0 := {(0, w) : (1, w) ∈ A}

obtained from A1 by flipping the first bit from 1 to 0. Note that |A0| = |A1|.
Observe also that

|∂(A)| ≥ |A0|+ |∂(A0)| . (10.4)

Indeed, vectors in the set A0 are neighbors of A by the definition of this set.
Moreover, each neighbor of A0 plus the unit vector e1 is also a neighbor of A.
We now argue by double induction on k and m = |A|. For k = 1 and m

arbitrary, (10.3) holds trivially.
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For the induction step, we first use the fact that A has a special structure—
namely, satisfies (10.2)—to show that |A0| cannot be smaller than (

x−1
k−1

)
. To

show this, assume the opposite. Then

|A0| = |A| − |A1| = |A| − |A0| >
(
x

k

)
−

(
x− 1
k − 1

)
=

(
x − 1
k

)
,

and so, by induction, |∂(A0)| ≥ (
x−1
k−1

)
. But then (10.2) implies that

|A0| = |A1| ≥
(
x− 1
k − 1

)
,

a contradiction. Hence, |A0| ≥ (
x−1
k−1

)
.

Since A0 is (k−1)-regular, the induction hypothesis yields |∂(A0)| ≥ (
x−1
k−2

)
.

Together with (10.4) this implies

|∂(A)| ≥ |A0|+ |∂(A0)| ≥
(
x − 1
k − 1

)
+

(
x − 1
k − 2

)
=

(
x

k − 1
)
,

as desired. ��
To state the Kruskal–Katona theorem in its original form, we write m =

|A| in k-cascade form:

m =
(
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
as
s

)
(10.5)

where ak > ak−1 > . . . > as ≥ s ≥ 1 are integers. Such a representation of m
can be obtained as follows. Let ak be the maximal integer for which

(
ak
k

) ≤ m.
Then choose ak−1 as the largest integer for which

(
ak−1
k−1

) ≤ m − (
ak
k

)
. If

ak−1 ≥ ak, then we would have m ≥ (
ak
k

)
+
(
ak
k−1

)
=

(1+ak
k

)
, contradicting the

maximality of ak. Therefore ak−1 < ak. Continuing this process we eventually
reach a stage where the choice of as for some s ≥ 2 actually gives an equality,(

as
s

)
= m−

(
ak
k

)
−

(
ak−1
k − 1

)
− · · · −

(
as+1
s+ 1

)
,

or we get right down to choosing a1 as the integer such that(
a1
1

)
≤ m −

(
ak
k

)
− · · · −

(
a2
2

)
<

(
a1 + 1
1

)

in which case we have

0 ≤ m −
(
ak
k

)
− · · · −

(
a1
1

)
< 1 ,

so that
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10.4 The Kruskal–Katona theorem

m =
(
ak
k

)
+ · · ·+

(
a1
1

)
.

It can be shown by induction (do this!) that the representation (10.5) is
unique.

Theorem 10.16 (Kruskal–Katona Theorem). If A ⊆ {0, 1}n is k-regular,
and if

|A| =
(
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
as
s

)
then

|∂(A)| ≥
(

ak
k − 1

)
+

(
ak−1
k − 2

)
+ · · ·+

(
as

s − 1
)
.

We leave the proof as an exercise. It is the same as that of Theorem 10.15
with

(
x
k

)
and

(
x

k−1
)
replaced by the corresponding sums of binomial coeffi-

cents.
The representation (10.5) of m = |A| in the k-cascade form seems some-

what magical. To interpret this representation, let us consider the so-called
colexicographic order (or colex order) of vectors in {0, 1}n. This order is de-
fined by letting u ≺ v iff there is an i such that ui = 0, vi = 1 and uj = vj for
all j > i. Note that the only difference from the more standard lexicographic
order is that we now scan the strings from right to left. For example, the
colex order of all

(5
3
)
= 10 vectors in {0, 1}5 with exactly 3 ones is (with the

“smallest” vector on the top):

1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 0 0 1
1 0 1 0 1
0 1 1 0 1
1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

Let En
k denote the k-th slice of the binary n-cube, that is, the set of all vectors

in {0, 1}n with exactly k ones.
Proposition 10.17. If the m-th vector in the colex order of En

k contains 1s
in positions a1 + 1 < a2 + 1 < . . . < ak + 1 then

m =
(
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
a1
1

)
.

Proof. Let v be the m-th vector in the colex order of En
k . To reach v we must

skip all vectors whose k-th 1 appears before position ak + 1, and there are
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10 Density and Universality(
ak
k

)
of these. Some vectors with last (rightmost) 1 in position ak may also

precede v. These are the vectors whose first k−1 1s precede position ak−1+1,
and there are

(
ak−1
k−1

)
of these. Arguing further in this way gives the result. ��

By the same argument one can show that the shadow of the first m =∑k
i=1

(
ai
i

)
vectors in the colex order of En

k consists of the first ∂k(m) :=∑k
i=1

(
ai
i−1

)
vectors in the colex order of En

k−1. Thus, the Kruskal–Katona
theorem says that the shadow of a family of m vectors in En

k is minimized
by the set consisting of the first m vectors in the colex ordering on En

k−1.
Furthermore, the size of the shadow is ∂k(m).

10.5 Universal sets

The (n, k)-density of a set of vectors means that its projection on at least
one set of k coordinates gives the whole binary k-cube. We now consider a
stronger property – (n, k)-universality – where we require that the same holds
for all subsets of k coordinates.
Of course, the whole cube {0, 1}n is (n, k)-universal for every k ≤ n. This

is the trivial case. Do there exist smaller universal sets? Note that 2k is a
trivial lower bound.
Using the probabilistic argument it can be shown that there exist (n, k)-

universal sets of size only k2k logn (see Theorem 3.2).
This result tells us only that small universal sets exist, but gives us no

idea of how to construct them. In this section we will show how to construct
explicit sets in {0, 1}n which only have size n and are (n, k)-universal as long
as k2k <

√
n. The construction employs some nice combinatorial properties

of so-called Paley graphs.
In this section we introduce one property of (bipartite) graphs which is

equivalent to the universality property of 0-1 vectors. In the next section we
will describe an explicit construction of such graphs based on the famous
theorem of Weil (1948) regarding character sums.
By a bipartite graph with parts of size n we will mean a bipartite graph

G = (V1, V2, E) with |V1| = |V2| = n. We say that a node y ∈ V2 is a common
neighbor for a set of nodes A ⊆ V1 if y is joined to each node of A. Dually,
a node y ∈ V2 is a common non-neighbor for a set of nodes B ⊆ V1 if y is
joined to no node of B. Given two disjoint subsets A and B of V1, we denote
by v(A,B) the number of nodes in V2 which are common neighbors for A,
and at the same time are common non-neighbors for B. That is, v(A,B) is
the number of nodes in V2 joined to each node of A and to no node of B.

Definition 10.18. A bipartite graph G = (V1, V2, E) satisfies the isolated
neighbor condition for k if v(A,B) > 0 for any two disjoint subsets A,B ⊆ V1
such that |A|+ |B| = k.
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10.6 Paley graphs

Such graphs immediately yield (n, k)-universal sets of 0-1 strings:

Proposition 10.19. Let G be a bipartite graph with parts of size n and C be
the set of columns of its incidence matrix. If G satisfies the isolated neighbor
condition for k then C is (n, k)-universal.

Proof. Let G = (V1, V2, E) and M = (mx,y) be the adjacency matrix of G.
That is, M has n rows labeled by nodes x from V1, n columns labeled by
nodes y from V2, and mx,y = 1 if and only if (x, y) ∈ E.
Let S = {i1, . . . , ik} be an arbitrary subset of k rows of M and v =

(vi1 , . . . , vik ) be an arbitrary (column) vector in {0, 1}k. Each row of M cor-
responds to a node in V1. Let A be the set of nodes in V1 corresponding
to the 1-coordinates of v, and B be the set of nodes corresponding to the
0-coordinates of v. Since |A| + |B| = |S| = k and our graph satisfies the iso-
lated neighbor condition for k, there must be a node y ∈ V2 which is joined
to each node of A and to no node of B. But this means that the values of the
y-th column of M at rows from S coincide with the corresponding values of
the vector v, as desired. ��

10.6 Paley graphs

Here we will show how to construct explicit bipartite graphs satisfying the
isolated neighbor condition for k close to logn.
A bipartite Paley graph is a bipartite graph Gq = (V1, V2, E) with parts

V1 = V2 = Fq for q odd prime congruent to 1 modulo 4; two nodes, x ∈ V1
and y ∈ V2, are joined by an edge if and only if x− y is a non-zero square in
Fq, i.e., if x−y = z2 mod q for some z ∈ Fq, z �= 0. The condition q ≡ 1 mod 4
is only to ensure that −1 is a square in the field (see Exercise 10.7), so that
the resulting graph is undirected.
Given two disjoint sets of nodes A,B ⊆ V1, let v(A,B), as before, denote

the number of nodes in V2 joined to each node of A and to no node of B. It
turns out that for |A|+ |B| = k < (log q)/3, this number is very close to q/2k,
independent of what the sets A,B actually are.

Theorem 10.20. Let Gq = (V1, V2, E) be a bipartite Paley graph with q ≥ 9,
and A,B be disjoint sets of nodes in V1 such that |A|+ |B| = k. Then∣∣∣v(A,B)− 2−kq

∣∣∣ ≤ k
√
q. (10.6)

In particular, v(A,B) > 0 as long as k2k < √
q.

This result is a slight modification of a similar result of Bollobás and
Thomason (1981) about general (non-bipartite) Paley graphs; essentially the
same result was proved earlier by Graham and Spencer (1971). The proof is
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10 Density and Universality

based on the theorem of Weil (1948) regarding character sums. Its special
case states the following.
Let χ be the quadratic residue character in Fq: χ(x) = x(q−1)/2. That is,

χ(x) = 1 if x is a non-zero square in Fq, χ(x) = −1 if x is non-square, and
χ(0) = 0. Also, χ(x · y) = χ(x) · χ(y).
Theorem 10.21 (Weil 1948). Let f(t) be a polynomial over Fq which is not
the square of another polynomial, and has precisely s distinct zeros. Then∣∣∣∣ ∑

x∈Fq

χ
(
f(x)

)∣∣∣∣ ≤ (s− 1)√q.

We omit the proof of this important result. Weil’s original proof relied
heavily on several ideas from algebraic geometry. Since then other (but still
complicated) proofs have been found; the interested reader can find the details
in (Schmidt 1976).
With Weil’s result, the above stated property of Paley graphs can be de-

rived by easy computations.

Proof of Theorem 10.20. Recall that (x, y) is an edge in Gq if and only if
χ(x− y) = 1. Say that a node x ∈ V2 is a copy of a node y ∈ V1 if both these
nodes correspond to the same element of Fq; hence, each node of V2 is a copy
of precisely one node in V1. Moreover, no x is joined to its copy y since then
χ(x − y) = χ(0) = 0.
Let A′ and B′ be the set of all copies of nodes in A and, respectively, in

B. Also let U := V2 \ (A′ ∪ B′). Define

g(x) :=
∏
a∈A

(
1 + χ(x − a)

) ∏
b∈B

(
1− χ(x − b)

)
and observe that, for each node x ∈ U , g(x) is non-zero if and only if x is
joined to every node in A and to no node in B, in which case it is precisely
2k. Hence, ∑

x∈U
g(x) = 2k · v∗(A,B), (10.7)

where v∗(A,B) is the number of those nodes in U which are joined to each
node of A and to no node of B.
Expanding the expression for g(x) and using the fact that χ(x · y) =

χ(x) · χ(y), we obtain

g(x) = 1 +
∑
C

(−1)|C∩B|χ(fC(x)),
where fC(x) denotes the polynomial

∏
c∈C(x − c), and the sum is over all

non-empty subsets C of A ∪ B. By Weil’s theorem,
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10.7 Full graphs ∣∣∣∣ ∑
x∈Fq

χ
(
fC(x)

)∣∣∣∣ ≤ (|C| − 1)√q.

Hence,
∣∣∣∣ ∑
x∈Fq

g(x)− q

∣∣∣∣ ≤
∑
C

(|C| − 1)√q = √
q

k∑
s=2

(
k

s

)
(s− 1)

= √
q
(
(k − 2)2k−1 + 1

)
.

Here the last equality follows from the identity
∑k

s=1 s
(
k
s

)
= k2k−1 (see

Exercise 1.5).
The summation above is over all nodes x ∈ V2 = Fq. However, for every

node x ∈ A′ ∪ B′, g(x) ≤ 2k−1, and the nodes of A′ ∪ B′ can contribute at
most ∣∣∣∣ ∑

x∈A′∪B′
g(x)

∣∣∣∣ ≤ k · 2k−1.

Therefore, ∣∣∣∣ ∑
x∈U

g(x)− q

∣∣∣∣ ≤ √
q
(
(k − 2)2k−1 + 1

)
+ k · 2k−1.

Dividing both sides by 2k and using (10.7), together with the obvious estimate
v(A,B) − v∗(A,B) ≤ |A′ ∪B′| = k, we conclude that∣∣∣v(A,B)− 2−kq

∣∣∣ ≤ k
√
q

2 − √
q +

√
q

2k +
k

2 + k, (10.8)

which does not exceed k√
q as long as q ≥ 9. ��

Theorem 10.20 together with Proposition 10.19 give us, for infinitely many
values of n, and for every k such that k2k <

√
n, an explicit construction of

(n, k)-universal sets of size n. In Sect. 17.4 we will show how to construct
such sets of size nO(k) for arbitrary k using some elementary properties of
linear codes.

10.7 Full graphs

We have seen that universal sets of 0-1 strings correspond to bipartite graphs
satisfying the isolated neighbor condition. Let us now ask a slightly different
question: how many vertices must a graph have in order to contain every k-
vertex graph as an induced subgraph? Such graphs are called k-full. That is,
given k, we are looking for graphs of small order (the order of a graph is the
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10 Density and Universality

number of its vertices) which contain every graph of order k as an induced
subgraph.
Note that if G is a k-full graph of order n then

(
n
k

)
is at least the number

of non-isomorphic graphs of order k, so(
n

k

)
≥ 2(k2)/k!

and thus
n ≥ 2(k−1)/2.

On the other hand, for every k it is possible to exhibit a k-full graph of order
n = 2k. This nice construction is due to Bollobás and Thomason (1981).
Let Pk be a graph of order n = 2k whose vertices are subsets of {1, . . . , k},

and where two distinct vertices A and B are joined if and only if |A ∩ B| is
even; if one of the vertices, say A, is an empty set then we join B to A if and
only if |B| is even. Note that the resulting graph is regular: each vertex has
degree 2k−1 − 1.
Theorem 10.22 (Bollobás–Thomason 1981). The graph Pk is k-full.

Proof. Let G be a graph with vertex set {v1, v2, . . . , vk}. We claim that there
are sets A1, A2, . . . , Ak uniquely determined by G, such that

Ai ⊆ {1, . . . , i}, i ∈ Ai,

and, for i �= j,

|Ai ∩ Aj | is even if and only if vi and vj are joined in G.

Indeed, suppose we have already chosen the sets A1, A2, . . . , Aj−1. Our
goal is to choose the next set Aj which is properly joined to all the sets
A1, A2, . . . , Aj−1, that is, |Aj ∩ Ai| must be even precisely when vj is joined
to vi in G. We will obtain Aj as the last set in a sequence B1 ⊆ B2 ⊆ . . . ⊆
Bj−1 = Aj , where, for each 1 ≤ i < j, Bi is a set properly joined to all sets
A1, A2, . . . , Ai.
As the first set B1 we take either {j} or {1, j} depending on whether vj

is joined to v1 or not. Having the sets B1, . . . , Bi−1 we want to choose a set
Bi. If vj is joined to vi then we set Bi = Bi−1 or Bi = Bi−1 ∪ {i} depending
on whether |Bi−1 ∩ Ai| is even or odd. If vj is not joined to vi then we act
dually. Observe that our choice of whether i is in Bi will effect |Bi∩Ai| (since
i ∈ Ai) but none of |Bi ∩ Al|, l < i (since Al ⊆ {1, . . . , l}). After j − 1 steps
we will obtain the desired set Bj−1 = Aj . ��

152



Exercises

Exercises

10.1. Let A ⊆ {0, 1}n be (n, k)-dense and suppose that no vector in A has
more than r ones. Prove that some two vectors in A have at most r− k ones
in common.

10.2. (Alon 1986). Let A be a 0-1 matrix of 2n rows and n columns, the i-th
row being the binary representation of i − 1 (1 ≤ i ≤ 2n). Show that for any
choice of k distinct columns of A and any choice of k bits, there are exactly
2n−k rows of A that have the j-th chosen bit in the j-th chosen column.

10.3. Let A ⊆ {0, 1}n, |A| = n. By induction on k prove that, for every
k = 1, 2, . . . , n − 1, there exist k coordinates such that the projection of A
onto these coordinates has more than k vectors. For k = n − 1 this is the
well-known Bondy’s theorem (Theorem 11.1).

10.4. (Chandra et al. 1983). Prove the following (n, k)-universality criterion
for the case k = 2. Given a set A ⊆ {0, 1}n of m = |A| vectors, look at it as
an m × n matrix, whose rows are the vectors of A. Let v1, . . . , vn ∈ {0, 1}m
be the columns of this matrix, and let v1, . . . , vn be their complements, i.e.,
vi is obtained from vi by switching all its bits to the opposite values. Prove
that A is (n, 2)-universal if and only if all the vectors v1, . . . , vn, v1, . . . , vn are
different and form an antichain in {0, 1}m, i.e., are mutually incomparable.
10.5. Let A ⊆ {0, 1}n, |A| = m. Look at A as anm×n matrix, and let FA be
the family of those subsets of {1, . . . ,m}, whose incidence vectors are columns
of this matrix. Show that A is (n, k)-universal if and only if the family FA is
k-independent in the following sense: for every k distinct members S1, . . . , Sk
of FA all 2k intersections

⋂k
i=1 Ti are non-empty, where each Ti can be either

Si or its complement Si.

10.6. Show that the converse of Proposition 10.19 also holds: if the set of
rows of the incidence matrix of a given bipartite graph is (n, k)-universal
then the graph satisfies the isolated neighbor condition for k.

10.7. Let p be a prime with p ≡ 1 mod 4. Show that −1 is a square in the
field Fp. Hint: Let P be the product of all nonzero elements of Fp. If −1 is not a square,
then x2 = −1 has no solutions; so, the set of all p − 1 nonzero elements of Fp can be
divided into (p − 1)/2 pairs such that the product of the elements in each pair is −1;
hence P = 1. On the other hand, for any x �= ±1 there exists exactly one y �= x with
xy = 1, so all the elements of Fp \ {−1, 0,+1} can be divided into pairs so that the
product of elements in each pair is 1; hence, P = −1, a contradiction.

10.8. Recall that a set A ⊆ {0, 1}n of vectors is downwards closed if v ∈ A
and u ≤ v implies u ∈ A. Similarly, say that a set is upwards closed if v ∈ A
and u ≥ v implies u ∈ A. Show that Kleitman’s theorem (Theorem 10.6)
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10 Density and Universality

implies the following: Let A,B be upwards closed and C downwards closed
subsets of {0, 1}n. Then

|A ∩B| ≥ |A| · |B|
2n

and
|A ∩ C| ≤ |A| · |C|

2n .

Hint: For the first inequality, apply Kleitman’s theorem to the complements of A and B.
For the second inequality, take B := {0, 1}n \ C, and apply the first inequality to the
pair A,B to get

|A| − |A ∩ C| = |A ∩B| ≥ 2−n|A|(2n − |C|).

10.9. Show that the lower bound tn−1(A) ≥ |A| − 2t−1 + 1 given in Theo-
rem 10.5 is the best possible whenever t divides n. Hint: Split {1, . . . , n} into n/t
disjoint subsets S1, . . . , Sn/t with |Si| = t and define A to be the set of all vectors v �= 0
such that vj = 0 for all j �∈ Si.

10.10. Let F be a matroid over a ground-set X , and Y ⊆ X . Recall that a
maximum independent subset of Y is a member A ∈ F such that A ⊆ Y and
A+ x �∈ F for all x ∈ Y \A. Use the exchange property of matroids to show
that if Z ⊆ Y then every maximal independent set in Z can be extended to
a maximal independent set in Y .

10.11. Let F be a matroid over a ground-set X . By Lemma 10.7, we know
that, for every subset Y ⊆ X , all independent subsets of Y have the same
number of elements. This number r(Y ) is callled the rank of the set Y within
F . Use Exercise 10.10 to show that then the rank function is submodular: for
every subsets Y, Z ⊆ X , r(Y ∪ Z) + r(Y ∩ Z) ≤ r(Y ) + r(Z). Hint: |B ∩ Y | +
|B ∩ Z| = |B ∩ (Y ∪ Z)|+ |B ∩ (Y ∩ Z)|.

10.12. Let X = Y ∪ {x} where |Y | = k+2 and x �∈ Y . Let F be a hereditary
family whose only maximum independent sets are the set Y and all 2-element
sets {x, y} with y ∈ Y . Show that F is a k-matroid, but is not k-extendible.
10.13. Show that the intersection of k matroids is a k-matroid. Hint: Show
that the intersection of k 1-extendible systems is k-extendible and use Lemma 10.10.
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11. Witness Sets and Isolation

Given a set A of distinct 0-1 vectors and a vector u in A, how many bits
of u must we know in order to distinguish it from the other vectors in A?
Such a set of bits is a witness for the fact that u �∈ A \ {u}. In this chapter
we will give some basic estimates on the size of these witnesses. We will
also consider a related problem of how to isolate an object within a given
universum according to its weight. Finally, we will describe the so-called
“dictator paradox” saying that, if the society fulfills some simple “democracy
axioms,” then there will always be an individual (a dictator?) whose options
prevail against all options.

11.1 Bondy’s theorem

Let A ⊆ {0, 1}n be a set of m distinct 0-1 vectors of length n. A set S ⊆
{1, . . . , n} of coordinates is a witness for a vector u in A if for every other
v ∈ A there exists a coordinate in S on which u differs from v. We may also
say that exposing the entries of u corresponding to S uniquely determines u
among vectors in A. The minimum size of a witness for u in A is denoted by
wA(u) (or by w(u), if the underlying set A is clear from the context).
It is easy to show that every set of m vectors contains a vector whose

witness has size at most log2 m (see Exercise 11.2). On the other hand, it is
obvious that wA(u) ≤ |A| − 1 for any A and u ∈ A, and a simple example
shows that this is tight: if A consists of the all-0 vector 0n and the n vectors
with precisely one 1, then wA(0n) = n.
The following result, due to Bondy (1972), shows that if we take only

m ≤ n vectors, then all the vectors will already have one and the same
witness of size at most m−1. The projection of a vector v = (v1, . . . , vn) onto
a set of coordinates S = {i1, . . . , ik} is the vector v�S := (vi1 , . . . , vik). The
projection of a set of vectors A is the set A�S = {v�S : v ∈ A}.
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11 Witness Sets and Isolation

Theorem 11.1 (Bondy 1972). For every set A of 0-1 vectors there exists a
set S of at most |A| − 1 coordinates such that all the vectors {v�S : v ∈ A}
are distinct.

Proof. Suppose that A is a counterexample, that is, |A�S | < |A| for every set
S of at most |A| − 1 coordinates. Let S be a maximal set of coordinates for
which |A�S | ≥ |S|+ 1. Since |A�S | ≤ |A| − 1, at least two vectors u �= v ∈ A
must coincide on S. Take a coordinate i �∈ S on which these two vectors differ,
and set T := S ∪ {i}. Since the vectors u,v coincide on S but differ on T , the
projection A�T must have at least one more vector than A�S ; hence,

|A�T | ≥ |A�S |+ 1 ≥ |S|+ 2 = |T |+ 1,

a contradiction with the maximality of S. �	
Given k, how large must a set A be in order to be sure that at least one

of its vectors will have no witness of size ≤ k? It is clear that any such set
A must have more than 2k vectors; this is a trivial lower bound. A trivial
upper bound is 2n. The following simple observation shows that much fewer
vectors are enough.

Proposition 11.2. In every set of more than 2k
(
n
k

)
0-1 vectors of length n

there is a vector which has no witness of size k.

Proof. Let A be a set of 0-1 vectors of length n, and assume that every vector
in it has a witness of size k. Then each vector u ∈ A has its own set Su of k
coordinates on which this vector differs from all other vectors in A. That is,
we can assign to each vector u ∈ A its “pattern” – a set Su of k bits and the
projection u�S of u onto this set – so that different vectors will receive different
patterns, i.e., if u �= v then either Su �= Sv or Su = Sv but u and v differ on
some coordinate in Su. There are

(
n
k

)
possible subsets of k coordinates and,

on each of these sets, vectors can take no more than 2k possible values. Thus,
there are at most

(
n
k

)
2k possible patterns and, since each vector in A must

have its own pattern, we conclude that |A| ≤ (
n
k

)
2k. �	

11.2 Average witnesses

Since the worst-case witness sets may have to be large, it is natural to consider
the average witness size:

wave(A) :=
1

|A|
∑
u∈A
wA(u).

The same example, as in the previous section, shows that the gap between the
worst-case witness size and the average witness size may be exponential: if A
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11.2 Average witnesses

is the set of n+1 vectors with at most one 1, then wave(A) = 2n/(n+1) ≤ 2,
but in the all-0 vector all n bits must be exposed.
How large can wave(A) be as a function of |A|? The following result of

Kushilevitz, Linial, Rabinovitch, and Saks (1996) says that the average wit-
ness size of any set does not exceed the square root of its size, and that this
bound is almost optimal.

Theorem 11.3. For every set A of m 0-1 vectors, wave(A) ≤ 2m1/2. On the
other hand, for infinitely many numbers m, there exists a set A of m 0-1
vectors such that wave(A) ≥ 1

2
√

2m
1/2.

Proof. Upper bound. Take an arbitrary set A of m vectors and order its
vectors u1, u2, . . . , um by decreasing value of their smallest witness size:
w(u1) ≥ w(u2) ≥ · · · ≥ w(um). Consider the sum of the first k largest values∑k

i=1w(ui) for a value k soon to be set. Find a set T of at most k− 1 coordi-
nates as guaranteed by Bondy’s theorem applied to the set {u1, . . . , uk} and
expose the T -coordinates in all vectors of A. By the property of T , vectors
u1, . . . , uk are already mutually distinguished. The T -coordinates of every
vector uj with j > k, distinguish uj from all u1, . . . , uk, except, perhaps, one
ui (because no two of the vectors u1, . . . , uk coincide on T ). It is possible to
expose a single additional bit in ui to distinguish ui from uj. Apply this step
for every uj , j > k. Consequently, each of u1, . . . , uk is distinguished from
every other vector in A. No more than m − k additional bits get exposed in
this process, so:

k∑
i=1
w(ui) ≤ k(k − 1) +m − k = k2 − 2k +m. (11.1)

In particular, it follows that w(uk) ≤ k − 2 +m/k.
Putting these two observations together we get

m∑
i=1
w(ui) =

k∑
i=1
w(ui) +

m∑
i=k+1

w(ui)

≤ (k2 − 2k +m) + (m − k)
(
k − 2 + m

k

)
.

Pick k := m1/2; the above inequality then yields
∑m

i=1 w(ui) ≤ 2m3/2, which
means that wave(A) ≤ 2m1/2, as desired.

Lower bound. We will explicitly construct a set A ⊆ {0, 1}n which achieves
the lower bound. Let p be a prime and consider a projective plane PG(2, p)
of order p (see Sect. 12.4). Such a plane consists of n = p2+p+1 points P =
{1, . . . , n} and n subsets of points L1, . . . , Ln ⊆ P (called lines) satisfying
the following three conditions: (i) each line has exactly p+1 points; (ii) every
two lines intersect in exactly one point, and (iii) exactly p + 1 lines meet in
one point.
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11 Witness Sets and Isolation

We consider n-dimensional vectors where the coordinates correspond to
points of P , and define A ⊆ {0, 1}n to be the family of m = 2n binary
vectors, of which n are the incidence vectors of lines of PG(2, p), and another
n are all unit vectors, i.e., incidence vectors of all singletons {i}, i ∈ P .
For a vector u ∈ A, corresponding to a line L, w(u) = 2, since it suffices

to expose the coordinates corresponding to any two points on L. Such a pair
distinguishes u from all singletons, and since distinct lines share exactly one
point, this pair also distinguishes u from the incidence vectors of other lines.
On the other hand, w(u) = p+2 if u = (0, . . . , 0, 1, 0, . . . , 0) corresponds to

a singleton point i ∈ P . To distinguish u from the incidence vector of a line L
containing i, a zero in u should be exposed in a coordinate that corresponds
to a point on L other than i. There are p+1 lines, whose pairwise intersection
is {i}, so to distinguish u from all of them, at least p + 1 distinct 0-entries
should be exposed. To distinguish u from other singletons, the 1-entry should
be exposed as well (the alternative being to expose all p2 + p 0-entries).
Putting things together, we get

wave(A) =
1

|A|
∑
u∈A
w(u) = 12n(2n+ (p+ 2)n) =

p+ 4
2 ≥ n1/2

2
√
2
.

�	
The next natural problem concerning 0-1 vectors is the following question

about the distribution of their witness sizes:
Given an integer t, 1 ≤ t ≤ m, and a set of m vectors, how many of its vectors
have a witness of size at least (or at most) t?

If we know nothing more about the set except for its size, the question turns
out to be difficult. Still, Kushilevitz et al. (1996) have found the following
interesting partial solutions (see also Exercise 11.3):

Lemma 11.4. Let A be a set of m distinct 0-1 vectors. Then
(a) for any t ≤ m at most t of vectors in A have a minimal witness of size

at least t+m/t− 2;
(b) for any t ≤ √

m at least t2 − t of vectors in A have a witness of size at
most 2t+ log2 m.

Proof. The first claim (a) follows from the proof of the upper bound in Theo-
rem 11.3: let k be the number of vectors u ∈ A for which w(u) ≥ t+m/t− 2,
and apply (11.1).
To prove the second claim (b), reorder the vectors in A as follows: split

the vectors into two groups according to their first coordinate, and let the
vectors of the smaller group (i.e., of the group containing at most half of
the vectors) precede those in the larger. Expose the first coordinate in all
vectors of the smaller group. Proceed recursively in the same manner on each
group separately (by looking at next coordinates), and so on, until each group
reduces to a single vector (see Fig. 11.1). Observe that:
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1
1
1
1
1

0
0
0
0
0
0

0
0
1
1
1
1

1
1

0
0
0
0

0 0
1 0
1 1
0
0

1
0

0 1

1 0
1 1
1 1
1 0
0 0

10

0

Fig. 11.1 Exposed bits are in boldface; a vector u fol lows vector v if u is below v.

(i) each vector is distinguished from all those following it (but not necessarily
from those preceding it);

(ii) no vector has more than log2 m bits exposed (since each time one bit is
exposed in at most one-half of the vectors of a current group).

Let B be the set of the first t2 vectors. Applying the first claim (a) to
this set, we conclude that at most t of its vectors have a witness of size at
least 2t. Therefore, at least t2 − t of the vectors in B can be distinguished
from other members of B at the cost of exposing at most 2t additional bits
in each of them. We call these vectors good. By (i) and (ii), at the cost of
exposing at most log2 m bits, each good vector v is already distinguished from
all the vectors in A following it. On the other hand, all the vectors preceding
v belong to B, and hence, v is distinguished also from them by at most 2t
additional bits. Thus, we have at least t2 − t good vectors v and for each of
them, wA(v) ≤ 2t+ log2 m. �	

11.3 The isolation lemma

Let X be some set of n points, and F be a family of subsets of X . Let us
assign a weight w(x) to each point x ∈ X and let us define the weight of a set
E to be w(E) =

∑
x∈E w(x). It may happen that several sets of F will have

the minimal weight. If this is not the case, i.e., if minE∈F w(E) is achieved
by a unique E ∈ F , then we say that w is isolating for F .
The following lemma, due to K. Mulmuley, U. Vazirani, and V. Vazirani

(1987), says that – independent of what our family F actually is – a randomly
chosen w is isolating for F with large probability.
Lemma 11.5. Let F be a family of subsets of an n-element set X. Let
w : X → {1, . . . , N} be a random function, each w(x) independently and
uniformly chosen over the range. Then
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11 Witness Sets and Isolation

Pr [w is isolating for F ] ≥ 1− n

N
.

Proof (Spencer 1995). For a point x ∈ X , set

α(x) = min
E∈F ;x �∈E

w(E)− min
E∈F ;x∈E

w(E \ {x}).

A crucial observation is that evaluation of α(x) does not require knowledge
of w(x). As w(x) is selected uniformly from {1, . . . , N},

Pr [w(x) = α(x)] ≤ 1/N,

so that
Pr [w(x) = α(x) for some x ∈ X ] ≤ n/N.

But if w had two minimal sets A,B ∈ F and x ∈ A \ B, then

min
E∈F ;x �∈E

w(E) = w(B),

min
E∈F ;x∈E

w(E \ {x}) = w(A)− w(x),

so w(x) = α(x). Thus, if w is not isolating for F then w(x) = α(x) for some
x ∈ X , and we have already established that the last event can happen with
probability at most n/N . �	

11.4 Isolation in politics: the dictator paradox

One of the problems of politics involves averaging out individual preferences
to reach decisions acceptable to society as a whole. In this section we will
prove one isolation-type result due to Arrow (1950) which shows that, under
some simple “democracy axioms” this is indeed a difficult task.
The simple process of voting can lead to surprisingly counterintuitive para-

doxes. For example, if three people vote for three candidates, giving the rank-
ings x < y < z, y < z < x, z < x < y, then a majority prefers y to x (x < y),
x to z (z < x) but also z to y (y < z). In general, we have the following
situation.
Suppose that I = {1, . . . , n} is a society consisting of a set of n individuals.

These individuals are to be offered a choice among a set X of options, for
example, by a referendum. We assume that each individual i has made her/his
mind up about the relative worth of the options. We can describe this by a
total order <i on X , for each i ∈ I, where x <i y means that the individual
i prefers option y to option x. So, after a referendum we have a set R = {<1
, . . . , <n} of total orders on X . A social choice function F takes such a set of
total orders as input and comes up with a “social preference” on X , i.e., with
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11.4 Isolation in politics: the dictator paradox

some total order < on X . Being total means, in particular, that the order <
is transitive: if x < y and y < z then x < z.
Given a social choice function F , a dictator is an individual i0 ∈ I such

that for every referendum, the resulting social preference < coincides with
the preference <i0 of this individual. That is, for any given set of total or-
ders R = {<1, . . . , <n}, the social choice function will output the order <i0 ,
independent of preferences <i made by other individuals i �= i0.
Arrow’s theorem asserts that, if the choice function F fulfills some natural

“democracy axioms,” then there will always be a dictator! That is, once we fix
some social choice function F , then there will be an individual (a dictator?)
whose options prevail against all options.
Let us consider the following three natural democracy axioms:

(A1) If x < y (in the social preference), then the same remains true if the
individual preferences are changed in y’s favor.

(A2) If Y ⊆ X is a set of options and if during two referendums no individual
changes his/her mind about the options within the set Y (i.e. no one
changes his mind about y < y′ or y′ < y for y, y′ that are both in Y ),
then the society also don’t changes its mind about these options.

(A3) For any distinct options x, y ∈ X , there is some system of individual
preferences for which the corresponding social preference has x < y.
That is, it should be possible for society to prefer y to x if enough
individuals do so.

Theorem 11.6. If |X | ≥ 3 then for every social choice function, satisfying
the three democracy axioms above, there is a dictator.

Proof. We follow the elegant argument from Cameron (1994). Suppose that
we have a social choice function. If (x, y) is an ordered pair of distinct options,
we say that a set J of individuals is (x, y)-decisive if, whenever all members
of J prefer y to x, then so does the social order; formally, if x <i y for all
i ∈ J , then x < y. Further, we say that J is decisive if it is (x, y)-decisive for
some distinct x, y ∈ X .
Let J be a minimal decisive set. It follows from (A1)–(A3) that, for any

distinct options x, y ∈ X , if every individual prefers y to x then so does the
social order. Hence, J �= ∅. Suppose that J is (x, y)-decisive, and let i0 be a
member of J .

Claim 11.7. J = {i0}.
To prove the claim, suppose the opposite and let J ′ := J \ {i0} and K :=

I\J . Let v be an option in X different from x and y (remember that |X | ≥ 3).
Consider the individual preferences <i, i ∈ I for which

x <i0 y <i0 v
v <i x <i y for all i ∈ J ′

y <j v <j x for all j ∈ K
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11 Witness Sets and Isolation

Then x < y, since all members of the (x, y)-decisive set J think so, and
y < v, since if v < y then J ′ would be (v, y)-decisive (nobody outside J ′
thinks so), contradicting the minimality of J . Hence x < v. But then {i0} is
(x, v)-decisive, since nobody else agrees with this order. By minimality of J ,
we have J = {i0}, as desired.
Claim 11.8. i0 is a dictator.

We have to prove that {i0} is (u, v)-decisive for any pair of different options
u �= v. The case when u = x is covered by the (proof of) Claim 11.7, and we
are left with two possible situations: either v = x or neither v = x nor u = x.
The argument in both cases is similar.

Case 1: u �= x and v �= x.
Consider individual preferences in which

u <i0 x <i0 v
v <j u <j x for all j �= i0

Then u < x (because everybody thinks so) and x < v (because i0 thinks so
and, by Claim 11.7, is (x, v)-decisive for any v �= x); hence u < v, and {i0}
is (u, v)-decisive because nobody else agrees with this order.

Case 2: v = x.
Take z �∈ {u, x} and consider individual preferences in which

u <i0 z <i0 x
z <j x <j u for all j �= i0

Then u < z (because i0 thinks so and both u, z differ from x) and z < x
(because everybody thinks so); hence u < x, and {i0} is (u, x)-decisive.
This completes the proof of the claim, and thus, the proof of the theorem.

�	

Exercises

11.1. Bondy’s theorem (Theorem 11.1) implies that, if we take n binary
vectors of length n, then all these vectors differ on some set of n − 1 bits.
Does this hold for n+ 1 vectors?

11.2. Prove that every set of m vectors contains a vector whose witness has
size at most log2 m.

11.3. Generalize Lemma 11.4 as follows. Let A be a set of m 0-1 vectors. For
an integer l, 1 ≤ l ≤ m, let

f(m, l) = min {k : k ≥ 1 and k +m/k ≥ l + 2} .
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Exercises

Prove that:

(a) at most f(m, l) vectors in A have a minimal witness of size at least l;
(b) for any k ≤ m, at least k − f(k, l − log2 m) vectors in A have witness of
size at most l.

11.4. Lemma 11.5 isolates the unique set with the minimal weight. With
what probability will there be a unique set with the maximal weight?

11.5. Prove that Lemma 11.5 also holds when the weight of a set is defined
to be the product of the weights of its elements.
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12. Designs

The use of combinatorial objects, called designs, originates from statistical
applications. Let us assume that we wish to compare v varieties of wines. In
order to make the testing procedure as fair as possible it is natural to require
that:

(a) each participating person tastes the same number (say k) of varieties so
that each person’s opinion has the same weight;

(b) each pair of varieties is compared by the same number (say λ) of persons
so that each variety gets the same treatment.

One possibility would be to let everyone taste all the varieties. But if v is
large, this is very impractical (if not dangerous, as in the case of wines), and
the comparisons become rather unreliable. Thus, we should try to design the
experiment so that k < v.

Definition 12.1. Let X = {1, . . . , v} be a set of points (or varieties).
A (v, k, λ) design over X is a collection D of distinct subsets of X (called
blocks) such that the following properties are satisfied:

(1) each set in D contains exactly k points;
(2) every pair of distinct points is contained in exactly λ blocks.

The number of blocks is usually denoted by b. If we replace (2) by the following
property:

(2’) every t-element subset of X is contained in exactly λ blocks,

then the corresponding family is called a t–(v, k, λ) design. A Steiner system
S(t, k, v) is a t–(v, k, λ)-design with λ = 1. A design, in which b = v (i.e., the
number of blocks and points is the same) is often called symmetric.
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12 Designs

12.1 Regularity

In every design, every pair of points lies in the same number of blocks. It is
easy to show that then the same also holds for every single point. A family
of sets F is r-regular if every point lies in exactly r sets; r is the replication
number of F .
Theorem 12.2. Let D be a (v, k, λ) design containing b blocks. Then D is
r-regular with the replication number r satisfying the equations

r(k − 1) = λ(v − 1). (12.1)

and
bk = vr. (12.2)

Proof. Let a ∈ X be fixed and assume that a occurs in ra blocks. We count
in two ways the cardinality of the set

{(x,B) : B ∈ D; a, x ∈ B;x �= a} .

For each of the v − 1 possibilities for x (x �= a) there are exactly λ blocks
B containing both a and x. The cardinality of the set is therefore (v − 1)λ.
On the other hand, for each of the ra blocks B containing a, the element
x ∈ B \{a} can be chosen in |B|−1 = k−1 ways. Hence (v−1)λ = ra(k−1).
This shows that ra is independent of the choice of a and proves (12.1).
To prove the second claim we count in two ways the cardinality of the set

{(x,B) : B ∈ D, x ∈ B}.

For each x ∈ X the block B can be chosen in r ways. On the other hand, for
each of the b blocks B the element x ∈ B can be chosen in k ways. Hence
vr = bk, as desired. ��
Thus, every design is an r-regular family with the parameter r satisfying

both equations (12.1) and (12.2). It turns out that for regularity the second
condition (12.2) is also sufficient. The proof presented here is due to David
Billington (see Cameron 1994).

Theorem 12.3. Let k < v and b ≤ (
v
k

)
. If bk = vr then there is an r-regular

family F of k-subsets of {1, . . . , v} with |F| = b.

Proof. There is a simple way to make a k-uniform family F “more regular.”
(We have already used a similar argument in the proof of Theorem 10.2 to
make a given set of binary vectors “more hereditary.”)
Let rx be the replication number of x, the number of sets of F which

contain x. (In our previous notation this is the degree d(x) of a point in the
family F . Here we follow the notation which is usual in the design theory.)
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12.2 Finite linear spaces

If rx > ry, then there must exist a (k − 1)-set A, containing neither x
nor y, such that {x} ∪ A ∈ F and {y} ∪ A �∈ F . Now form a new family
F ′ by removing {x} ∪ A from F and including {y} ∪ A in its place. In the
new family, r′x = rx − 1, r′y = ry + 1, and all other replication numbers
are unaltered. Starting with any family of k-sets, we reach by this process
a family in which all the replication numbers differ by at most 1 (an almost
regular family), containing the same number of sets as the original family. By
double counting, the average replication number is

1
v

∑
rx =

1
v

∑
A∈F

|A| = bk

v
;

and an almost regular family whose average replication number is an integer
must be regular. ��

12.2 Finite linear spaces

Sometimes it is possible to show that a design has at least as many blocks
as it has points. The well-known Fisher’s Inequality (Theorem 7.5) implies
that if D is a (v, k, λ) design then |D| ≥ v (see Exercise 12.1). Many general-
izations exist. For example, the Petrenjuk–Ray-Chaudhuri–Wilson Inequality
(Petrenjuk 1968, Ray-Chaudhuri, and Wilson 1975) states that, if D is a 2s–
(v, k, λ) design with v ≥ k + s then |D| ≥ (

v
s

)
. Both results can be obtained

using the linear algebra method (cf. Exercise 7.6).
Some of these results, however, may be proved by direct double counting.

Such, for example, is the argument due to Conway for the case of “finite
linear spaces.” (Do not confuse these linear spaces with those from Analysis.)
A (finite) linear space over a set X is a family L of its subsets, called lines,

such that:

- every line contains at least two points, and
- any two points are on exactly one line.

Theorem 12.4 (De Bruijn–Erdős 1948). If L is a linear space over X then
|L| ≥ |X |, with equality iff any two lines share exactly one point.

Proof (due to J. Conway). Let b = |L| ≥ 2 and v = |X |. For a point x ∈ X ,
let rx, as above, be its replication number, i.e., the number of lines in L
containing x. If x �∈ L then rx ≥ |L| because there are |L| lines joining x to
the points on L. Suppose b ≤ v. So, for x �∈ L, we have

b(v − |L|) ≥ v(b − rx) .

Hence
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b =
∑
L∈L
1 =

∑
L∈L

∑
x:x �∈L

1
v − |L| ≤ b

v

∑
L∈L

∑
x:x �∈L

1
b − rx

= b

v

∑
x∈X

∑
L:x �∈L

1
b − rx

= b

v

∑
x∈X
1 = b,

and this implies that all inequalities are equalities so that b = v, and rx = |L|
whenever x �∈ L. ��
There are several methods to construct (symmetric) designs. In the next

two sections we will study two of them: one comes from “difference sets”
in abelian groups, and the other from “finite geometries.” The third impor-
tant construction, which arises from Hadamard matrices, will be described
in Chap. 14 (see Theorem 14.11).

12.3 Difference sets

Let Zv be an additive Abelian group of integers modulo v. We can look at
Zv as the set of integers {0, 1, . . . , v − 1} where the sum is modulo v.
Definition 12.5. Let 2 ≤ k < v and λ ≥ 1. A (v, k, λ) difference set is a
k-element subset D = {d1, d2, . . . , dk} ⊆ Zv such that the collection of values
di − dj (i �= j) contains every element in Zv \ {0} exactly λ times.
Since the number of pairs (i, j) with i �= j equals k(k − 1) and these give

each of the v − 1 nonzero elements λ times as a difference, it follows that

λ(v − 1) = k(k − 1). (12.3)

If D is a difference set, we call the set

a+D := {a+ d1, a+ d2, . . . , a+ dk}

a translate of D. Notice that our assumption k < v together with (12.3)
implies that all the translates of a difference set are different. Indeed, if a+
D = D for some a �= 0, then there is a permutation π of {1, . . . , k} so that
π(i) �= i and a+ di = dπ(i) for all i. Hence, a can be expressed as a difference
dπ(i) − di in k ways; but λ < k by (12.3) and our assumption that k < v.

Theorem 12.6. If D = {d1, d2, . . . , dk} is a (v, k, λ) difference set then the
translates

D, 1 +D, . . . , (v − 1) +D
are the blocks of a symmetric (v, k, λ) design.

Proof. We have v blocks over v points. Since, clearly, every one of the trans-
lates contains k points, it is sufficient to show that every pair of points is
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contained in exactly λ blocks. Let x, y ∈ Zv, x �= y. Suppose that x, y ∈ a+D
for some a ∈ Zv. Then x = a + di and y = a + dj for some pair i �= j. Also,
we have di − dj = x − y = d. Now, there are exactly λ pairs i �= j such
that di − dj = d, and for each such pairs, there is exactly one a for which
x, y ∈ a+D, namely, a = x − di = y − dj . ��
Let us now describe one construction of difference sets. Squares (or

quadratic residues) in Zv are the elements a2 for a ∈ Zv.

Theorem 12.7. If v is a prime power and v ≡ 3 mod 4, then the nonzero
squares in Zv form a (v, k, λ) difference set with k = (v − 1)/2 and λ =
(v − 3)/4.
The condition v ≡ 3 mod 4 is only used to ensure that −1 is not a square in

Zv, i.e., that −1 �≡ a2 mod v for all a ∈ Zv. This fact follows from elementary
group theory, and we omit its proof here.

Proof. Let D be the set of all nonzero squares, and k = |D|. First, observe
that k = (v − 1)/2. Indeed, the nonzero squares in Zv are the elements a2

for a ∈ Zv \ {0}. But for every such a the equation x2 = a2 has two different
solutions x = ±a. So, every pair (+a,−a) gives rise to only one square. This
means that exactly half of the nonzero elements in Zv are squares, and hence
k = (v − 1)/2.
By the remark above, −1 is not a square in Zv. Hence, if S is the set of

all nonzero squares then −S = {−s : s ∈ S} is exactly the set of nonsquares.
For any s ∈ S, the pair (x, y) ∈ S × S satisfies the equation x − y = 1 if
and only if the pair (sx, sy) ∈ S × S satisfies the equation sx − sy = s, or
equivalently, if and only if the pair (sy, sx) ∈ S × S satisfies the equation
sy − sx = −s. This shows that all nonzero squares s ∈ S and all nonsquares
−s ∈ −S have the same number λ of representations as a difference of two
nonzero squares. We can compute λ from the equation (12.3), which gives
λ = k(k − 1)/(v − 1) = (v − 3)/4. ��

12.4 Projective planes

Let L ⊆ 2X be a linear space with |L| = b and |X | = v. By Theorem 12.4,
b ≥ v. In this section we will consider linear spaces with b = v and with
an additional requirement that every line has the same number, say q + 1,
of points. Then L turns into a symmetric (v, k, λ) design with λ = 1 and
k = q + 1. Such a design is known as a projective plane of order q. (The
reason for taking the block size of the form k = q + 1 is that, for any prime
power q, such a design has a very transparent construction using the Galois
field Fq; we will give this construction below.) By Theorem 12.2, we have
v = b = q2 + q + 1.
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Projective planes have many applications. They are particularly useful to
show that some bounds in Extremal Set Theory are optimal (cf., for example,
Lemma 2.1 and Theorems 6.2, 11.3). Due to their importance, projective
planes deserve a separate definition.

Definition 12.8. A projective plane of order q consists of a set X of q2+q+1
elements called points, and a family L of subsets of X called lines, having the
following properties:

- Every line has q + 1 points.
- Every two points lie on a unique line.

The only possible projective plane of order q = 1 is a triangle. For q = 2,
the unique projective plane of order q is the famous Fano plane (see Fig. 12.1).

Fig. 12.1 The Fano plane with 7 lines and 3 points on a line

Additional properties of projective planes are summarized as follows:

Proposition 12.9. A projective plane of order q has the properties:

(i) Any point lies on q + 1 lines.
(ii) There are q2 + q + 1 lines.
(iii) Any two lines meet in a unique point.

Proof. (i) Take a point x. There are q(q + 1) points different from x; each
line through x contains q further points, and there are no overlaps between
these lines (apart from x). So, there must be q + 1 lines through x.
(ii) Counting in two ways the pairs (x, L) with x ∈ L, we obtain

|L| · (q + 1) = (q2 + q + 1) · (q + 1), so |L| = q2 + q + 1.
(iii) Let L1 and L2 be lines, and x a point of L1. Then the q+ 1 points of

L2 are joined to x by different lines; since there are only q + 1 lines through
x, they all meet L2 in a point; in particular, L1 meets L2. ��
A nice property of projective planes is their duality. Let (X,L) be a pro-

jective plane of order q, and let M = (mx,L) be its incidence matrix. That is,
M is n by n 0-1 matrix, the rows and columns of which correspond to points
and lines, and mx,L = 1 iff x ∈ L. Each row and column of M has exactly
q + 1 ones, and any two rows and any two columns share exactly one 1.

170



12.4 Projective planes

12.4.1 The construction

The standard construction for projective planes of any prime order q ≥ 2 is
the following.
Let V be the set of all vectors (x0, x1, x2) of elements of Fq, where x0, x1, x2

are not all zero. We identify the vectors that can be obtained from each other
by multiplying by a nonzero element of Fq, and call each such collection of
vectors a point. That is, points of our plane are sets

[x0, x1, x2] = {(cx0, cx1, cx2) : c ∈ Fq, c �= 0}

of q − 1 vectors in V . There are (q3 − 1)/(q − 1) = q2 + q + 1 such sets,
and hence, so many points. The line L(a0, a1, a2), where (a0, a1, a2) ∈ V , is
defined to be the set of all those points [x0, x1, x2] for which

a0x0 + a1x1 + a2x2 = 0. (12.4)

How many points does such a line L(a0, a1, a2) have?
Because (a0, a1, a2) ∈ V , this vector has at least one nonzero compo-

nent; say a0 �= 0. Therefore, the equation (12.4) has exactly q2 − 1 solutions
(x0, x1, x2) ∈ V : for arbitrary x1, x2, not both zero, this equation uniquely de-
termines x0. Since each [x0, x1, x2] consists of q− 1 vectors, there are exactly
(q2 − 1)/(q − 1) = q + 1 points [x0, x1, x2] satisfying (12.4). In other words:
there are exactly q + 1 points on each line. So, it remains to verify that any
two points lie on a unique line.
To show this, let [x0, x1, x2] and [y0, y1, y2] be two distinct points. How

many lines contain both these points? For each such line L(a0, a1, a2),

a0x0 + a1x1 + a2x2 = 0,
a0y0 + a1y1 + a2y2 = 0.

Without loss of generality x0 �= 0. Then a0 = −a1x1/x0 − a2x2/x0, and we
can replace the second equation by

a1

(
y1 − y0

x0
x1

)
+ a2

(
y2 − y0

x0
x2

)
= 0. (12.5)

If
y1 − y0

x0
x1 = y2 − y0

x0
x2 = 0

then (y0, y1, y2) = (cx0, cx1, cx2) with c = y0/x0, and hence, [y0, y1, y2] =
[x0, x1, x2], which is impossible since we consider distinct points. Therefore,
at least one of them, say y1−(y0/x0)x1, is nonzero. Then for arbitrary nonzero
a2, both a1 and a0 are uniquely determined by (12.5) and the first equation;
and if (a0, a1, a2) is a solution then (ca0, ca1, ca2) for c �= 0 are all the solu-
tions. Consequently, every two different points [x0, x1, x2] and [y0, y1, y2] are
contained in a unique line, as desired.
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The constructed projective plane is usually denoted by PG(2, q).

12.4.2 Bruen’s theorem

A blocking set in a projective plane is a set of points which intersects every
line. The smallest (with respect to the set–theoretic inclusion) blocking sets
are just the lines (show this!). This is why blocking sets containing a line are
called trivial.
What can be said about the size of non-trivial blocking sets? Lines them-

selves have q + 1 points, and these are trivial blocking sets. Can we find a
non-trivial blocking set with, say q + 2 or q + 3 points? The fundamental re-
sult due to Bruen (1970) says that any non-trivial blocking set in a projective
plane of order q must have at least q+√

q+1 points, and this lower bound is
tight when q is a square (that is, for square q blocking sets of this size exist).
For the prime order q, Blokhuis (1994) improved Bruen’s bound to 3(q+1)/2
(which is also optimal).

Theorem 12.10 (Bruen 1970). Let B be a non-trivial blocking set in a pro-
jective plane of order q. Then |B| ≥ q +√

q + 1.

This result captures a very interesting property of projective planes: if we
take any set of at most q+√

q points, then either it contains a line or avoids
a line (the third is impossible!).

Proof. Let |B| = q + m, and assume that m ≤ √
q + 1. We will show that

|B| = q+√
q+1. Let li be the number of lines containing precisely i points of

B. Counting lines, point-line pairs (x, L) with x ∈ B ∩L, and triples (x, y, L)
with x �= y in B ∩ L, we obtain

m∑
i=1

li = q2 + q + 1

m∑
i=1

i · li = |B|(q + 1) every point lies in q + 1 lines

m∑
i=1

i(i − 1)li = |B|(|B| − 1) two points lie on exactly one line.

Since m ≤ √
q + 1, we have that i − √

q − 1 ≤ 0 for all i = 1, . . . ,m. This, in
particular, implies that
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0 ≥
m∑
i=1
(i − 1)(i − √

q − 1)li

=
m∑
i=1

i(i − 1)li − (√q + 1)
m∑
i=1

i · li + (√q + 1)
m∑
i=1

li

= |B|(|B| − 1)− (√q + 1)|B|(q + 1) + (√q + 1)(q2 + q + 1)

= [|B| − (q +√
q + 1)] · [|B| − (q√q + 1)] .

Since |B| ≤ q + √
q + 1 (by our assumption), the second term is negative,

implying that the first one cannot be negative, that is, |B| ≥ q +√
q + 1, as

desired. ��

12.5 Resolvable designs

Suppose D is a (v, k, λ) design over a set X . A parallel class in D is a subset
of disjoint blocks from D whose union is X . Observe that a parallel class
contains v/k blocks, and every point of X appears in exactly one of these
blocks. Moreover, by (12.1) and (12.2), we have

r = |D|k/v = λ(v − 1)/(k − 1)

such classes, where r is the replication number of D (the number of blocks
containing a given point). A partition of D into r parallel classes is called a
resolution, and a design is said to be resolvable if it has at least one resolution.
Let us consider the following example from Anderson and Honkala (1997).

We have a football league of 2n teams and each team plays exactly once
against every other team. We wish to arrange the league schedule so that all
the matches are played during 2n−1 days, and on each day every team plays
one match. Is this possible?
What we are looking for is a resolvable (2n, 2, 1) design. For convenience,

let our ground set (of teams) be X = {∗, 1, . . . , 2n − 1}, where ∗ is some
symbol different from 1, . . . , 2n − 1. Since by (12.1), the replication number
equals

r = λ(v − 1)/(k − 1) = 1 · (2n− 1)/(2− 1) = 2n− 1,
we have to show how to partite the collection D of all 2-element subsets of
X into 2n − 1 parallel classes D1, . . . ,D2n−1; the i-th class Di gives us the
set of matches played at the i-th day.
Define {i, ∗} ∈ Di for all i ∈ X \ {∗}, and {a, b} ∈ Di, if

a+ b ≡ 2i mod 2n− 1
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for a, b ∈ X \ {∗}. Since 2n − 1 is odd, each 2-element subset of X belongs
to a unique Di; and the unique block in Di containing an element a ∈ X is
{a, b} where b ≡ 2i− a mod 2n− 1 if a �= i, and {i, ∗} if a = i.

12.5.1 Affine planes

An affine plane AG(2, q) of order q is a (q2, q, 1) design. By (12.1), each point
of this plane belongs to r = (q2 − 1)/(q − 1) = q + 1 lines, and by (12.2),
we have b = vr/k = q2 + q lines altogether. Put otherwise, an affine plane of
order q has q2 points and satisfies the following conditions:

- every line has q points;
- any two points lie on a unique line;
- any point lies on q + 1 lines;
- there are q2 + q lines.

Hence, the main difference from projective planes is that now we can have
“parallel” lines, i.e., lines which do not meet each other.
There are two basic constructions of affine planes.
Construction 1. An affine plane can be obtained from a projective plane

by removing any one of its lines. Let (X,L) be a projective plane of order
q. Fix one of its lines L0 ∈ L and consider the design (X ′,L′) where X ′ =
X \L0 and L′ = {L \ L0 : L ∈ L, L �= L0} (see Fig. 12.2). It is easy to verify
(Exercise 12.11) that the obtained design (X ′,L′) is an affine plane of order
q. The line L0 is called the line at infinity. For each line L′ ∈ L′ of the affine
plane there is a unique point x ∈ L0 such that L′ ∪ {x} ∈ L; this point is
called the infinite point of L′.

1

2 4

5

7
7 4

566

3

Fig. 12.2 Construction 1 applied to the Fano plane; L0 = {1, 2, 3} is the removed line
(the line at infinity).

Construction 2. Let q be a prime power, and consider the set of points
X = Fq × Fq. Let D be the set of all blocks of the form

L(a, b) := {(x, y) ∈ X : y = ax+ b}

and
L(c) := {(c, y) : y ∈ Fq},
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Exercises

where a, b, c ∈ Fq. We will show that D is a (q2, q, 1) design. Clearly, there
are q2 points and each block contains exactly q of them. Hence, we only need
to show that every pair of points (x1, y1), (x2, y2) ∈ Fq × Fq is contained in a
unique block. If x1 = x2 then the unique block containing this pair is L(x1).
If x1 �= x2 then the system of equations y1 = ax1 + b, y2 = ax2 + b has a
unique solution (a, b); hence, the unique block containing that pair is L(a, b),
and we are done.
It can be shown that affine planes are resolvable designs (see Exer-

cise 12.12): the parallel classes are {L\{x} : x ∈ L} for x ∈ L0, in Construc-
tion 1, and {L(c) : c ∈ Fq} together with {L(a, b) : b ∈ Fq} for all a ∈ Fq,
in Construction 2.

Exercises

12.1. Let D = {A1, . . . , Am} be a (v, k, λ) design over some set X with
|X | = v. Use Fisher’s inequality (Theorem 7.5) to show that |D| ≥ v. Hint:
Consider the sets Sx = {i : x ∈ Ai} and show that |Sx ∩ Sy | = λ for all x �= y ∈ X .

12.2. Let D ⊆ 2X be a (v, k, λ) design with b blocks, and let r be its repli-
cation number (i.e., each element occurs in r blocks). Prove that its comple-
ment D := {X \ B : B ∈ D} is a (v, v − k, b − 2r + λ) design provided that
b − 2r + λ > 0. Hint: A pair of elements x �= y is contained in X \ B if and only if
B contains neither x nor y. The number of blocks of D containing neither x nor y is
b− 2r + λ by the principle of inclusion and exclusion.

12.3. Show that the number b of blocks in a t–(v, k, λ) design is given by
b = λ

(
v
t

)/(
k
t

)
. Hint: Count in two ways the number of pairs (T,B) where T is a

t-element set of points and B is a block.

12.4. Construct a projective plane PG(2, q) of order q = 3.

12.5. Show that, in a projective plane of order q, its lines are the only blocking
sets of size q + 1. Hint: See Exercise 7.7.

12.6. From the previous example we know that no set of q points intersects all
the lines. We can ask the dual question: are there sets of size q that intersect
every non-trivial blocking set? Show that there are no such sets and that the
only sets of size q + 1 that intersect every blocking set are the lines. Sketch:
(due to Blokhuis): Take any set S of q points, and start with a line L0 not intersecting
this set. Delete one (suitable) point x ∈ L0 from that line, and add a point yi ∈ Li \S on
every other line Li through the deleted point x. The resulting set (L0\{x})∪{y1, . . . , yq}
is blocking and is disjoint from S. This blocking set might be trivial (i.e., contain a line),
but it can be made non-trivial by deleting some unnecessary point of the line we started
with.
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12.7. (due to Bruen). Let S be a nontrivial blocking set in a projective plane
of order q. Show that:

(i) |S| ≤ q2 − √
q, and

(ii) no line contains more than |S| − q points of S.

Hint: To (i): observe that the complement of S is also a nontrivial blocking set, and
apply Bruen’s theorem. To (ii): take a line L and a point x ∈ L \ S; there are q other
lines through x and these lines intersect S; argue that then |L ∩ S| + q ≤ |S|.

12.8. Let S be a set of q + 2 points in a projective plane of order q. Prove
that every line, that meets S, meets it twice.

12.9. Let S be a set of points in a projective plane of order q. Suppose that
no three points of S are colinear (i.e., lie on a line). Prove that then |S| ≤ q+1
if q is odd, and |S| ≤ q + 2 if q is even. Hint: Fix a point x ∈ S; for each other
point y ∈ S the pair x, y lies on one of q + 1 lines (containing x), and these lines must
be different for different y. This proves the odd case. For the even case show that, if
|S| = q + 2 then every line that meets S, meets it twice.

12.10. Color some q points of a projective plane of order q in red, and the
rest in blue. Prove that, for any two different sets A �= B of red points, there
is a set C of q blue points such that A∪C is a blocking set but B ∪C avoids
at least one line. Hint: Take a point x ∈ A \B, and show that some two lines L1 and
L2 meet in the (red) point x and have no more red points; take C = L1 \ {x}.

12.11. Take a projective plane of order q, i.e., a design satisfying the condi-
tions (P1)–(P5), and apply the first construction from Sect. 12.5.1 to it. Show
that the resulting design satisfies the conditions (A1)–(A4).

12.12. Consider a (q2, q, 1) design, i.e., an affine plane of order q. Show that
this design is resolvable. More generally, let a parallel class be a set of mutu-
ally disjoint lines, and show the following:

(i) each parallel class contains q lines;
(ii) there are q + 1 such classes;
(iii) any two lines from different classes meet in a point;
(iv) lines of each parallel class cover the whole point set.

Hint: Each parallel class contains exactly one line through any point; so, the q+ 1 lines
through a point x contain representatives of all the classes.
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The Linear Algebra Method

 
 

 





13. The Basic Method

The general framework for the linear algebra method in combinatorics is the
following: if we want to come up with an upper bound on the size of a set of
objects, associate them with elements in a vector space V of relatively low
dimension, and show that these elements are linearly independent; hence, we
cannot have more objects in our set than the dimension of V .

13.1 The linear algebra background

A field is a set F closed under addition, subtraction, multiplication and divi-
sion by nonzero element. By addition and multiplication, we mean commu-
tative and associative operations which obey distributive laws. The additive
identity is called zero, and the multiplicative identity is called unity. Exam-
ples of fields are reals R, rationals Q, and integers modulo a prime p. We will
be mostly concerned with finite fields. The cardinality of a finite field must
be a power of a prime and all finite fields with the same number of elements
are isomorphic. Thus, for each prime power q there is essentially one field F

with |F| = q. This field is usually denoted as GF (q) or Fq.
A linear space (or vector space) V over a field F is an additive Abelian

group (V,+,0) closed under (left) multiplication by elements of F (called
scalars). It is required that this multiplication is distributive with respect to
addition in both V and F, and associative with respect to multiplication in F.
Elements of V are called vectors or points. Standard examples of vector spaces
are subsets V ⊆ F

n of vectors closed under the component-wise addition u+
v = (u1 + v1, . . . , un + vn) and multiplication by scalars λv = (λv1, . . . , λvn),
λ ∈ F.
A linear combination of the vectors v1, . . . , vm is a vector of the form

λ1v1 + . . . + λmvm with λi ∈ F. A subspace of V is a nonempty subset
of V, closed under linear combinations. The span of v1, . . . , vm, denoted by
span {v1, . . . , vm}, is the set of all linear combinations of these vectors. A
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vector u depends on the vectors v1, . . . , vm if u ∈ span {v1, . . . , vm}. The
vectors v1, . . . , vm are linearly independent if none of them is dependent on
the rest. Equivalently, the (in)dependence can be defined as follows.
A linear relation among the vectors v1, . . . , vm is a linear combination that

gives the zero vector:
λ1v1 + . . .+ λmvm = 0.

This relation is nontrivial if λi �= 0 for at least one i. It is easy to see that
the vectors v1, . . . , vm are linearly independent if and only if no nontrivial
relation exists between them. A basis of V is a set of independent vectors
which spans V . A fundamental fact in linear algebra says that any two bases
of V have the same cardinality; this number is called the dimension, dimV ,
of V .
A further basic fact is the so-called linear algebra bound (see any standard

linear algebra book for the proof):

Proposition 13.1. If v1, . . . , vk are linearly independent vectors in a vector
space of dimension m then k ≤ m.

An important operation in vector spaces is the scalar product of two vec-
tors. Given two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), their scalar
product 〈u, v〉 (also called inner product and denoted u · v) is defined by:

〈u, v〉 = u� · v := u1v1 + · · ·+ unvn.

Vectors u and v are orthogonal if 〈u, v〉 = 0; in this case one also writes u ⊥ v.
If U ⊆ V is a subspace of V then the dual (or orthogonal complement) is the
subspace

U⊥ = {v ∈ V : 〈u, v〉 = 0 for all u ∈ U}.
The following useful equality connects the dimensions of two orthogonal sub-
spaces.

Proposition 13.2. Let V be a finite dimensional linear space, and U ⊆ V
be a subspace. Then dimU + dimU⊥ = dim V.

A consequence of this is that, for every linear subspace U ⊆ R
n and every

vector x ∈ U , there are uniquely defined vectors u ∈ U and w ∈ U⊥ such
that x = u+ w. The vector u is then called the projection of x onto U .
If A = (aij) is an m-by-n matrix over some field F and x is a vector in F

m,
then x� · A is the vector in F

n whose j-th coordinate is the scalar product
of x with the j-th column of A. Thus, the rows of A are linearly independent
if and only if x� · A �= 0 for all x �= 0. Similarly, if y ∈ F

n, then A · y is the
vector in F

m whose i-th coordinate is the scalar product of y with the i-th
row of A.
The column rank of a matrixA is the dimension of the vector space spanned

by its columns. The row rank ofA is the dimension of the vector space spanned
by its rows. One of the first nontrivial results in matrix theory asserts that
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the row and column ranks are equal; this common value is the rank of A,
denoted by rk(A). There are several equivalent definitions of the rank of an
m-by-n matrix A = (aij) over a given field F:

(a) rk(A) is the smallest r such that A = B · C for some m-by-r matrix B
and r-by-n matrix C;

(b) rk(A) is the smallest r such that A can be written as a sum of r rank-1
matrices;

(c) rk(A) is the smallest r such that A is a matrix of scalar products of
vectors in F

r: there exist vectors u1, . . . , um and v1, . . . , vn in F
r such

that aij =
〈
ui, vj

〉
.

Usually, the underlying field F will be clear from the context. If the field still
needs to be specified, we will write rkF(A) instead of rk(A).
The following inequalities hold for the rank:

rk(A)− rk(B) ≤ rk(A+B) ≤ rk(A) + rk(B); (13.1)

rk(A) + rk(B) − n ≤ rk(AB) ≤ min {rk(A), rk(B)} , (13.2)

if A is an m-by-n and B an n-by-k matrix.
The determinant, det(A), of an n × n matrix A = (aij) is the sum of n!

signed products ±a1i1a2i2 · · · anin , where (i1, i2, . . . , in) is a permutation of
(1, 2, . . . , n), the sign being +1 or −1, depending on whether the number of
inversions of (i1, i2, . . . , in) is even or odd; an inversion occurs when ir > is
but r < s. It can be shown (do this!) that det(A) �= 0 implies rk(A) = n.
If x = (x1, . . . , xn) denotes the vector of indeterminates, and b is a vector

in F
m, then the matrix equation A·x = b is a concise form of writing a system

of m linear equations in variables x1, . . . , xn:

ai1x1 + ai2x2 + · · ·+ ainxn = bi (i = 1, . . . ,m).

We have the following useful criterion for such a system being solvable. Let
a1, . . . , an ∈ F

m denote the columns of A. Observe that A ·x = x1a1+x2a2+
· · ·+ xnan. It follows that the set {A · x : x ∈ F

n} is a columns space of A,
i.e., the set of all vectors spanned by the columns of A. The system A · x = b
is thus solvable if and only if b ∈ span {a1, . . . , an} or, equivalently, if and
only if rk(A) = rk([A|b]), where [A|b] denotes the m×(n+1) matrix obtained
by adding the column b to A. A system A · x = b is homogeneous if b = 0.
The set of solutions of A · x = 0 is clearly a subspace (of all vectors that are
orthogonal to all the rows of A) and, by Proposition 13.2, its dimension is
n− rk(A). We summarize this important result:
Proposition 13.3. Let A be an m×n matrix over a field F. Then the set of
solutions of the system of linear equations A · x = 0 is a linear subspace of
dimension n− rk(A) of the space F

n.

This subspace is called the kernel of A.
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The norm (or length) of a vector v = (v1, . . . , vn) in R
n is the number

‖v‖ := 〈v, v〉1/2 =
( n∑
i=1

v2
i

)1/2
.

The following basic inequality, known as the Cauchy–Schwarz inequality,
estimates the scalar product of two vectors in terms of their norms (we have
already used it in previous sections; now we will prove it):

Proposition 13.4. For any real vectors u, v ∈ R
n,

| 〈u, v〉 | ≤ ‖u‖ · ‖v‖

with an equality iff u and v are linearly dependent.

When expressed explicitly, this inequality turns to:( n∑
i=1

uivi

)2
≤

( n∑
i=1

u2
i

)( n∑
i=1

v2
i

)
. (13.3)

Proof. We may assume that u �= 0. For any constant λ ∈ R we have

0 ≤ 〈λu − v, λu − v〉 = 〈λu, λu − v〉 − 〈v, λu − v〉
= λ2〈u, u〉 − 2λ〈u, v〉+ 〈v, v〉.

Substituting λ = 〈u,v〉
〈u,u〉 we get

0 ≤ 〈u, v〉2

〈u, u〉2 〈u, u〉 − 2 〈u, v〉2

〈u, u〉 + 〈v, v〉 = 〈v, v〉 − 〈u, v〉2

〈u, u〉
Rearranging the last inequality, we get 〈u, v〉2 ≤ 〈u, u〉〈v, v〉 = ‖u‖2 ·‖v‖2. 
�
A scalar λ is an eigenvalue of a square real matrix A if the equation

Ax = λx has a solution x ∈ R
n, x �= 0, which is the case iff the characteristic

polynomial pA(z) = det (A − zI) has λ as a root; here, I is a unit matrix with
1s on the diagonal, and 0s elsewhere. A non-zero x with Ax = λx is called an
eigenvector corresponding to the eigenvalue λ. Since pA has degree n, we can
have at most n (complex) eigenvalues. If the matrix A is symmetric, that is,
A� = A, then all its eigenvalues are real numbers.
The following are standard facts about the eigenvalues of a real symmetric

n× n matrix A = (aij):

1. A has exactly n (not necessarily distinct) real eigenvalues λ1 ≥ . . . ≥ λn.
2. There exists a set of n eigenvectors x1, . . . , xn, one for each eigenvalue, that
are normalized and mutually orthogonal, that is, ‖xi‖ = 1 and 〈xi, xj〉 = 0
over the reals. Hence, x1, . . . , xn form an orthonormal basis of R

n.
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13.1 The linear algebra background

3. The rank of A is equal to the number of its nonzero eigenvalues, including
multiplicities: rk(A) = |{i : λi �= 0}|.

4. The sum of all eigenvalues
∑n

i=1 λi is equal to the trace tr(A) =
∑n

i=1 aii.
5. The product

∏n
i=1 λi of all eigenvalues is equal to det(A).

6. Perron–Frobenius theorem: If A = (aij) is a real n × n matrix with non-
negative entries aij ≥ 0 and irreducible, then there is a real eigenvalue r
of A such that

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij

and any other eigenvalue λ satisfies |λ| ≤ r. A matrix is reducible if there
is a subset I ⊆ [n] such that aij = 0 for all i ∈ I and j �∈ I. In particular,
an adjacency matrix of a graph is irreducible iff the graph is connected.

There is also a general formula to compute eigenvalues explicitly. A weighted
average of a sequence x = (x1, . . . , xn) of numbers is a number

n∑
i=1

aixi with
n∑
i=1

ai = 1 .

We will use the following easy fact (prove it!): For every sequence x, any
weighted average of x is ≥ mini xi and is ≤ maxi xi.
Theorem 13.5. The k-th largest eigenvalue of a symmetric n× n matrix A
is

λk = max
dimU=k

min
x∈U

x�Ax
x�x

(13.4)

= min
dimU=k−1

max
x⊥U

x�Ax
x�x

. (13.5)

Here, the maximum/minimum is over all subspaces U of a given dimension,
and over all nonzero vectors x in the respective subspace. In particular, (13.5)
yields:

λ1 = max
x �=0

x�Ax
x�x

= max
‖x‖=1

x�Ax (13.6)

and
λ2 = max

x⊥1

x�Ax
x�x

= max
x⊥1,‖x‖=1

x�Ax , (13.7)

where 1 is the all-1 vector, and the second equality follows since we can
replace x by x/‖x‖, since the first maximum is over all nonzero vectors x.
Proof. We only prove the first equality (13.4)—the proof of the second one
is analogous. First of all, note that the quantity (known as the Rayleigh
quotient)

fA(x) =
x�Ax
x�x
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13 The Basic Method

is invariant under replacing x by any nonzero multiple cx. Therefore, we can
assume that x is a unit vector, that is, ‖x‖ = 1 and hence x�x = 1 (by
replacing x 
→ cx with c = 1/‖x‖, if necessary).
Consider an orthonormal basis of eigenvectors u1, . . . , un. Any vector x in

R
n can be written as x =

∑n
i=1 aiu

i, and the expression x�Ax reduces to

x�Ax =
( n∑
i=1

aiu
i

)�
A

( n∑
i=1

aiu
i

)
=

n∑
i,j=1

〈ui, λjuj〉 =
n∑
i=1

a2
i λi ,

where the last equality follows because the scalar product of vectors ui and
uj is 1 if i = j, and is 0 otherwise. By a similar argument, we have that
x�x =

∑n
i=1 a

2
i , and for unit vector x we get

∑n
i=1 a

2
i = 1. Thus, for each

unit vector x, the expression fA(x) can be interpreted as a weighted average
of the eigenvalues.
Now consider the subspace U ⊆ R

n generated by the first k eigenvec-
tors u1, . . . , uk. For any unit vector x ∈ U , we get x�Ax =

∑k
i=1 a

2
iλi and∑k

i=1 a
2
i = 1. The weighted average fA(x) of the eigenvalues λ1 ≥ . . . ≥ λk

is at least the smallest of the first k eigenvalues, so minx∈U fA(x) ≥ λk holds
for this special k-dimensional subspace U .
On the other hand, consider any subspace U of dimension k, and a sub-

space V of dimension n− k + 1 generated by the last n− k + 1 eigenvectors
uk, uk+1 . . . , un. These two subspaces must have nontrivial intersection, that
is, there must exist a nonzero vector z ∈ U ∩ V . By normalization, we can
assume that z =

∑n
j=k bju

j is a unit vector, z�z =
∑n

j=k b
2
j = 1 and we

obtain fA(z) =
∑n

j=k b
2
jλj ≤ λk, since fA(z) is a weighted average of the last

n−k+1 eigenvalues and the largest of these eigenvalues is λk. Consequently,
minx∈U fA(x) ≤ fA(z) ≤ λk holds for any k-dimensional subspace U . 
�
The spectral norm of a matrix A is defined as

‖A‖ := max
x �=0

‖Ax‖
‖x‖ .

The name “spectral norm” comes from the fact that

‖A‖ = square root of the largest eigenvalue of A�A.

This holds because x�(A�A)x = 〈Ax,Ax〉 = ‖Ax‖2. The Frobenius norm of
A is just the Euclidean norm

‖A‖F :=
(∑

i,j

a2
ij

)1/2

of the corresponding vector of length n2. The following fact relates these two
norms with the rank over the reals.
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13.2 Graph decompositions

Proposition 13.6. For every real matrix A,

‖A‖F√
rk(A)

≤ ‖A‖ ≤ ‖A‖F .

Proof. Observe that ‖A‖2
F is equal to the trace, that is, the sum of diagonal

elements of the matrix B = A�A. On the other hand, the trace of any real
matrix is equal to the sum of its eigenvalues. Hence, ‖A‖2

F =
∑n

i=1 λi where
λ1 ≥ . . . ≥ λn are the eigenvalues of B. Since B has only rk(B) = rk(A) = r
non-zero eigenvalues, and since all eigenvalues of B are nonnegative, the
largest eigenvalue λ1 is bounded by ‖A‖2

F/r ≤ λ1 ≤ ‖A‖2
F. It remains to use

the fact mentioned above that ‖A‖ = √
λ1. 
�

Let us now see how the linear algebra argument works in concrete situa-
tions.

13.2 Graph decompositions

A bipartite clique is a bipartite complete graph KA,B = (A ∪ B,E) with
A ∩ B = ∅ and E = A× B.
Let f(n) be the smallest number t such that the complete graph Kn on

n vertices 1, 2, . . . , n can be decomposed into t edge-disjoint bipartite cliques.
It is not difficult to see that f(n) ≤ n− 1. Indeed, it is enough to remove the
vertices 1, 2, . . . , n − 1 one-by-one, together with their incident edges. This
gives us a decomposition of Kn into edge-disjoint stars, that is, bipartite
cliques KAi,Bi with Ai = {i} and Bi = {i+ 1, . . . , n}, i = 1, . . . , n− 1.
This is, however, just one special decomposition and does not exclude

better ones. Still, a classical result of Graham and Pollak (1971) says that
the trivial decomposition is in fact the best one! This can be shown using
linear algebra.

Theorem 13.7. The edges of Kn cannot be decomposed into fewer than n−1
edge-disjoint biartite cliques.

Proof (due to Trevberg 1982). We consider a more general question: What is
the smallest number t such that the sum of products

S(x) :=
∑

1≤i<j≤n
xixj

in indeterminates x = (x1, . . . , xn) can be written as the sum

S(x) =
t∑
i=1
(
∑
j∈Ai

xj) · (
∑
j∈Bi

xj) =
t∑
i=1

Li(x) · Ri(x)
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13 The Basic Method

of products-of-sums with Ai ∩ Bi = ∅ for all i = 1, . . . , t? To answer this
question, set T (x) :=

∑n
i=1 x

2
i and observe that

( n∑
i=1

xi

)2
=

n∑
i=1

x2
i + 2

∑
i<j

xixj = T (x) + 2S(x) ,

and hence,

T (x) =
( n∑
i=1

xi

)2
− 2S(x) =

( n∑
i=1

xi

)2
− 2 ·

t∑
i=1

Li(x) · Ri(x) . (13.8)

Consider now a homogeneous system of t+ 1 linear equations over R:

L1(x) = 0 , . . . , Lt(x) = 0 , x1 + · · ·+ xn = 0

and assume that t ≤ n−2. Then the system has more variables than equations,
implying that it must have a solution x ∈ R

n with x �= 0. From∑n
i=1 xi = 0

and Li(x) = 0 for all i = 1, . . . , t it follows that, for this vector x, the right-
hand side of (13.8) must be equal to 0. But the left-hand side is not equal
to 0, since x �= 0 implies T (x) =

∑n
i=1 x

2
i �= 0. Thus, our assumption that

t ≤ n− 2 has led to a contradiction. 
�

13.3 Inclusion matrices

A celebrated result, due to Razborov (1987), says that the majority function
cannot be computed by constant depth circuits of polynomial size, even if
we allow unbounded fanin And, Or and Parity functions as gates. This result
was obtained in two steps:

(i) show that functions, computable by small circuits, can be approximated
by low degree polynomials, and

(ii) prove that the majority function is hard to approximate by such polyno-
mials.

The proof of (i) is probabilistic, and we will present it later (see Lemma 18.11).
The proof of (ii) employs the linear algebra argument, and we present it below.
The k-threshold function is a boolean function T nk (x1, . . . , xn) which out-

puts 1 if and only if at least k of the bits in the input vector are 1. A boolean
function g(x1, . . . , xn) is a polynomial of degree d over F2 if it can be written
as a sum modulo 2 of products of at most d variables.

Lemma 13.8 (Razborov 1987). Let n/2 ≤ k ≤ n. Every polynomial of degree
at most 2k − n − 1 over F2 differs from the k-threshold function on at least(
n
k

)
inputs.
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13.4 Disjointness matrices

Proof (due to Lovász–Shmoys–Tardos 1995). Let g be a polynomial of degree
d ≤ 2k−n− 1 over F2 and let U denote the set of all vectors where it differs
from T nk . Let A denote the set of all 0-1 vectors of length n containing exactly
k ones. By our choice of d, the coordinate-wise And a ∧ b of any two vectors
a, b ∈ A must contain at least d+ 1 ones.
Consider the 0-1 matrixM = (ma,u) whose rows are indexed by the mem-

bers of A, columns are indexed by the members of U , and ma,u = 1 if and
only if a ≥ u. For two vectors a and b we denote by a∧ b the coordinate-wise
And of these vectors. Our goal is to prove that the columns of M span the
whole linear space; since the dimension of this space is |A| = (

n
k

)
, this will

mean that we must have |U | ≥ (
n
k

)
columns.

The fact that the columns ofM span the whole linear space follows directly
from the following claim saying that every unit vector lies in the span.

Claim 13.9. Let a ∈ A and Ua = {u ∈ U : ma,u = 1}. Then, for every
b ∈ A, ∑

u∈Ua
mb,u =

{
1 if b = a;
0 if b �= a.

Proof. By the definition of Ua, we have (all sums are over F2):∑
u∈Ua

mb,u =
∑
u∈U
u≤a∧b

1 =
∑
x≤a∧b

(T nk (x) + g(x)) =
∑
x≤a∧b

T nk (x) +
∑
x≤a∧b

g(x).

The second term of this last expression is 0, since a∧ b has at least d+1 ones
(Exercise 13.10). The first term is also 0 except if a = b.
This completes the proof of the claim, and thus, the proof of the lemma. 
�

13.4 Disjointness matrices

Let k ≤ n be natural numbers, and X be a set of n elements. A k-disjointness
matrix over X is a 0-1 matrix D = D(n, k) whose rows and columns are
labeled by subsets of X of size at most k; the entry DA,B in the A-th row
and B-th column is defined by:

DA,B =
{
0 if A ∩ B �= ∅,
1 if A ∩ B = ∅.

This matrix plays an important role in computational complexity. Its impor-
tance stems from the fact that it has full rank over F2, i.e., all its

∑k
i=0

(
n
i

)
rows are linearly independent.

Theorem 13.10. The k-disjointness matrix D = D(n, k) has full rank over
F2, that is,
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13 The Basic Method

rkF2(D) =
k∑
i=0

(
n

i

)
.

There are several proofs of this result. Usually, it is derived from more
general facts about Möbius inversion or general intersection matrices. Here
we present one particularly simple and direct proof due to Razborov (1987).

Proof. Let N =
∑k

i=0
(
n
i

)
. We must show that the rows of D are linearly

independent over F2, i.e., that for any nonzero vector λ = (λI1 , λI2 , . . . , λIN )
in F

N
2 we have λ� ·D �= 0. For this, consider the following polynomial:

f(x1, . . . , xn) :=
∑
|I|≤k

λI
∏
i∈I

xi.

Since λ �= 0, at least one of the coefficients λI is nonzero, and we can find
some I0 such that λI0 �= 0 and I0 is maximal in that λI = 0 for all I ⊃ I0.
Assume w.l.o.g. that I0 = {1, . . . , t}, and make in the polynomial f the
substitution xi := 1 for all i �∈ I0. After this substitution has been made, a
nonzero polynomial over the first t variables x1, . . . , xt remains such that the
term x1x2 · · ·xt is left untouched (here we use the maximality of I0). Hence,
after the substitution we obtain a polynomial which is 1 for some assignment
(a1, . . . , at) to its variables. But this means that the polynomial f itself takes
the value 1 on the assignment b = (a1, . . . , at, 1, . . . , 1). Hence,

1 = f(b) =
∑
|I|≤k

λI
∏
i∈I

bi.

Let J0 := {i : ai = 0}. Then |J0| ≤ k and, moreover,
∏
i∈I bi = 1 if and only

if I ∩ J0 = ∅, which is equivalent to DI,J0 = 1. Thus,∑
|I|≤k

λIDI,J0 = 1,

meaning that the J0-th coordinate of the vector λ� · D is nonzero. 
�
In order to apply the linear algebra method, in many situations it is par-

ticularly useful to associate sets not to their incidence vectors but to some
(multivariate) polynomials f(x1, . . . , xn) and show that these polynomials are
linearly independent as members of the corresponding functions space. This
idea has found many applications. All these applications are based on the
following simple and powerful lemma connecting algebra to linear algebra.

Lemma 13.11 (Independence Criterion). For i = 1, . . . ,m let fi : Ω → F be
functions and vi ∈ Ω elements such that

(a) fi(vi) �= 0 for all 1 ≤ i ≤ m;
(b) fi(vj) = 0 for all 1 ≤ j < i ≤ m.
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13.5 Two-distance sets

Then f1, . . . , fm are linearly independent members of the space F
Ω.

Proof. By contradiction: Suppose there is a nontrivial linear relation

λ1f1 + λ2f2 + · · ·+ λmfm = 0

between the fi’s. Take the largest i for which λi �= 0. Substitute vi for the
variables. By the assumption, all but the i-th term vanish. What remains is
λifi(vi) = 0, which implies λi = 0 because fi(vi) �= 0, a contradiction. 
�

13.5 Two-distance sets

Our first illustration of the independence criterion prepares for some surpris-
ingly powerful applications, which we will consider in Sects. 13.6 and 13.7.
Let a1, . . . , am be points in the n-dimensional Euclidean space R

n. If the
pairwise distances of the ai are all equal then m ≤ n + 1. (Show this!) But
what happens if we relax the condition and require only that the pairwise
distances between the ai take two values? Such a set is called two-distance
set.
We shall see that then m is about n2/2. Indeed, it is easy to construct a

two-distance set in R
n with

(
n
2
)
points (Exercise 13.13). On the other hand,

we have the following upper bound.

Theorem 13.12 (Larman–Rogers–Seidel 1977). Every two-distance set in
R
n has at most

(
n
2
)
+ 3n+ 2 points.

Proof. Let a1, . . . , am be a two-distance set of distinct points in R
n. The

distance between two points x, y in R
n is ‖x− y‖. Since for our set of points

a1, . . . , am this distance can take only one of two values d1 or d2, none of
which is zero (why?), it is natural to associate with each point ai the following
polynomial in n real variables x ∈ R

n:

fi(x) := (‖x − ai‖2 − d2
1) · (‖x − ai‖2 − d2

2).

Then fi(ai) = (d1d2)2 �= 0, but fi(aj) = 0 for every j �= i. By Lemma 13.11,
these polynomials are linearly independent (as members of the space of all
functions f : R

n → R). What is a vector space in which they reside? It is
easy to see that every such polynomial is an appropriate linear combination
of the following polynomials

( n∑
i=1

x2
i

)2
,
( n∑
i=1

x2
i

)
xj , xixj , xi, 1, for i, j = 1, . . . , n;

their number is 1+n+
((
n
2
)
+ n

)
+n+1 =

(
n
2
)
+3n+2. Thus, the polynomials

f1, . . . , fm belong to a linear space of dimension at most
(
n
2
)
+ 3n + 2. As
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they are linearly independent, their number m cannot exceed the dimension,
completing the proof of the theorem. 
�
We can rewrite the upper bound in Theorem 13.12 as

m ≤
(
n

2

)
+ 3n+ 2 =

(
n+ 2
2

)
+ n+ 1.

A significant improvement was achieved by Blokhuis (1981) who showed
that the second term n+1 here is redundant. His trick was to show that the
polynomials f1, . . . , fm together with the polynomials x1, . . . , xn, 1 are linearly
independent. This nice idea was later employed to derive more impressing
results (cf. Exercise 13.17).

13.6 Sets with few intersection sizes

In this section we demonstrate how the polynomial technique can be used to
obtain far reaching extensions of Fisher’s inequality (see Theorem 7.5).
Let F be a family of subsets of some n-element set, and let L ⊆ {0, 1, . . .}

be a finite set of integers. We say that F is L-intersecting if |A ∩ B| ∈ L for
every pair A,B of distinct members of F .
Suppose we know only the size of L. What can then be said about the

number of sets in F? Fisher’s inequality tells us that |F| ≤ n when |L| = 1.
In the case of uniform families, the celebrated result of Ray-Chaudhuri and
Wilson (1975) gives the upper bound |F| ≤ (

n
|L|

)
. The non-uniform version

of this result was proved by Frankl and Wilson (1981).

Theorem 13.13 (Frankl–Wilson 1981). If F is an L-intersecting family of
subsets of a set of n elements, then |F| ≤ ∑|L|

i=0
(
n
i

)
.

Both these results are best possible: for L = {0, 1, . . . , s− 1} one can take
the family of all subsets of an n-element set with s elements (with at most s
elements, respectively).
The original proof of these theorems used the machinery of higher incidence

matrices. Fortunately, these results now admit conceptually simpler proofs
using linear spaces of multivariate polynomials.

Proof of Theorem 13.13 (due to Babai 1988). Let F = {A1, . . . , Am} where
|A1| ≤ . . . ≤ |Am|. Let L = {l1, . . . , ls} be the set of all possible intersection
sizes. That is, for every i �= j there is a k such that |Ai ∩Aj | = lk. With each
set Ai we associate its incidence vector vi = (vi1, . . . , vin), where vij = 1 if
j ∈ Ai; otherwise vij = 0. For x, y ∈ R

n, let (as before) 〈x, y〉 = ∑n
i=1 xiyi

denote their standard scalar product. Clearly, 〈vi, vj〉 = |Ai ∩Aj |.
For i = 1, . . . ,m, let us define the polynomial fi in n variables by
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13.7 Constructive Ramsey graphs

fi(x) =
∏

k : lk<|Ai|
(〈vi, x〉 − lk) (x ∈ R

n).

Observe that fi(vj) = 0 for all 1 ≤ j < i ≤ m, and fi(vi) �= 0 for all 1 ≤ i ≤ m.
By Lemma 13.11, the polynomials f1, . . . , fm are linearly independent over R.
What is a small vector space in which these polynomials can reside? The fi’s
are polynomials of degree at most s, but we can do better. The domain being
{0, 1}n implies that x2

i = xi for each variable xi. Thus, pure monomials of
degree ≤ s form a basis (where a pure or multilinear monomial has at most
one occurrence of each variable), and we have only

∑s
i=0

(
n
i

)
of them. 
�

Using essentially the same argument, we can also prove the following “mod-
ular” version of this theorem (we leave the proof as Exercise 13.16). Write
r ∈ L mod p if r = l mod p for at least one l ∈ L.

Theorem 13.14 (Deza–Frankl–Singhi 1983). Let L be a set of integers and
p be a prime number. Assume F = {A1, . . . , Am} is a family of subsets of a
set of n elements such that
(a) |Ai| �∈ L mod p for all 1 ≤ i ≤ m;
(b) |Ai ∩ Aj | ∈ L mod p for all 1 ≤ j < i ≤ m.

Then |F| ≤ ∑|L|
i=0

(
n
i

)
.

These theorems and their modifications have found many striking applica-
tions in combinatorics and geometry. An excellent exposition is given in the
book by Babai and Frankl (1992).

13.7 Constructive Ramsey graphs

Roughly, the main idea of these applications is the following. If we identify
the members of our family F with vertices and join two members if and only
if their intersection has a particular size, then the theorems above ensure that
the graph cannot have a large clique or a large independent set (or both). To
demonstrate the idea, we use it to construct so-called Ramsey graphs.
Recall that a clique of size t in a graph is a set of t of its vertices, each pair

of which is joined by an edge. Similarly, an independent set of size t is a set
of t vertices with no edge between them. A graph is a Ramsey graph (with
respect to t) if it has no clique and no independent set of size t.
Given t, we are interested in the largest possible number n for which such a

graph (on n vertices) exists. The existence of Ramsey graphs of size n = 2t/2

is known: this was proved by Erdős (1947) using the probabilistic method (see
Theorem 4.17). The theorem states only the mere existence of a graph, and
gives no way to find it.
For many years, only an easy construction of a Ramsey graph of size

n = (t − 1)2 was known: take the disjoint union of t − 1 cliques of size
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t− 1 each. The first non-trivial construction of Ramsey graphs on n = Ω(t3)
vertices was given by Zsigmond Nagy in 1972 (see Exercise 13.15).
Substantial progress in that direction was made by Frankl (1977) who was

able to construct Ramsey graphs of super-polynomial size

n = tΩ(ln t/ ln ln t).

Subsequently, a simpler proof was found by Frankl and Wilson (1981), using
their result about families with one missing intersection size modulo a prime
power. To be self-contained, here we present a slightly weaker version whose
proof relies only on Theorems 13.13 and 13.14.
The desired graph is defined as follows. Let p be a prime number, and v =

p3. Let Gp be a graph whose vertices are subsets of {1, . . . , v} of cardinality
p2 − 1, and where two vertices A and B are joined by an edge if and only if

|A ∩ B| �= −1 mod p .

Theorem 13.15 (Frankl 1977, Frankl–Wilson 1981). The graph Gp has n =(
v

p2−1
)
vertices and has neither a clique nor an independent set on more than

t =
∑p−1

i=0
(
v
i

)
vertices.

Proof. If A1, . . . , Ar is a clique in Gp then |Ai ∩ Aj | �= −1 mod p for every
1 ≤ i < j ≤ r, implying that |Ai ∩ Aj | ∈ L mod p for L = {0, 1, . . . , p − 2}.
On the other hand, each of the sets Ai has size p2 −1 = −1 mod p, and hence,
|Ai| �∈ L mod p. Theorem 13.14 implies that in this case r ≤ t.
Now suppose that the sets A1, . . . , Ar form an independent set in Gp. Then

|Ai∩Aj | ∈ L, for every 1 ≤ i < j ≤ r, where L = {p−1, 2p−1, . . . , p2 −p−1}.
Theorem 13.13 again yields that in this case r ≤ t. 
�
To get the desired lower bound n ≥ tΩ(ln t/ ln ln t), we just have to select p

appropriately. The exact computation is somewhat tedious, and we leave it
as an exercise. We only sketch the way these computations should proceed.
By the density of primes, there is always a prime between N and 2N , for
any positive integer N ; so we may pretend that p is an integer rather than
a prime. Since v = p3, t =

∑p−1
i=0

(
v
i

) ≤ pO(p) whereas n =
(

v
p2−1

) ≥ pΩ(p2),
which is at least tΩ(ln t/ ln ln t) for p = Ω(ln t/ ln ln t).

13.8 Zero-patterns of polynomials

Let f = {fi(x1, . . . , xn) : i = 1, . . . ,m} be a sequence of polynomials over
some field F. A subset S ⊆ [m] is a zero-pattern of f if there exists a vector,
a witness for this zero-pattern, v ∈ F

n such that S = {i : fi(v) �= 0}. Let
ZF(f) denote the number of distinct zero-patterns of f as v ranges over F

n.
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Exercises

The following upper bound was proved by Rónyai, Babai, and Ganapathy
(2001).

Theorem 13.16. Let di denote the degree of fi, and D =
∑m

i=1 di. Then

ZF(f) ≤
(
n+D
n

)
.

Proof. Assume that f has M different zero-patterns, and let v1, . . . , vM be
witnesses to these zero-patterns. Let Si = {k : fk(vi) �= 0} be a zero-pattern
witnessed by the i-th vector vi, and consider the polynomials gi :=

∏
k∈Si fk.

We claim that these polynomials are linearly independent over F. This claim
completes the proof of the theorem since each gi has degree at most D and
the dimension of the space of polynomials of degree at most D is exactly(
n+D
D

)
(see Exercise 13.22).

To prove the claim, it is enough to note that gi(vj) �= 0 if and only if
Si ⊆ Sj . Indeed, gi(vj) �= 0 iff fk(vj) �= 0 for all k ∈ Si iff fk(vi) �= 0 implies
fk(vj) �= 0 iff Si ⊆ Sj .
Assume now, for the sake of contradiction, that a nontrivial linear relation∑M
i=1 λigi = 0 exists (λi ∈ F). Let j be a subscript such that |Sj | is minimal

among the Si with λi �= 0. Substitute vj in the relation. While λjgj(vj) �= 0,
we have λigi(vj) = 0 for all i �= j, a contradiction. 
�
If all polynomials f1, . . . , fm are of degree at most d, and if we havem ≥ n

polynomials, then the upper bound ZF(f) ≤ (
md+n
n

)
can be improved to

ZF(f) ≤
(
md

n

)
<

(
emd
n

)n
. (13.9)

The assumption m ≥ n is justified by the observation that for m ≤ n, the
trivial upper bound ZF(f) ≤ 2m can be attained even for d = 1, over every
field: just take fi = xi.
It is also shown by Rónyai, Babai, and Ganapathy (2001) that, form ≥ nd,

d ≥ 1 and any sufficiently large field F (including infinite fields), the upper
bound (13.9) is almost optimal: There exists a constant ε > 0 and a sequence
f of m polynomials of degree at most d in n variables such that

ZF(f) ≥
(
εmd

n

)n
.

Exercises

13.1. Prove the Pythagoras theorem: if the vectors x, y are orthogonal, then
‖x+ y‖2 = ‖x‖2 + ‖y‖2.
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13 The Basic Method

13.2. Let x ∈ F
n
2 be a nonzero vector. Show that it is orthogonal to exactly

half of vectors in F
n
2 . Hint: Take an i for which xi = 1 and split the space F

n
2 into 2n−1

pairs y, y′ that differ only in their i-th coordinate. For each of these pairs, 〈x, y〉 �= 〈x, y′〉.

13.3. Let F be a family of subsets of an n-element set such that: (i) every
set of F has an even number of elements, and (ii) each pair of sets shares an
even number of elements. Construct such a family with at least 2�n/2� sets.

13.4. (Babai–Frankl 1992). Show that the upper bound 2�n/2� in the previous
exercise cannot be improved. Hint: Let S be the set of incidence vectors of all sets
in F , and let U the span of this set (over F2). Argue that the rules (i) and (ii) imply
that U is a subspace of U⊥, and apply Proposition 13.2.

13.5. Prove the following “Oddtown Theorem” (see Babai and Frankl (1992)
for the explanation of this name). Let F be a family of subsets of an n-
element set such that: (i) every set of F has an odd number of elements,
and (ii) each pair of sets share an even number of elements. Prove that then
|F| ≤ n. Compare this with Exercise 13.3. Hint: The incidence vectors of sets in
F are linearly independent over F2.

13.6. The Hamming distance between two vectors of the same length is just
the number of positions in which these two strings differ. Show that the
Euclidean distance between any two 0-1 vectors is the square root of their
Hamming distance.

13.7. Show that the pairwise orthogonality of (+1,−1)-vectors implies their
linear independence (over the reals).

13.8. Using the Cauchy–Schwarz inequality show that if u = (u1, . . . , un) is
a vector in R

n then |u| ≤ √
n · ‖u‖, where |u| := |u1|+ . . . + |un| and |ui| is

the absolute value of ui. Hint: Take a vector v = (v1, . . . , vn) with vi = 1 if ui > 0
and vi = −1, otherwise. Observe that |u| = 〈u, v〉 and ‖v‖ =

√
n.

13.9. Let f(x1, . . . , xn) be a polynomial over F2 of degree d < n which is not
identically 1. Show that then f(v) = 0 for at least one nonzero vector v with
at most d+ 1 ones.

13.10. Let h =
∏
i∈S xi be a monomial of degree d = |S| ≤ n−1, and let a be

a 0-1 vector with at least d+1 ones. Show that then, over F2,
∑

b≤a h(b) = 0.
Hint: There are only two possibilities: either ai = 1 for all i ∈ S, or not.

13.11. Suppose A ⊆ Z
n
3 has the property that for all distinct vectors a, b ∈ A,

there is a coordinate i ∈ [n] such that ai − bi = 1 (subtraction in Z3 =
{0, 1, 2}). Show that |A| ≤ 2n. Hint: Consider polynomials fa(x) =

∏n

i=1(xi−ai−1)
over Z3.

13.12. (Babai et al. 1991). Let F be a field, H1, . . . , Hm ⊆ F and H =
H1 × · · · × Hm. Prove that, for any function f : H → F there exists a
polynomial f̃ in m variables over F such that:
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Exercises

(i) f̃ has degree < |Hi| in its i-th variable, and
(ii) f̃ , restricted to H , agrees with f .
Is such a polynomial unique? Hint: Associate with each vector u = (u1, . . . , um) in
H a polynomial

gu(x) =
m∏
i=1

∏
h∈Hi\{ui}

(xi − h)

and show that every function f : H → F is a linear combination of the gu’s, restricted
to H.

13.13. Construct a two-distance set in R
n of size

(
n
2
)
. Hint: What about 0-1

vectors with two 1s in each?

13.14. Prove the following generalization of Theorem 13.12 for s-distance
sets. Let a1, . . . , am be vectors in R

n and suppose that the pairwise distances
between them take at most s values. Prove that m ≤ (

n+s+1
s

)
. Hint: Let

d1, . . . , ds be the distances permitted, and consider the polynomials fi(x) =
∏s

i=1(‖x−
ai‖2 − d2

i ). To estimate the dimension of the subspace containing all of them, expand
the norm-square expression in each factor, replace the sum

∑n

i=1 x
2
i by a new variable

z, and multiply the constant terms by a new variable t. Observe that then each fi
becomes a homogeneous polynomial of degree s in n + 2 variables x1, . . . , xn, z, t, and
apply Proposition 1.5.

13.15. (Nagy 1972). Let G be a graph whose vertices are 3-element subsets
of {1, . . . , t}, and where two vertices A and B are joined by an edge if and
only if |A ∩ B| = 1. Use Exercise 13.5 and Fisher’s inequality to show that
this graph has neither a clique nor an independent set of size t+ 1.

13.16.Write down a complete proof of Theorem 13.14. Hint: Work in the finite
field Fp instead of that of real numbers R. This time, due to the condition |Ai| �∈ L mod p,
we can take fi(x) =

∏
l∈L(〈vi, x〉 − l), i.e., we do not need the condition l < |Ai|.

13.17. (Ray-Chaudhuri–Wilson 1975). Prove the following uniform version of
Theorem 13.13: if A1, . . . , Am is a k-uniform L-intersecting family of subsets
of an n-element set, then m ≤ (

n
s

)
, where s = |L|. Sketch: (Alon–Babai–Suzuki

1991): Start as in the proof of Theorem 13.13 and define the same polynomials f1, . . . , fm
of degree at most s. Associate with each subset I of {1, . . . , n} of cardinality |I | ≤ s− 1
the following polynomial of degree at most s:

gI (x) =
(( n∑

j=1

xj
)
− k

)∏
i∈I
xi,

and observe that for any subset S ⊆ {1, . . . , n}, gI (S) �= 0 if and only if |S| �= k and
S ⊇ I . Use this property to show that the polynomials gI together with the polynomials
fi are linearly independent. For this, assume

m∑
i=1

λifi +
∑

|I|≤s−1

μI gI = 0

195



13 The Basic Method

for some λi, μI ∈ R. Substitute Aj ’s for the variables in this equation to show that
λj = 0 for every j = 1, . . . ,m. What remains is a relation among the gI . To show
that this relation must be also trivial, assume the opposite and re-write this relation as
μ1gI1 + · · · + μtgIt = 0 with all μi �= 0 and |I1| ≥ |Ij | for all j > 1. Substitute the first
set I1 for the variables and observe that all but the first function vanish.

13.18. Let A1, . . . , Am and B1, . . . , Bm be subsets of an n-element set such
that |Ai ∩ Bi| is odd for all 1 ≤ i ≤ m, and |Ai ∩ Bj | is even for all 1 ≤ i <
j ≤ m. Show that then m ≤ n.

13.19. (Frankl–Wilson 1981). Let p be a prime, and n = 4p − 1. Consider
the graph G = (V,E) whose vertex set V consists of all 0-1 vectors of length
n with precisely 2p− 1 ones each; two vectors are adjacent if and only if the
Euclidean distance between them is

√
2p. Show that G has no independent

set of size larger than
∑p−1

i=0
(
n
i

)
. Hint: Use Exercise 13.6 to show that two vectors

from V are adjacent in G precisely when they share p − 1 ones in common, and apply
Theorem 13.14.

Comment: This construction was used by Frankl and Wilson (1981) to resolve an old
problem proposed by H. Hadwiger in 1944: how many colors do we need in order to color
the points of the n-dimensional Euclidean space R

n so that each monochromatic set of
points misses some distance? A set is said to miss distance d if no two of its points are
at distance d apart from each other. Larman and Rogers (1972) proved that Hadwiger’s
problem reduces to the estimating the minimum number of colors χ(n) necessary to
color the points of R

n such that pairs of points of unit distance are colored differently.
The graph G we just constructed shows that χ(n) ≥ 2Ω(n) (see the next exercise). Kahn
and Kalai (1993) used a similar construction to disprove another 60 years old and widely
believed conjecture of K. Borsuk (1933) that every set of diameter one in n-dimensional
real space Rn can be partitioned in at most n + 1 disjoint pieces of smaller diameter.
Kahn and Kalai presented an infinite sequence of examples where the minimum number
of pieces grew as an exponential function of

√
n, rather than just as a linear function

n + 1, as conjectured. The interested reader can find these surprising solutions in the
book of Babai and Frankl (1992).

13.20. The unit distance graph on R
n has the infinite set R

n as its vertex set,
and two points are adjacent if their (Euclidean) distance is 1. Let χ(n) be
the minimum number of colors necessary to color the points of the Euclidean
space R

n such that pairs of points of unit distance are colored differently. Use
the graph from the previous exercise to show that χ(n) ≥ 2Ω(n). Hint: Observe
that χ(G) ≥ |V |/α(G) and replace each 0-1 vector v by the vector εv, where ε = 1/

√
2p.

How does this change the distance?

13.21. Let x1, . . . , xn be real numbers, and σ : [n] → [n] a permutation of
[n] = {1, . . . , n}. Show that then ∑n

i=1 xi · xσ(i) ≤ ∑n
i=1 x

2
i . Hint: Use the

Cauchy–Schwarz inequality.

13.22. Use Proposition 1.3 and Exercise 1.7 to show that the number of
distinct monomials of degree at most d is

(
n+d
d

)
.
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14. Orthogonality and Rank Arguments

Linear independence is one of the most basic concepts in linear algebra. No
less important are the concepts of orthogonality and rank. In this chapter we
consider some combinatorial applications of these two concepts.

14.1 Orthogonal coding

Linear independence is not the only way to obtain good upper bounds. If
the members of a family F can be injectively associated with the elements
of F

m
q , then |F| ≤ qm. If we are lucky, the associated “code-vectors” will be

orthogonal to some subspace of dimension d, which (due to Proposition 13.2)
immediately improves our bound to |F| ≤ qm−d. We demonstrate this idea
by the following result. Recall that two vectors u, v are orthogonal if their
scalar product is zero, 〈u, v〉 = 0.
Given two families A and B of subsets of an n-element set, satisfying some

conditions, we are interested in how large |A| · |B| can be. If we know nothing
about the families, then this number can be as large as 22n. If we know that
both families are monotone increasing (or monotone decreasing), Kleitman’s
theorem (Theorem 10.6) gives a non-trivial upper bound:

|A| · |B| ≤ 2n · |A ∩ B|.

If we know that all the intersections A ∩B with A ∈ A and B ∈ B, have the
same size modulo 2, then we can get an even better bound.

Theorem 14.1 (Ahlswede–El Gamal–Pang 1984). Let A and B be two fam-
ilies of subsets of an n-element set with the property that |A ∩B| is even for
all A ∈ A and B ∈ B. Then |A| · |B| ≤ 2n.
Proof (due to Delsarte and Piret 1985). With each subset of X associate its
incidence vector, and look at these vectors as elements of the n-dimensional
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14 Orthogonality and Rank Arguments

vector space F
n
2 . Let U and V be the sets of incidence vectors of A and B,

respectively. Fix a vector v0 ∈ V and let V0 := {v0 + v : v ∈ V }. Moreover,
let U ′ and V ′0 be the subspaces spanned by U and V0, respectively. Then

|A| · |B| = |U | · |V | = |U | · |V0| ≤ |U ′| · |V ′0 | ≤ 2dimU ′+dimV ′0 . (14.1)

The key point is that (in F2) 〈u,w〉 = 0 for all u ∈ U and w ∈ V0. This (with
w = v0 + v, v ∈ V ) follows from the fact that 〈u, v〉 is exactly the parity of
points in the intersection of the corresponding sets, and from our assumption
that all these intersections have the same parity: 〈u,w〉 = 〈u, v0〉+ 〈u, v〉 = 0.
Therefore, by Proposition 13.2, we obtain that dimU ′ ≤ n − dim V ′0 .

Putting this estimate in (14.1) we get the desired upper bound |A| · |B| ≤ 2n.
��

The same holds also with “even” replaced by “odd.” In this case the bound
is slightly better: |A| · |B| ≤ 2n−1 (see Exercise 14.1).

14.2 Balanced pairs

Given a family A1, . . . , Am of distinct sets, a balanced pair in it is a pair of
disjoint non-empty subsets of indices I, J ⊆ [m] such that⋃

i∈I
Ai =

⋃
j∈J

Aj and
⋂
i∈I

Ai =
⋂
j∈J

Aj . (14.2)

Theorem 14.2 (Lindstrom 1993). Every family of m ≥ n+2 distinct subsets
of an n-element set contains a balanced pair.

Proof. With each subset A of {1, . . . , n} we can associate the incidence vector
v = (x1, y1, x2, y2, . . . , xn, yn) of the pair (A,A) in the usual way: xi = 1 iff
i ∈ A, and yi := 1− xi. These vectors belong to the vector space V (over R)
of all vectors v for which x1 + y1 = · · · = xn + yn.

Claim 14.3. The dimension of V is n+ 1.

To prove the claim, observe that for any vector v = (x1, y1, x2, y2, . . . , xn, yn)
in V, the knowledge of n+1 coordinates x1, . . . , xn, y1 is enough to reconstruct
the whole vector v; namely yi = x1 + y1 − xi. So, our space V is the set of
solutions v ∈ R

2n of the system of linear equations M · v = 0, where M is
the (n − 1)× (2n) matrix⎛

⎜⎜⎜⎝
1 1 −1 −1 0 0 · · · 0 0
1 1 0 0 −1 −1 · · · 0 0
...
...
...
...
...
... · · · ...

...
1 1 0 0 0 0 · · · −1 −1

⎞
⎟⎟⎟⎠
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14.2 Balanced pairs

By Proposition 13.3, dim V = 2n− rk(M) = 2n− (n− 1) = n+1, as desired.
Now let vi = (vi,1, . . . , vi,2n) be the vector corresponding to the i-th set

Ai, i = 1, . . . ,m. By the assumption, the vectors v1, . . . , vm are distinct and
all belong to the subspace V . Since m ≥ n+ 2 > n+ 1 = dim V , there must
be a nontrivial linear relation between these vectors, which we can write as∑

i∈I
αivi =

∑
j∈J

βjvj ,

where I and J are non-empty, I ∩ J = ∅, and αi, βj > 0 for all i ∈ I and
j ∈ J . When interpreted in combinatorial terms, the equality means that the
sets of nonzero coordinates of the vectors on both sides must be the same,
implying that ∪i∈IAi = ∪j∈JAj and ∪i∈IAi = ∪j∈JAj . Using the identity
A ∪ B = A ∩ B, the last equality is equivalent to ∩i∈IAi = ∩j∈JAj . ��
With a similar argument one can prove the following useful fact.

Proposition 14.4. Among any n + 2 distinct vectors in R
n there must be

two whose scalar product is non-negative.

Proof. Suppose v1, . . . , vn+2 ∈ R
n, but 〈vi, vj〉 < 0 for all i 
= j. Let v̂i :=

(vi, 1), that is, append a 1 to each vector. Since the number n + 2 of these
vectors exceeds the dimension n+1 of the vector space R

n+1 they lie in, the
vectors must be linearly dependent. Choose coefficients αi, not all zero, so
that

∑
i αiv̂i = 0. In other words, the αi satisfy

n+2∑
i=1

αivi = 0 and
n+2∑
i=1

αi = 0 .

Since the αi are not all zero, some of them are positive and some are negative.
Let

P = {i : αi > 0} and N = {i : αi < 0} .
Note that P and N are disjoint and both nonempty. Consider the vector

y :=
∑
i∈P

αivi =
∑
j∈N

−αjvj .

Then

0 ≤ 〈y, y〉 =
(∑
i∈P

αivi

)( ∑
j∈N

−αjvj
)
=

∑
i∈P

∑
j∈N

−αiαj〈vi, vj〉 .

But the right-hand side is < 0, because −αiαj > 0 and 〈vi, vj〉 < 0, a
contradiction. ��
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14 Orthogonality and Rank Arguments

14.3 Hadamard matrices

A Hadamard matrix is a square n × n matrix H with entries in {−1,+1}
and with row vectors mutually orthogonal over the reals (and hence with
column vectors mutually orthogonal). Such matrices have many interesting
properties and arise in many applications.

Lemma 14.5 (Lindsey’s Lemma). The absolute value of the sum of all en-
tries in any a × b submatrix of an n × n Hadamard matrix does not exceed√
abn.

Proof (due to Babai, Frankl and Simon 1986). Let H be an n× n Hadamard
matrix, and A one of its a × b submatrices. Assume for simplicity that A
consists of its first a rows and b columns. Let α be the sum of all entries of
A. We want to prove that α ≤ √

abn.
Let v1, . . . , va be the first a rows of H , and y =

∑a
i=1 vi. If we take the

vector x = (1b0n−b), then α2 = 〈x, y〉2 ≤ ‖x‖2‖y‖2 = b · ‖y‖2. On the other
hand, the conditions 〈vi, vi〉 = n and 〈vi, vj〉 = 0 for all i 
= j imply that
‖y‖2 =

∑a
i,j=1〈vi, vj〉 =

∑a
i=1〈vi, vi〉 = an. Thus, α2 ≤ b · ‖y‖2 = abn, as

desired. ��
Another interesting property of every Hadamard matrix is that each of its

k × n submatrices maps each(!) nonzero vector x ∈ R
k to a vector with at

least n/k nonzero entries.

Lemma 14.6 (Alon 1990a). Every non-trivial linear combination of any k
rows of a Hadamard matrix has at least n/k nonzero entries.

Proof. Let A be a k × n submatrix of an n × n Hadamard matrix with
rows ai = (ai1, . . . , ain), i = 1, . . . , k. Let y = x�A for some nonzero vector
x = (x1, . . . , xk) in R

k, S = {i : yi 
= 0} and s = |S|. We have to show that
s ≥ n/k.
Assume, without loss of generality, that |x1| = max1≤i≤k |xi|. Since the

vectors a1, . . . , ak are mutually orthogonal, we have

kx2
1n ≥

k∑
i=1

x2
in =

k∑
i=1

〈xiai, xiai〉 =
〈 k∑

i=1
xia

i,

k∑
i=1

xia
i

〉
= 〈y, y〉

=
n∑
j=1

y2
j =

∑
j∈S

|yj |2 = 1
s

(∑
j∈S
1
)(∑

j∈S
|yj |2

)
≥ 1
s

(∑
j∈S

|yj |
)2
,

where the last inequality follows from the Cauchy–Schwarz inequality (13.3).
On the other hand, since a1 is orthogonal to all the vectors a2, . . . , ak,
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14.3 Hadamard matrices

n∑
j=1

|yj | ≥
n∑
j=1

yja1j =
n∑
j=1

k∑
i=1

xiaija1j

=
k∑
i=1

xi

n∑
j=1

aija1j =
k∑
i=1

xi〈ai, a1〉 = x1〈a1, a1〉 = x1 · n.

Substituting this estimate into the previous one we obtain s ≥ n/k, as desired.
��

If H is an n×n Hadamard matrix, then H�H = nIn where In is the n×n
identity matrix. Hence, all n eigenvalues of H�H are equal to n, implying
that H has spectral norm ‖H‖ = √

n. Combining this with Proposition 13.6,
we can show that all large enough submatrices of H have large rank over the
reals.

Lemma 14.7. Let H be an n × n Hadamard matrix, and A one of its a × b
submatrices. Then rk(A) ≥ ab/n.

Proof. Since A is a submatrix of H , we have that ‖A‖ ≤ ‖H‖. So, by Propo-
sition 13.6, we obtain

rk(A) ≥ ‖A‖2
F

‖A‖2 ≥ ‖A‖2
F

‖H‖2 =
ab

n
,

where the last equality follows because ‖A‖2
F is precisely the number of entries

in A. ��
We can always reduce the rank of a real-valued matrix by changing some

of its entries. The rigidity of a matrix M is a function RM (r) equal to the
minimum number of entries ofM that one needs to change in order to reduce
the rank to r or less.
Matrix rigidity is an important measure in boolean circuit complexity. In

particular, an explicit boolean n×nmatrixM having rigidityRM (εn) ≥ n1+δ

over F2 for some constants ε, δ > 0 would give us the first super-linear lower
bound on log-depth linear circuits computing the linear transformation y =
Mx. This was shown by Valiant (1977).
Due to its importance, the rigidity of Hadamard matrices merits particular

attention. For an n×n Hadamard matrix H , Pudlák, Razborov, and Savický
(1988) proved that RH(r) ≥ n2/r3 log r. It can be also shown that Alon’s
lemma yields RH(r) ≥ n2/r2 (Exercise 14.6). Kashin and Razborov (1998)
improved this to RH(r) ≥ n2/256r. De Wolf (2006) later re-derived this
bound using a spectral argument, with a better constant.

Theorem 14.8. Let H be an n × n Hadamard matrix. If r ≤ n/2 then
RH(r) ≥ n2/4r.
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14 Orthogonality and Rank Arguments

The condition r ≤ n/2 is important here. If H is symmetric then its
eigenvalues are all ±√

n, so we can reduce the rank to n/2 by adding or
subtracting the diagonal matrix

√
nIn. This shows that RH(n/2) ≤ n.

Proof (due to Ronald de Wolf 2006). Let R be the minimum number of
changes that brought the rank of H down to r. By a simple averaging ar-
gument, we can find 2r rows of H that contain a total of at most 2rR/n
changes. If n ≤ 2rR/n, then R ≥ n2/2r and we are done. Hence, we can
assume that n − 2rR/n > 0. Consider the n − 2rR/n columns that contain
no changes in the above set of rows. We thus get a 2r×(n−2rR/n) submatrix
B that contains no changes and hence is a submatrix of H . By definition of
R, this submatrix must have rank at most r. Applying Lemma 14.7, we get
r ≥ rk(B) ≥ 2r(n−2rR/n)/n. Rearranging this inequality, we get R ≥ n2/4r.

��
We can multiply any rows and columns of a Hadamard matrix by −1 to

obtain other Hadamard matrices. In particular, starting from an arbitrary
Hadamard matrix, we can reduce it to the form where the first row or the
first column (or both) consist entirely of 1s. In this case the matrix is called
normalized. Such matrices have additional structural properties.

Theorem 14.9. If H is a Hadamard matrix of order n and its first row
consists entirely of 1s, then every other row has n/2 positive and n/2 negative
entries. If n > 2 then any two rows other than the first have exactly n/4 1s
in common.

Proof. The first statement immediately follows from the fact that the scalar
product of any row with the first row is 0.
To prove the second statement, let u and v be two rows other than the

first, and let a (resp. b) be the number of places where they both have 1s
(resp. −1s). Because u has the same number n/2 of 1s and −1s, we get the
following picture:

u +1 + 1 . . .+ 1 +1 + 1 . . .+ 1 −1− 1 . . .− 1 −1− 1 . . .− 1
v +1 + 1 . . .+ 1 −1− 1 . . .− 1 +1 + 1 . . .+ 1 −1− 1 . . .− 1

a n/2− a n/2− b b

Since the total number of +1’s in v is n/2, we have a+ (n/2 − b) = n/2,
and hence, a = b. The orthogonality of u and v then implies that a− (n/2−
a)− (n/2− b) + b = 0, i.e., that a = n/4. ��
Let H be a Hadamard matrix of order n. Take all the rows of H and −H ,

and change all −1’s to 0. This way we obtain a set of 2n binary vectors of
length n called the Hadamard code Cn.

Theorem 14.10. Every two codewords in Cn differ in at least n/2 coordi-
nates.
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14.4 Matrix rank and Ramsey graphs

Proof. Take any x, y ∈ Cn, x 
= y. If these two vectors have been obtained
from the i-th rows of H and −H respectively, then they disagree in all n
coordinates. Otherwise, there are two different rows u and v in H such that
x is obtained (by changing −1s to 0s) from u or −u, and y from v or −v. In all
cases, x and y differ in n/2 coordinates, because ±u and ±v are orthogonal.

��
Hadamard matrices can also be used to construct combinatorial designs

with good parameters. Recall that a (v, k, λ) design is a k-uniform family of
subsets (also called blocks) of a v-element set such that every pair of distinct
points is contained in exactly λ of these subsets; if the number of blocks is the
same as the number v of points, then the design is symmetric (see Chap. 12).

By Theorem 14.9, we have that, if there is a Hadamard matrix of order n,
then n = 2 or n is divisible by 4. It is conjectured that Hadamard matrices
exist for all orders that are divisible by 4.

Theorem 14.11. Every Hadamard matrix of order 4n gives a symmetric
(4n− 1, 2n− 1, n− 1) design.
Proof. Let H be a Hadamard matrix of order 4n, and assume that it is
normalized, i.e., the first row and the first column consist entirely of 1s. Form
a (4n− 1)× (4n− 1) 0-1 matrix M by deleting the first column and the first
row in H , and changing−1s to 0s. This is the incidence matrix of a symmetric
(4n − 1, 2n− 1, n − 1) design, because by Theorem 14.9, each row of M has
2n−1 ones and any two columns ofM have exactly n−1 ones in common. ��

14.4 Matrix rank and Ramsey graphs

A matrix A = (aij) is lower co-triangular if aii = 0 and aij 
= 0 for all
1 ≤ j < i ≤ n. That is, such a matrix has zeroes on the diagonal and nonzero
entries below the diagonal; the entries above the diagonal may be arbitrary.

Lemma 14.12. Let p be a prime number, and A an n×n lower co-triangular
matrix over Fp of rank r. Then

n ≤
(
r + p − 2
p − 1

)
+ 1 ≤ (r + p)p−1 .

Proof. Let r = rkFp(A) and A = B · C be the corresponding decomposition
of A. For i = 1, . . . , n consider the polynomials fi(x) = 1 − gi(x)p−1 in r
variables x = (x1, . . . , xr) over Fp, where gi(x) is the scalar product of x with
the i-th row of B. Let c1, . . . , cn be the columns of C. Then gi(ci) = 0 and
gi(cj) 
= 0 for every i > j. Since p is a prime, Fermat’s Little Theorem (see
Exercise 1.15) implies that ap−1 = 1 for every a 
= 0 in Fp. Hence, fi(ci) 
= 0
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and gi(cj) = 0 for every i > j. By Lemma 13.11, the polynomials f1, . . . , fn
are linear independent elements of a vector space V of all polynomials over
Fp of degree p − 1, all of whose monomials ∏r

i=1 x
ti
i satisfy

∑r
i=1 ti = p − 1

and ti ≥ 0. By Proposition 1.5, the number of such monomials is (r+(p−1)−1
p−1

)
.

Since the polynomials can also have a constant term (which accounts for the
“+1” in the final equation), we have that

n ≤ dim V ≤
(
r + p − 2
p − 1

)
+ 1 ≤ (r + p)p−1 . ��

Let R be a ring and A = (aij) an n × n matrix with entries from R. The
rank rkR(A) of A over R is defined as the minimum number r for which there
exists an n× r matrix B and an r× n matrix C over R such that A = B ·C;
if all entries of A are zeroes then rkR(A) = 0. If R = F is a field, then rkR(A)
is the usual rank over F, that is, the largest number of linear independent
rows.
By Lemma 14.12, lower co-triangular matrices over R = Zm have large

rank, if m is a prime number. But what about R = Zm for non-prime m, say,
for m = 6? In this case R is no longer a field—it is just a ring (division is not
defined). Still one can extend the notion of rank also to rings.
Let R be a ring and A = (aij) an n × n matrix with entries from R. The

rank rkR(A) of A over R is defined as the minimum number r for which there
exists an n× r matrix B and an r× n matrix C over R such that A = B ·C;
if all entries of A are zeroes then rkR(A) = 0. If R = F is a field, then rkR(A)
is the usual rank over F, that is, the largest number of linear independent
rows.
It turns out that explicit low rank matrices over the ring R = Z6 of integers

modulo 6 would give us explicit graphs with good Ramsey properties, that
is, graphs without any large clique or large independent set.
Let A = (aij) be an n × n lower co-triangular matrix over Z6. Associate

with A the graph GA = (V,E) with V = {1, . . . , n}, where two vertices i > j
are adjacent iff aij is odd.

Lemma 14.13 (Grolmusz 2000). If r = rkZ6(A) then the graph GA contains
neither a clique on r + 2 vertices nor an independent set of size

(
r+1

2
)
+ 2.

Proof. It is clear that rkFp(A) ≤ r for p ∈ {2, 3}. Let S ⊆ V be a clique in
GA of size |S| = s, and B = (bij) be the corresponding s × s submatrix of
A; hence, bii = 0 and bij ∈ {1, 3, 5} for all i > j. Then B mod 2 is a lower
co-triangular matrix over F2, and Lemma 14.12 (with p = 2) implies that
|S| ≤ r + 1.
Now let T ⊆ V be an independent set in GA of size |T | = t, and C = (cij)

be the corresponding t × t submatrix of A; hence, cii = 0 and cij ∈ {2, 4}
for all i > j. Then C mod 3 is a lower co-triangular matrix over F3, and
Lemma 14.12 (with p = 3) implies that |T | ≤ (

r+1
2
)
+ 1. ��
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In Sect. 13.7 (Theorem 13.15) we have shown how to construct explicit
n-vertex graphs with no clique or independent set larger than

t := 2c
√

lnn ln lnn

for an absolute constant c. Grolmusz (2000) constructed a co-triangular n×n
matrix A over R = Z6 with rkZ6(A) ≤ t. Together with Lemma 14.13, this
gives an alternative construction of a graphGA with no clique or independent
set larger than t.

14.5 Lower bounds for boolean formulas

Boolean formulas (or De Morgan formulas) are defined inductively as follows:

- Every boolean variable xi and its negation xi is a formula of size 1 (these
formulas are called leaves).
- If F1 and F2 are formulas of size l1 and l2, then both F1 ∧ F2 and F1 ∨ F2
are formulas of size l1 + l2.

Note that the size of F is exactly the number of leaves in F .
Often one uses an equivalent definition of a formula as a circuit with And,

Or, and Not gates, whose underlying graph is a tree. That is, now negation is
allowed not only at the leaves. But using De Morgan rules ¬(x∨y) = ¬x∧¬y
and ¬(x∧y) = ¬x∨¬y one can move all negations to leaves without increasing
the formula size.
Given a boolean function f , how it can be shown that it is hard, i.e., that

it cannot be computed by a formula of small size? Easy counting shows that
almost all boolean functions in n variables require formulas of size exponential
in n. Still, for a concrete boolean function f , the largest remains the lower
bound n3−o(1) proved by Håstad (1993).
The main difficulty here is that we allow negated variables xi as leaves.

It is therefore natural to look at what happens if we forbid this and require
that our formulas are monotone in that they do not have negated leaves. Of
course, not every boolean function f(x1, . . . , xn) can be computed by such
a formula – the function itself must be also monotone: if f(x1, . . . , xn) = 1
and xi ≤ yi for all i, then f(y1, . . . , yn) = 1. Under this restriction progress
is substantial: we are able to prove that some explicit monotone functions
require monotone formulas of super-polynomial size.

14.5.1 Reduction to set-covering

Let A and B be two disjoint subsets of {0, 1}n. A boolean formula F separates
A and B if F (a) = 1 for all a ∈ A and F (b) = 0 for all b ∈ B. A rectangle is
a subset R ⊆ A × B of the form R = S × T for some S ⊆ A and T ⊆ B. A
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rectangle is monochromatic if there exist an ε ∈ {0, 1} and a position i ∈ [n]
such that ai = ε and bi = 1− ε for all a ∈ S and b ∈ T . That is, the rectangle
R = S×T is monochromatic if S and T can be separated by a single variable
xi or by its negation xi. If we have a stronger condition that ai = 1 and
bi = 0 for all a ∈ S and b ∈ T (i.e. if we do not allow negations xi) then the
rectangle is monotone monochromatic.
The following simple lemma reduces the (computational) problem of prov-

ing a lower bound on the size of a formulas separating a pair A,B to a
(combinatorial) problem of proving a lower bound on the number of mutually
disjoint rectangles covering the Cartesian product A × B.
Lemma 14.14 (Rychkov 1985). If A and B can be separated by a (monotone)
formula of size t then the set A × B can be covered by t mutually disjoint
(monotone) monochromatic rectangles.
Proof. Let F be an optimal formula which separates the pair A,B, i.e., A ⊆
F−1(1) and B ⊆ F−1(0). Let t = size(F ). We argue by induction on t.
Base case. If size(F ) = 1 then F is just a single variable xi or its negation.

In that case the Cartesian product A×B is a monochromatic rectangle itself,
and we are done.
Induction step. Assume that the theorem holds for all formulas smaller

than F , and suppose that F = F1 ∧ F2 (the case F = F1 ∨ F2 is similar).
Let ti = size(Fi), hence t = t1 + t2. Define B1 := {b ∈ B : F1(b) = 0} and
B2 := B \ B1. Notice that Fi separates A and Bi for i = 1, 2. Applying the
induction hypothesis to the subformula Fi yields that the product A × Bi
can be covered by ti mutually disjoint monochromatic rectangles, for both
i = 1, 2. Since A × B1 and A × B2 form a partition of A × B, we have that
the set A × B can be covered by t1 + t2 = t monochromatic rectangles, as
desired. ��
We can use Rychkov’s lemma to derive the well-known lower bound due to

Khrapchenko (1971). Given two disjoint subsets A and B of {0, 1}n, define
the set

A ⊗ B = {(a, b) : a ∈ A and b ∈ B and a ∼ b} ,
where a ∼ b means that inputs a and b differ on exactly one bit. Intuitively, if
A⊗B is large, then every formula separating A and B should be large, since
the formula must distinguish many pairs of adjacent inputs. Just how large
the formulas must be says the following theorem. Viewing A ⊗ B as the set
of edges of a bipartite graph with parts A and B, it states that the size of
any formula separating A and B must be at least the product of the average
degrees of these two parts.
Theorem 14.15 (Khrapchenko 1971). Every formula separating a pair of
non-empty disjoint subsets A,B ⊆ {0, 1}n must have size at least

|A ⊗ B|2
|A| · |B| .
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Proof. The main property of the set A ⊗ B is accumulated in the following

Claim 14.16. No monochromatic s × t rectangle can cover more than
√
st

elements of A ⊗ B.

To prove the claim, let S × T be a monochromatic s × t subrectangle
of A × B. Since the rectangle is monochromatic, each element of S differs
from each element in T in one particular position j, whereas (a, b) is in
A ⊗ B only if a and b differ in exactly one position. Hence, for any given
a ∈ S, the only possible b ∈ T for which a ∼ b is one which differs from
a exactly in position j. As a result, we have that S × T can cover at most
min{|S|, |T |} = min{s, t} ≤ √

st entries of A ⊗ B.
Now suppose we have a decomposition of A × B into r monochromatic

rectangles of dimensions si×ti, i = 1, . . . , r. Let ci be the number of elements
of A ⊗ B in the i-th of these rectangles. By Claim 14.16, we know that
c2
i ≤ aibi. Since the rectangles are disjoint and cover the whole rectangle
A × B, we also have that |A ⊗ B| = ∑r

i=1 ci and |A × B| = ∑r
i=1 aibi.

Applying the Cauchy–Schwarz inequality (
∑

xiyi)2 ≤ (∑x2
i ) · (∑ y2

i ) with
xi = ci and yi = 1, we obtain

|A ⊗ B|2 =
( r∑
i=1

ci

)2
≤ r

r∑
i=1

c2
i ≤ r ·

r∑
i=1

aibi = r · |A × B| . ��

Khrapchenko’s theorem can be used to show that some explicit boolean
functions require formulas of quadratic size. Consider, for example, the parity
function f = x1 ⊕ · · · ⊕ xn. Taking A = f−1(1) and B = f−1(0) we see that
|A ⊗ B| = n|A| = n|B|, and hence, f requires formulas of size at least n2.
Unfortunately, this (quadratic) lower bound is the best that we can achieve

using this theorem (Exercise 14.12).

14.5.2 The rank lower bound

In order to apply Ryckov’s lemma, we must be able to show that, for some
explicit disjoint subsets A,B ⊆ {0, 1}n, the rectangle A × B cannot be de-
composed into few disjoint monochromatic rectangles. In general, this is a
very difficult task: no explicit pair A,B requiring, say, n3 monochromatic
rectangles is known.
Fortunately, in the monotone case—when rectangles in a decomposition

are required to be monotone—the situation is much better: here we can prove
even super-polynomial lower bounds of the form nΩ(logn). And this can be
done using rank arguments.
Fix an arbitrary field F. Given a monotone boolean function f , we can

associate with every pair of subsets A ⊆ f−1(1) and B ⊆ f−1(0) a matrix
M : A × B → F. If R ⊆ A × B is a set of its entries, then we denote by
MR the matrix which is obtained from the matrixM by changing to 0 all its
entries outside R. Define
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μ(M) := rk(M)
maxR rk(MR)

(14.3)

where the maximum is over all monotone monochromatic rectangles R ⊆
A × B. For a monotone boolean function f , let μ(f) be the maximum of
μ(M) over all pairs A,B separated by f and all matrices M : A × B → F.

Lemma 14.17 (Razborov 1990). Any monotone formula computing a monotone
boolean function f must have size at least μ(f).

Proof. Suppose that f can be computed by a monotone formula of size t.
Take an arbitrary pair A,B of sets separated by f , and an arbitrary matrix
M : A × B → F. By Rychkov’s lemma we know that the rectangle A × B
can be covered by at most t mutually disjoint monotone monochromatic
rectangles R1, . . . , Rt. Let Mi = MRi be the matrix corresponding to Ri.
Since the rectangles are mutually disjoint, we have that M =

∑t
i=1 Mi. The

sub-additivity of the rank (see (13.1)) implies that

rk(M) = rk
( t∑
i=1

Mi

)
≤

t∑
i=1
rk(Mi) ≤ t ·max

i
rk(Mi) . ��

It is clear that Lemma 14.17 also holds for non-monotone formulas if we
allow non-monotone monochromatic rectangles. However, Razborov (1992)
has proved that in this case the result is useless: for any boolean function f
in n variables, the fraction on the right-hand side of (14.3) does not exceed
O(n). Fortunately, in the monotone case, Lemma 14.17 can give non-trivial
lower bounds.
Let us consider bipartite graphs G = (V1, V2, E) with |V1| = |V2| = n.

With any such graph we can associate a monotone boolean function fG,k as
follows. The function has 2n variables, one for each node of G, and accepts
a set of nodes X ⊆ V1 ∪ V2 if and only if X contains some subset S ⊆ V1 of
size at most k, together with the set of its common neighbors

N(S) := {j ∈ V2 : (i, j) ∈ E for all i ∈ S}.

That is, fG,k is the Or of all
∑k

i=0
(
n
i

)
monomials

∧
i∈S∪N(S) xi where S ⊆ V1

and |S| ≤ k. By N(S) we will denote the set of all common non-neighbors of
S, that is,

N(S) := {j ∈ V2 : (i, j) ∈ E for no i ∈ S}.
By its definition, every function fG,k can be computed by a monotone for-
mula of size at most 2n

∑k
i=0

(
n
i

)
. It turns out that, for graphs satisfying

the isolated neighbor condition (see Definition 10.18), this trivial formula is
almost optimal.
Recall that a bipartite graph G = (V1, V2, E) satisfies the isolated neighbor

condition for k if for any two disjoint subsets S, T ⊆ V1 such that |S|+|T | = k,
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14.5 Lower bounds for boolean formulas

there is a node v ∈ V2 which is a common neighbor of all the nodes in S and
is isolated from all the nodes in T , i.e., if N(S) ∩ N(T ) 
= ∅.
Lemma 14.18 (Gál 1998). If G satisfies the isolated neighbor condition for
2k, then the function fG,k does not have a monotone DeMorgan formula of
size smaller than

∑k
i=0

(
n
i

)
.

Proof. Associate with each subset S ⊆ V1 of |S| ≤ k vertices the following
two vectors aS and bS in {0, 1}2n:

aS(i) = 1 if and only if i ∈ S ∪ N(S)

and
bS(i) = 0 if and only if i ∈ S ∪N(S) .

Let A denote the set of all vectors aS , and B the set of all vectors bS where
S ranges over all subsets of V1 of size at most k.
By the definition of the function f = fG,k, we have that f(x) = 1 if and

only if x ≥ aS for some S. Hence, f(a) = 1 for all a ∈ A. We claim that
f(b) = 0 for all b ∈ B. To show this, we use the fact that the graph G
satisfies the isolated neighbor condition for 2k. This condition implies that,
for any two subsets S, T ⊆ V1 of size at most k,

S ∩ T = ∅ if and only if N(S) ∩ N(T ) 
= ∅. (14.4)

Now take an arbitrary vector bT in B. To show that f(bT ) = 0, it is enough
to show that, for every aS ∈ A there is a position i such that bT (i) = 0 and
aS(i) = 1. If S ∩ T 
= ∅ then every position i in the intersection S ∩ T has
this property. If S ∩ T = ∅ then (14.4) implies that N(S) ∩ N(T ) 
= ∅, and
again, every position i in the intersection N(S) ∩N(T ) has this property.
Thus, we have shown that the function f separates the pair A,B. Now

define the matrix M : A× B → F2 by

M [aS , bT ] = 1 if and only if S ∩ T = ∅.

This is a disjointness matrix D(n, k), considered in Sect. 13.4, and we already
know (see Theorem 13.10) that it has full rank over F2:

rkF2(M) =
k∑
i=0

(
n

i

)
.

Thus, by Lemma 14.17, it remains to show that rkF2(R) ≤ 1 for every
monotone monochromatic rectangle R ⊆ A× B.
Since R is monotone monochromatic, there must exist a position i such

that vS(i) = 1 and uT (i) = 0 for all (vS , vT ) ∈ R. If i ∈ V1 then the
corresponding entry of the intersection matrixM is 0 because then S∩T 
= ∅;
if i ∈ V2 then this entry is 1 because then N(S) ∩ N(T ) 
= ∅, and by (14.4),
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S ∩ T = ∅. Thus, depending on whether i ∈ V1 or i ∈ V2, the matrix MR is
either the all-0 matrix or a matrix consisting of 1s in all entries in R and 0s
elsewhere; in this last case, MR is a matrix of rank 1. ��
Explicit bipartite graphs, satisfying the isolated neighbor condition for

k = Ω(logn) are known. Such are, for example, Paley graphs Gn constructed
in Sect. 10.6. By Lemma 14.18, the corresponding boolean function fGn,k
requires monotone formula of size at least

(
n
k

)
= nΩ(logn).

Exercises

14.1. LetA and B be families of subsets of an n-element set with the property
that |A∩B| is odd for all A ∈ A and B ∈ B. Prove that then |A| · |B| ≤ 2n−1.
Hint: Replace A in the proof of Theorem 14.1 by a larger set A′ = A ∪ A0 where
A0 = {u0 + u : u ∈ A} for some fixed u0 ∈ A. Show that A ∩ A0 = ∅, and argue as in
that proof with A′ instead of A.

14.2. Define the matrices H2m, m = 1, 2, 4, 8, . . ., inductively as follows:

H2 =
(
1 1
1 −1

)
, H2m =

(
Hm Hm

Hm −Hm

)
.

Show that these matrices are Hadamard.

14.3. (Due to Gatis Midrijanis) Let Hn be a matrix from the previous exer-
cise. Give a direct proof that its rigidity is RHn(r) ≥ n2/4r for all 1 ≤ r ≤ n/2.
Hint: Divide Hn uniformly into (n/2r)2 submatrices of size 2r × 2r, and observe that
each of them is ±H2r .

14.4. Let n = 2m. The n×n Sylvester ±1-matrix Sn = (sxy) by labeling the
rows and columns by m-bit vectors x, y ∈ F

m
2 and letting sxy = (−1)〈x,y〉,

where the scalar product is over F2. Show that Sn is a Hadamard matrix.

14.5. Show that Alon’s lemma (Lemma 14.6) is sharp, at least whenever k
divides n and there exists a k × k Hadamard matrix H . Hint: Take n/k copies
of H.

14.6. Use Lemma 14.6 to show that if t > (1 − 1/r)n, then every r × t
sub-matrix H ′ of an n × n Hadamard matrix H has rank r (over the reals).

14.7. Take an n×n matrix over some field F and suppose that all of its rows
are different. Prove the following: if some column is linearly dependent on
the others then after the deletion of this column, all the rows in the resulting
n by n− 1 matrix are still different.
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14.8. (Babai–Frankl 1992). Give a linear algebra proof of Bondy’s theorem
(Theorem 11.1): In any n × n 0-1 matrix M with all rows being different,
there is a column, after deletion of which the resulting n by n−1 matrix still
has no equal rows. Hint: Consider two cases depending on what is the determinant
of M . If det(M) = 0 then some column is linearly dependent on the others, and we are
in the situation of the previous exercise. If det(M) �= 0 then take a row vi of M with
the minimal number of 1s, and expand the determinant by this row. Conclude that for
some j, the term vij ·detMij �= 0, where Mij is the (n−1) by (n−1) minor obtained by
deleting the i-th row and the j-th column. Hence, vij = 1 and no two rows of the minor
are identical. Use this to prove that deleting the j-th column from the whole matrix M
leaves no equal rows.

14.9. For n ≥ 1, d ≥ 0, n ≡ d mod 2, let K(n, d) denote the minimal cardi-
nality of a family V of ±1 vectors of length n, such that for any ±1 vector w
of length n, there is a v ∈ V such that the value of the scalar product 〈v, w〉
(over the reals) lies between −d and d. Prove that:
(i) K(n, 0) ≤ n (Knuth 1986). Hint: Consider ±1 vectors v0, v1, . . . , vn of length n,

where the i-th vector vi has first i coordinates equal to −1 and the rest equal to
+1; hence, v0 has no −1’s at all whereas vn consists entirely of −1’s. Observe that
〈w, v0〉 = −〈w, vn〉, while 〈w, vi〉 = 〈w, vi+1〉 ± 2 for each i = 0, 1, . . . , n− 1.

(ii) K(n, d) ≤ �n/(d+ 1)� (Alon et al. 1988). Hint: Consider the same vec-
tors as before, and select only the vectors uj := vj·(d+1)+1 for j = 0, 1, . . . , r;
r = 	n/(d+ 1)
 − 1. Observe that for any ±1 vector w and any j, 0 ≤ j < r,
〈w, uj〉 = 〈w, uj+1〉 ± (2d+2). Note: Alon et al. (1988) have also proved that
this upper bound is tight.

14.10. (Alon et al. 1988). Let V be the set of all ±1 vectors of length n.
A vector is even if it has an even number of −1’s, otherwise it is odd. Let
f(x1, . . . , xn) be a multilinear polynomial of degree less than n/2 over the
reals, i.e.,

f =
∑

|S|<n/2

αS
∏
i∈S

xi,

where αS ∈ R. Suppose that f(v) = 0 for every even vector v ∈ V . Prove
that then f ≡ 0, i.e., αS = 0 for all S. Does the same hold if f(v) = 0 for
every odd vector v ∈ V ? Hint: By the hypothesis, for every even subset T ⊆ N we
have ∑

|S|<n/2

αS(−1)|S∩T | = 0.

It thus suffices (why?) to show that the rows of the matrix

A =
{
(−1)|S∩T | : |T | even and |S| < n/2

}
are linearly independent (over the reals). For this, show that the matrix M = ATA has
non-zero determinant. The (S1, S2)-th entry of M is the sum∑

T

(−1)|S1 ∩T |+|S2∩T | =
∑
T

(−1)|(S1⊕S2)∩T |
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14 Orthogonality and Rank Arguments

over all even T . If S1 = S2, then this sum is 2n−1. If S1 �= S2, then 0 < |S1 ⊕ S2| < n;
use this to show that in this case the sum is 0.

14.11. Let n = 2m+1, and consider the majority function MAJn(x1, . . . , xn),
which outputs 1 iff x1 + . . . + xn ≥ m + 1. The best known upper bound
O(n4.57) for the formula size of MAJn is due to Valiant. Use Khrapchenko’s
theorem to show that this function requires formulas of size Ω(n2). Hint: Take
A = {a : |a| = m+ 1} and B = {b : |b| = m}.

14.12. Show that Khrapchenko’s theorem cannot yield larger than quadratic
lower bounds. Hint: Each vector in {0, 1}n has only n neighbors.

14.13. Research problem: It is not known if the converse of Rychkov’s lemma
(Lemma 14.14) holds. Suppose that A × B can be covered by t mutually
disjoint rectangles. Does there then exist a formula which separates A,B and
has size at most tc for some absolute constant c?

14.14. Let V ⊆ F
n
2 be a linear space and y ∈ F

n
2 be a vector. Assume that

y 
∈ V ⊥. Show that then v · y = 0 for precisely one-half of the vectors v in V .
Hint: Split V into V0 and V1 according to whether v ·y = 0 or v ·y = 1. Take x ∈ V such
that x · y = 1; hence, x ∈ V1. Show that then x+ V0 ⊆ V1, x+ V1 ⊆ V0, |x+ V0| = |V0|
and |x+ V1| = |V1|.

14.15. The general disjointness matrix Dn is a 2n×2n 0-1 matrix whose rows
and columns are labeled by the subsets of an n-element set, and the (A,B)-th
entry is 1 if and only if A ∩ B = ∅. Prove that this matrix has full rank, i.e.,
that rk(Dn) = 2n. Hint: Use the induction on n together with the following recursive
construction of Dn:

D1 =
(

1 1
1 0

)
, Dn =

(
Dn−1 Dn−1
Dn−1 0

)
14.16. The intersection matrix Qn is a (2n − 1)× (2n − 1) 0-1 matrix whose
rows and columns are labeled by the non-empty subsets of an n-element set,
and the (A,B)-th entry is 1 if and only if A ∩B 
= ∅. Prove that this matrix
also has full rank over any field. Hint: If we subtract Dn from the all-1 matrix In
then we get a matrix Qn with one additional null column and row. Combine this fact
with (13.1) and the previous exercise.

212



15. Eigenvalues and Graph Expansion

A very important class of sparse graphs consists of expander graphs. Among
other things, they are the model for a good network. They are also used to
derandomize algorithms as well as to construct good error-correcting codes.
Basically, an expander has the property that every subset of its vertices has
a large set of neighbors. This particularly implies that any pair of vertices is
connected by a short path.
In general, it is difficult to decide whether a given graph is a good ex-

pander: One must test whether all subsets of vertices have many neighbors.
Fortunately, linear algebra can help us in this situation. Namely, it turns out
that a graph is a good expander if it has large spectral gap, that is, if the dif-
ference between the first and the second largest eigenvalues of its adjacency
matrix is large.

15.1 Expander graphs

For a graph G = (V,E) and a vertex u ∈ V , let Γ (u) denote the set of
neighbors of u, that is, the set of all vertices adjacent to u. For a subset
S ⊆ V , its neighborhood is defined as the set

Γ (S) = {v ∈ V \ S : v is adjacent to some vertex u ∈ S}

of all proper neighbors of S.
An (n, d, c)-expander is a d-regular graph G = (V,E) on n vertices such

that every subset S ⊆ V with |S| ≤ n/2 is connected by edges of G to at
least c|S| vertices outside the set S, that is,

|Γ (S)| ≥ c|S| for all S ⊆ V with |S| ≤ n/2.

The smaller the degree d and the larger the expansion constant c > 0 is, the
better the expander we have.
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15 Eigenvalues and Graph Expansion

To see that a small degree expander makes a good network, suppose we
want to route a message from a vertex x to another vertex y in an (n, d, c)-
expander G. Every vertex has degree d. By the property of an expander,
there are at least (1 + d)(1 + c) vertices at distance ≤ 2 from x. Working
outwards from there, there will be at least (1+d)(1+ c)k vertices at distance
≤ k + 1 from x. We can continue expanding from x until the reachable set
Vx of vertices has |Vx| > n/2 vertices. The vertex y may not be among them.
But if we expand from y in the same way, we eventually obtain a set Vy of
|Vy| > n/2 vertices reachable from y. Since both sets Vx and Vy have more
than n/2 vertices, they must overlap. The overlap contains vertices on a path
from x to y.
In this way, we have shown that any two vertices x and y are connected

by a path of length at most 2(k + 1), as long as

k > log1+c
n

2(1 + d) .

If c > 0 is a constant, then any two vertices are connected by a path of length
logarithmic in the total number n of vertices.

15.2 Spectral gap and the expansion

The basic question about expanders is: If A is the adjacency matrix of a
graph G, what properties of A ensure that G is a good expander? All graphs
considered in this chapter are undirected. Recall that the adjacency matrix
of a graph G on vertices {1, 2, . . . , n} is an n × n 0-1 matrix A = (aij) with
aij = 1 iff i and j are adjacent in G. Note that A is symmetric, that is,
aij = aji for all i, j.
Of course, there is a trivial combinatorial property of A ensuring that G

is an (n, d, c)-expander: For every subset S ⊆ [n] of |S| ≤ n/2 rows, at least
c|S| columns outside S must have at least one 1 in these rows. This answer
is, however, not satisfactory because the property must hold for all subsets S
and it is difficult to test all these 2Ω(n) possibilities. What we would like to
have is an algebraic condition on A ensuring good expansion of G. It turns
out that this property is captured by the two largest eigenvalues of A.
By eigenvalues of a graph G = ([n], E) we will mean the eigenvalues λ1 ≥

λ2 ≥ . . . ≥ λn of its adjacency matrix A = (aij) with aij = 1 iff i and j
are adjacent in G. Since A has zeroes on the diagonal, its trace is equal to 0.
Hence, we always have that λ1 + · · ·+ λn = 0.
Example 15.1. The complete graph Kn has an adjacency matrix equal to
A = J − I, where J is the all-1 matrix and I is the identity matrix. The rank
of J is 1, i.e. there is one nonzero eigenvalue equal to n, with an eigenvector
1 = (1, 1, ..., 1). All the remaining eigenvalues are 0. Subtracting the identity
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15.2 Spectral gap and the expansion

shifts all eigenvalues by −1, because Ax = (J − I)x = Jx− x. Therefore the
eigenvalues of Kn are λ1 = n − 1 and λ2 = . . . = λn = −1
If G is d-regular, then 1 = (1, 1, ..., 1) is an eigenvector. We get A1 = d1,

and hence d is an eigenvalue. It is easy to show that no eigenvalue can be
larger than d (see Exercises 15.7 and 15.8).

Interestingly, already the difference d− λ2 (known as the spectral gap) be-
tween the degree d of a d-regular graph and its second-largest eigenvalue λ2
gives us a lot of information about the expansion properties of the correspond-
ing graphs. The larger this difference is, the better expansion properties the
graph has.
For two not necessarily disjoint subsets S, T ⊆ V of vertices, let e(S, T )

denote the number of edges of G with one endpoint in S and the other in T .
If S∩T = ∅, then 0 ≤ e(S, T ) ≤ |S| · |T |. In this case, e(S, T ) is the number of
“crossing edges” between the sets S and T . Also, let e(S) denote the number
of edges, both endpoints of which lie in S.

Lemma 15.2 (Expander Crossing Lemma). Let G = (V,E) be a d-regular
graph on n vertices V = {1, . . . , n}, and let λ = λ2 be the second largest
eigenvalue of its adjacency matrix A. Then, for every partition V = S ∪ T ,

e(S, T ) ≥ (d − λ)|S| · |T |
n

. (15.1)

Proof. By Lemma 13.5, we know that λ = λ2 is the maximum of the Rayleigh
quotient x�Ax/‖x‖2 over all vectors x such that 〈x,1〉 = 0. So, to get a lower
bound on λ we can plug any vector x ⊥ 1 into the Rayleigh quotient. For this
purpose, we take the following vector x related to our partition V = S ∪ T .
Let s = |S| and t = |T | = n−s. We can assume w.l.o.g. that S = {1, 2, . . . , s}
and T = {s + 1, . . . , n}. Consider the vector x = (x1, . . . , xn) with xi = −t
for i ∈ S and xi = s for i ∈ T . That is,

x = (
|S| times︷ ︸︸ ︷

−t,−t, . . . ,−t,
|T | times︷ ︸︸ ︷
s, s, . . . , s) .

Then
〈x,1〉 =

∑
i∈S
(−t) +

∑
i∈T

s = s(−t) + ts = 0

Also

‖x‖2 = 〈x, x〉 =
∑
i∈S
(−t)2 +

∑
i∈T

s2 = st2 + ts2 = st(s+ t) = stn .

By (13.7),
x�Ax ≤ λ‖x‖2 = λstn. (15.2)

Our goal now is to show that x�Ax = stdn − e(S, T )n2, from which the
desired lower bound on e(S, T ) follows.
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15 Eigenvalues and Graph Expansion

Letting Γ (i) denote the set of all neighbors of vertex i, we have

x�Ax =
n∑
i=1

xi

( ∑
j∈Γ (i)

xj

)
= 2

∑
{i,j}∈E

xixj

= 2t2 · e(S) + 2s2 · e(T )− 2st · e(S, T ) . (15.3)

To eliminate e(S) and e(T ), observe that the sum of degrees
∑

i∈S di of
vertices in S is equal to d|S| = ds, since the graph is d-regular, and is equal
to 2e(S)+ e(S, T ), since each edge with both endpoints in S is counted twice.
This gives 2e(S) = ds− e(S, T ). Similarly, 2e(T ) = dt− e(S, T ). Substituting
this in (15.3) we obtain

x�Ax = (ds − e(S, T ))t2 + (dt − e(S, T ))s2 − 2st · e(S, T )
= (dst2 + dts2)− (s2 + 2st+ t2) · e(S, T )
= std(s+ t)− (s+ t)2 · e(S, T )
= stdn − n2 · e(S, T ) .

Together with (15.2), this implies

e(S, T ) ≥ λstn− stdn

n2 = (d − λ)st
n

. 
�

In particular, this lemma implies that if λ < d, then for any partition of
the vertices, there is a “crossing edge” going from one part to another. That
is, λ < d implies that the graph is connected. In fact, the converse holds as
well.

Proposition 15.3. A d-regular graph with second-largest eigenvalue λ2 is
connected if and only if λ2 < d.

Proof. Let G be connected and d-regular. Suppose on the contrary that there
is a vector x ∈ R

n, x �= 0 such that 〈x,1〉 = 0 and Ax = dx. Let xi be the
smallest and xj the largest entry of x. Since 〈x,1〉 = 0 and x �= 0, we have that
xi < 0 and xj > 0. Take c := −1/xi and consider the vector y := 1+cx. Then
y ≥ 0. Moreover, yi = 1 + cxi = 1− 1 = 0 and yj = 1+ cxj = 1− xj/xi > 1.
But

Ay = A1+ cAx = d1+ cdx = dy ,

and hence, Aty = dty for all t. In particular,

At[i, 1]y1 + · · ·+At[i, j]yj + · · ·+At[i, n]yn = dyi = 0 .

Together with y ≥ 0 and yj > 0, this implies that At[i, j] = 0 for any t, that
is, there is no walk joining i and j, a contradiction with the connectedness
of G. 
�
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15.2 Spectral gap and the expansion

An important consequence of the Expander Crossing Lemma is that every
d-regular graph whose second-largest eigenvalue is strictly smaller than d, is
a good enough expander.

Theorem 15.4. If λ = λ2 is the second-largest eigenvalue of the incidence
matrix of a d-regular graph G on n vertices, then G is an (n, d, c)-expander
for c = (d − λ)/2d.

Proof. Let S be a subset of |S| ≤ n/2 vertices, and let Γ (S) be the set of all
neighbors of S in the complement S of S. An edge can lie between S and S
only if one its endpoint belongs to S and the other to Γ (S). Since every vertex
in Γ (S) has at most d neighbors in S, this implies that e(S, S) ≤ d|Γ (S)|.
Together with Lemma 15.2 this implies

|Γ (S)| ≥ (d − λ)|S|(n − |S|)
dn

≥ d− λ

2d ,

where the last inequality follows since n− |S| ≥ n/2. 
�
For not necessarily disjoint subsets of vertices S and T , we have a slightly

worse lower bound on e(S, T ).

Lemma 15.5 (Expander Mixing Lemma). If G is a d-regular graph on n
vertices and λ = λ2 is the second-largest eigenvalue of its adjacency matrix
then, for every two subsets S and T of vertices,∣∣∣e(S, T )− d|S| · |T |

n

∣∣∣ ≤ λ
√

|S| · |T | .

The left-hand side measures the deviation between two quantities: one is
e(S, T ), the number of edges between the two sets; the other is the expected
number of edges between S and T in a random graph of edge density d/n,
namely d|S||T |/n. A small λ (or large spectral gap) implies that this deviation
(or discrepancy as it is sometimes called) is small, so the graph behaves like
a random graph in this sense!

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix A
of G, and let x1, . . . , xn be the corresponding orthonormal basis; here x1 is

1√
n
times the all-1 vector 1. Let vS and vT be the characteristic vectors of S

and T . Expand these two vectors as linear combinations

vS =
n∑
i=1

aix
i and vT =

n∑
i=1

bix
i

of the basis vectors. Since the xi are orthonormal eigenvectors,

e(S, T ) = v�SAvT =
( n∑
i=1

aix
i
)�

A
( n∑
i=1

bix
i
)
=

n∑
i=1

λiaibi . (15.4)
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15 Eigenvalues and Graph Expansion

Since the graph G is d-regular, we have λ1 = d. The first two coefficients a1
and b1 are scalar products of x1 = 1√

n
1 with vS and vT ; hence, a1 = |S|/√

n

and b1 = |T |/√
n. Thus, the first term λ1a1b1 in the sum (15.4) is precisely

d|S||T |/n. Since λ = λ2 is the second largest eigenvalue, the absolute value of
the sum of the remaining n−1 terms in this sum does not exceed λ∑n

i=2 |aibi|
which, by the Cauchy–Schwarz inequality, does not exceed

λ‖a‖ · ‖b‖ = λ‖vS‖ · ‖vT ‖ = λ
√

|S| · |T | . 
�

There are several explicit constructions of constant degree expanders with
a constant expansion factor c > 0. We mention just two of them:

1. Vertices are pairs of integers x ∈ Zm = {0, 1, . . . ,m− 1}, and each vertex
(x, y) is connected to four vertices (x+ y, y), (x− y, y), (x, y+ y), (x, x− y),
where all operations are modulo m.

2. Vertices are elements of the field Zp (for p a prime number), and every
vertex x �= 0 is connected to three vertices x+ 1, x − 1, x−1, where again,
x ± 1 is computed modulo p and x−1 is the multiplicative inverse of x in
Zp. The vertex x = 0 is connected to 0, 1 and p − 1.

15.2.1 Ramanujan graphs

The second-largest-eigenvalue λ of d-regular graphs lies roughly between
√
d

and d. More precisely, it is known that the second eigenvalue is always at
least 2

√
d− 1−o(1). Graphs achieving this lower bound are called Ramanujan

graphs. That is, a Ramanujan graph is a d-regular graph whose second-largest
eigenvalue λ satisfies λ ≤ 2√d − 1.
Example 15.1 shows that the complete graph Kn is a Ramanujan graph

for any n. The problem, however is, that Kn has huge degree. In applications
we need an explicit sequence Gn, n = 1, 2, . . . of graphs such that infinitely
many of them have some (fixed) constant degree d and are Ramanujan (or
“nearly” Ramanujan) graphs.
Explicit constructions of (p+ 1)-regular Ramanujan graphs on n vertices

for every prime p ≡ 1 mod 4 and infinitely many values of n were given
in Margulis (1973), Lubotzky, Phillips and Sarnak (1988); these were later
extended to the case where p is an arbitrary prime power in Morgenstern
(1994) and Jordan and Livné (1997).
Most important in these (rather non-trivial) constructions is that the de-

gree p+1 of constructed n-vertex graphs is constant, it does not grow with n.
On the other hand, Ramanujan n-vertex graphs of degree about

√
n can be

constructed quite easily.
In Sect. 2.2 we described explicit n-vertex graphs with no 4-cycles and

almost maximal number Ω(n3/2) of edges (see Exercise 2.5). Now we will
show that these graphs are Ramanujan graphs. Later, in Sect. 25.4, we will
combine this fact with the expander mixing lemma to prove an important
result in extremal number theory about sum-product sets.
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15.2 Spectral gap and the expansion

Let n = p(p− 1), where p is a prime number. The vertices of our graph G
are pairs (a, b) of elements of a finite field Zp with a �= 0, and two vertices
(a, b) and (c, d) are joined by an edge iff ac = b+ d (all operations modulo p).
We have already shown that this graph is (p−1)-regular, that is, every vertex
has p−1 incident edges (some edges may be loops). We have also shown that
any two vertices (a, b) and (c, d) have

(i) no common neighbor, if a = c or b = d;
(ii) exactly one common neighbor, if a �= c and b �= d.

Now we will show that, for any prime number p ≥ 5, the graph G is
a Ramanujan graph. Let λ = λ(G) be the second-largest eigenvalue of the
adjacency matrix of G.

Lemma 15.6. |λ| < √
3p.

Proof. Let M be the adjacency matrix of G. The (u, v)-entry of M2 is the
number of walks from u to v of length 2. If u = v, this number is the degree
p − 1, while if u �= v, with u = (a, b) and v = (c, d), then properties (i) and
(ii) tell us that this number is 1 if a �= c and b �= d, and is 0 otherwise. It
follows that

M2 = J + (p − 2)I − E , (15.5)

where J is the all-1 matrix, I is the identity matrix, and E is the “error
matrix,” the adjacency matrix of the graph GE whose vertex set is the same
as that of G, and in which two vertices (a, b) and (c, d) are connected by an
edge if a = c or b = d. It is easy to see that GE is a (2p − 3)-regular graph.
Since G is regular and its adjacency matrix M is symmetric, we know

that the all-1 vector is an eigenvector of M and all other eigenvectors are
orthogonal to it. It is easy to check that G is connected and not bipartite, so
that the eigenvalue p − 1 has multiplicity 1, and for any other eigenvalue θ
we have |θ| < p − 1.
Given such an eigenvalue θ, let x be a corresponding eigenvector. Then by

equation (15.5),
θ2x = (p − 2)x − Ex ,

since Jx is the all-0 vector. Therefore p − 2− θ2 is an eigenvalue of E.
Now, the degree 2p− 3 of GE is an upper bound on the absolute value of

every eigenvalue of E (see Exercise 15.8). It follows that

p − 2− θ2 ≥ −2p+ 3

which implies |θ| < √
3p, as desired. 
�
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15 Eigenvalues and Graph Expansion

15.3 Expanders and derandomization

Random algorithms use random bits (results of coin-flips) during the compu-
tation and are allowed to produce a wrong answer with some small probability.
Such algorithms are usually much faster than known deterministic algorithms.
But we must pay for this: we must expect errors and it is time consuming to
produce random bits. It turns out that expander graphs can help to decrease
the error-probability as well as to reduce the number of required random bits.
Suppose we have a boolean function f : {0, 1}n → {0, 1} and a probabilis-

tic polynomial time algorithm A that approximates f in the sense that, for
random r ∈ {0, 1}m we have:

Prr [A(x, r) �= f(x)] ≤ 14 for every x ∈ {0, 1}n. (15.6)

We could reduce the error to 4−t by running the algorithm 2t+ 1 times and
taking the majority of its outputs as the result. But this requires (2t+ 1)m
coin tosses. We want to reduce errors while using a small number of coin
tosses. (A general procedure, when we reduce the number of random bits by
modifying a probabilistic algorithm, is called derandomization.)
Take a d-regular graph G = (V,E) on |V | = 2m vertices, and let λ = λ2

be the second-largest eigenvalue of its adjacency matrix. Let us consider the
following algorithm B that uses only m coin tosses. For a given input x, it
picks a vertex v ∈ V uniformly at random, and outputs

B(x, v) := Majorityu∈Γ (v)A(x, v) .

Claim 15.7. For every x ∈ {0, 1}n,

Prv [B(x, v) �= f(x)] ≤ 4
(
λ

d

)2
.

Proof. Fix an input x. Let S = {v ∈ V : B(x, v) �= f(x)} be the set of
vertices on which B errs, and T = {v ∈ V : A(x, v) �= f(x)} be the set of
vertices on which A errs. Observe that every vertex u ∈ S must be adjacent
to at least d/2 vertices v ∈ T , implying that e(S, T ) ≥ d|S|/2. Moreover,
|T | ≤ |V |/4 = n/4, by (15.6). The Expander Mixing Lemma yields:

e(S, T )− d|S| · |T |
n

≤ λ
√

|S| · |T |
d|S|
2 − d|S|

4 ≤ λ
√

|S|n/4
d|S|
4 ≤ λ

√
|S|n/4

from which
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Prv [B(x, v) �= f(x)] = |S|
n

≤ 4
(
λ

d

)2
.

follows. 
�
So, taking Ramanujan graphs the error probability can be reduced to

4(2/
√
d)2 without any increase of the number of random bits!

We will present yet another application of expander graphs to reduce the
number of random bits in Sect. 23.3. More applications of expanders as well
as their constructions can be found in a beautiful survey paper by Hoory,
Linial and Wigderson (2006).

Exercises

15.1 (Unique neighbors). Let G = (V,E) and S ⊆ V . A unique neighbor of S
is a vertex in Γ (S) connected by an edge to only one vertex in S. Suppose that
G is an (n, d, c)-expander. Show that then every subset S of size |S| ≤ n/2
has at least (c − d/2)|S| unique neighbors. Hint: Let T ⊆ Γ (S) be the set of
non-unique neighbors and count the number of edges between S and T in two ways.

15.2. Let A be a square symmetric matrix, and λ one of its eigenvalues. Show
that, for every integer k ≥ 1, λk is an eigenvalue of Ak.
15.3. Let G be a d-regular graph on n vertices, and A its adjacency matrix.
Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A. Show that the eigenvalues of
the adjacency matrix of the complement graph G are n− 1− d and −1− λi
for i = 2, . . . , n. Hint: The adjacency matrix of G is J−I−A. If vector x is orthogonal
to 1, then Jx = 0.
15.4. Let G be a bipartite d-regular graph on n vertices, and A its adjacency
matrix. Show that −d is also an eigenvalue of A. Hint: If G is bipartite with parts
of size p and q with p+ q = n, then

A =
[

0 B

B� 0

]
for a p× q matrix B. Take the vector

x = (1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

) .

15.5. Let d > 1 be a constant, and A be the adjacency matrix of a d-regular
graph on n vertices. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A; hence,
λ1 = d. Let λ = maxi�=1 |λi|. Show that λ ≥ (1 − o(1))

√
d as n → ∞. Hint:

Use the fact that λ1 + . . . + λn is the trace of A to estimate the trace of A2.

15.6. Let A be a square 0-1 matrix with exactly d ones in each row and in
each column. Show that then x�Ax ≤ d holds for every vector x ∈ R

n with
‖x‖ = 1. Hint: The Birkhoff–Von Neumann theorem and Exercise 13.21.
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15 Eigenvalues and Graph Expansion

15.7. Let G be a graph, and A its adjacency matrix. Let δ be the average
degree and Δ the maximum degree of G. Let λmax be the largest eigenvalue
of A. Show that δ ≤ λmax ≤ Δ. Hint: Let λ = λmax, take a vector x with Ax = λx
and give an upper bound on |λ|maxi |xi|. For the lower bound apply Theorem 13.5 with
x = 1.

15.8. Use the previous exercise to show that λ1 = d is the largest eigenvalue
of the adjacency matrix of every d-regular graph.

15.9. Show that a scalar λ is an eigenvalue for A with eigenvector x if and
only if |x�Ax| = ‖Ax‖ · ‖x‖.
15.10. Let A = (aij) be an upper triangular matrix, that is, aij = 0 for
all i > j. Show that then the diagonal elements a11, a22, . . . , ann are the
eigenvalues of A. Hint: Recall that eigenvalues of A are the roots of the characteristic
polynomial pA(z) = det (A− zI) of A, where I is a unit matrix with 1s on the diagonal,
and 0s elsewhere.

15.11. Let A be a symmetric n× n 0-1 matrix with 1s on the diagonal, and
let |A| be the total number of 1-entries in A. Show that then rk(A) ≥ n2/|A|.
Hint: Consider the trace of A2, and recall that rk(A) is the number of (not necessarily
distinct) nonzero eigenvalues of A.

15.12. Let A be a real n × n matrix with eigenvalues λ1, . . . , λn and corre-
sponding eigenvectors x1, . . . , xn. Let I ⊆ [n] be such that all eigenvalues λi
with i ∈ I are distinct.

1. Show that the vectors xi with i ∈ I are linearly independent.
2. Let A be symmetric. Show that the eigenvectors corresponding to different
eigenvalues are mutually orthogonal, that is, 〈xi, xj〉 = 0 for all i �= j ∈ I.
Hint: Show that y�Ax = x�Ay holds for all vectors x, y.

15.13. Let G = (X∪Y,E) be the point-line incidence graph of the projective
plane PG(2, q) (see Sect. 12.4). That is, vertices in X correspond to points,
vertices in Y to lines of PG(2, q), and a point x is joined to a line y by an
edge iff x ∈ y. The graph has |X | = |Y | = n := q2 + q + 1 vertices on each
side, and each vertex has degree q + 1. The most important property of this
graph is that it contains no copies ofK2,2, that is, it contains no cycle on four
vertices. Show that every subset S ⊆ X has at least (1 − q/|S|)n neighbors
in Y . Hint: Corrádi’s lemma, Lemma 2.1).
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16. The Polynomial Method

This method is based on various extensions of the following basic fact about
univariate (single-variable) polynomials —known as the “factor theorem”—to
the case of multivariate polynomials, that is, polynomials on many variables:
(i) Every nonzero polynomial of degree d has at most d roots.
(ii) For every set S of points there exists a nonzero polynomial f of degree
at most |S| such that f(x) = 0 for all x ∈ S.
Thus, to obtain an upper bound on the size of a given set S, it is enough

to exhibit a nonzero low-degree polynomial that vanishes on S; conversely,
to lower bound the size of S, it is enough to show that the only low-degree
polynomial that vanishes on S is the zero polynomial.

16.1 DeMillo–Lipton–Schwartz–Zippel lemma

Let x1, . . . , xn be variables. A monomial of degree t is a product xt1
1 x

t2
2 · · ·xtnn

with integers ti ≥ 0 such that t1 + t2 + · · · + tn = t. Hence, constant 1 is
the only monomial of degree 0. For a fixed field F, let F[x1, . . . , xn] denote
the ring of all multivariate polynomials over F. Each such polynomial is a
linear combination of monomials with coefficients taken from F. The degree,
deg(f), of f is the maximum degree among its monomials with a nonzero
coefficient. A (multivariate) polynomial is homogeneous if all its monomials
with nonzero coefficients have the same degree. A polynomial f vanishes on
a subset E ⊆ F

n if f(x) = 0 for all x ∈ E. A point x ∈ F
n with f(x) = 0

is a root of f . A polynomial f(x) is the zero polynomial if all its coefficients
are 0.
The following lemma extends the second claim (ii) of the factor theorem

to multivariate polynomials.

Lemma 16.1. Given a set E ⊆ F
n of size |E| < (

n+d
d

)
, there exists a nonzero

polynomial f ∈ F[x1, . . . , xn] of degree at most d that vanishes on E.
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16 The Polynomial Method

Proof. Let Vd be the vector space of polynomials in F[x1, . . . , xn] of degree at
most d. It is not difficult to show (see Exercise 13.22) that Vd has dimension(
n+d
n

)
. On the other hand, the vector space F

E of all functions g : E → F has
dimension |E| < (

n+d
d

)
. Hence the evaluation map f �→ (f(a))a∈E from Vd to

F
E is non-injective. So, at least two polynomials f1 and f2 in Vd are mapped
to the same string in F

E . But then the polynomial f = f1 − f2 belongs to Vd
and is mapped to the all-0 string, meaning that f vanishes on E. ��
The first claim (i) of the factor theorem can be also extended to the case of

multivariate polynomials by analyzing the behavior of polynomials on lines.

Lemma 16.2. Every nonzero polynomial f(x1, . . . , xn) of degree d over a
finite field with q elements has at most dqn−1 roots.

Proof (due to Dvir 2009 and Moshkovitz 2010). Let us assume n ≥ 2, 1 ≤ d ≤
q, where q = |F|. The proof is by reduction to the case n = 1. Write f = g+h,
where g is homogeneous of degree d, and h contains only monomials of degree
strictly smaller than d. Since f is a nonzero polynomial, g(w) 
= 0 for some
w ∈ F

n, w 
= 0. Associate with each vector u ∈ F
n the line

Lu = {u+ tw : t ∈ F}

in direction w through u. Then Lu ∩ Lv = ∅ as long as v 
∈ Lu. Since w 
=
0, each line Lu contains |Lu| = q points. Hence, we can partition F

n into
qn/q = qn−1 lines. It remains therefore to show that the number of zeros of
f on each of the lines Lu is at most d.
To show this, observe that, for every u ∈ F

n, the function pu(t) = f(u+tw)
is a univariate polynomial in t of degree at most d. Moreover, this polynomial
is not identically zero, because the coefficient of td in pu(t) is g(w) 
= 0. Thus,
pu(t) can have at most d roots, implying that the polynomial f can vanish on
at most d points of the line Lu Since we have only qn−1 lines in a partition
of F

n, the total number of roots of f cannot exceed dqn−1, as claimed. ��
A more general result was proved by DeMillo and Lipton (1978), Zip-

pel (1979) and Schwartz (1980). The lemma bounds the probability that a
nonzero multivariate polynomial will have roots at randomly selected test
points.

Lemma 16.3 (DeMillo–Lipton–Schwartz–Zippel lemma). For every set S ⊆
F of |S| ≥ d field elements, every nonzero polynomial f ∈ F[x1, . . . , xn] of
degree d can have at most d|S|n−1 roots in Sn.

Proof. Suppose that f is a nonzero polynomial. We proceed by induction on
n, the number of variables of f . The statement is true for n = 1 since the
number of roots of f does not exceed its degree. Now let n ≥ 2 and arrange
f according to the powers of xn:

f = f0 + f1xn + f2x
2
n + · · ·+ ftxtn
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16.1 DeMillo–Lipton–Schwartz–Zippel lemma

where f0, . . . , ft are polynomials of the n−1 variables x1, . . . , xn−1, the term
ft is not identically 0, and t ≤ d. Our goal is to estimate for how many of
the points (a, b) ∈ Sn−1 × S, f(a, b) = 0. We distinguish between two cases:

Case 1. ft(a) = 0. Since ft is nonzero and has total degree ≤ d− t, we have
by the induction hypothesis, that it can vanish on at most (d − t)|S|n−2

points in Sn−1. Therefore, in this case, there are at most (d − t)|S|n−1

points (a, b) ∈ Sn−1 × S for which f(a, b) = 0 and ft(a) = 0.
Case 2. ft(a) 
= 0. For every (fixed) point a ∈ Sn−1 for which ft(a) 
= 0,
the polynomial f(a, xn) is a polynomial in one variable of degree t, and
it is not identically zero. Therefore it has at most t roots. Since there are
at most |S|n−1 such points a, the number of points (a, b) ∈ Sn−1 × S for
which f(a, b) = 0 and ft(a) 
= 0, does not exceed t · |S|n−1.

Thus, there are at most (d−t)|S|n−1+t · |S|n−1 = d · |S|n−1 points (a, b) ∈ Sn

for which f(a, b) = 0. ��
The DeMillo–Lipton–Schwartz–Zippel lemma can be used to design effi-

cient randomized algorithms, that is, algorithms that are allowed to flip a
coin during their computation.
The fundamental question of identity testing is: given a polynomial f of

degree d on n variables, how hard is it to tell whether or not the polynomial
is identically equal to zero? Note that we can only evaluate the polynomial
at points of our choice, and do not have access to the coefficients of the
polynomial. It is not hard to see that a deterministic algorithm that can only
evaluate the polynomial, could need as many as (d+ 1)n points in total.
The basic idea of what is known as a randomized algorithm is that we

write random numbers in place of the variables and compute the value of the
polynomial. Now if the value computed is not zero then we know the answer:
f 
= 0. But what happens if we get zero? Well, we just hit a root of f and
try again. Another root? Try once more. After a number of runs we are tired
and would like to stop and conclude the answer is f = 0. How big will the
error probability of such a decision be?
To answer this question, it is helpful to reformulate Lemma 16.3 in prob-

abilistic terms.

Lemma 16.4. Suppose that f(x1, . . . , xn) is a nonzero polynomial of degree
d over a field F and S ⊆ F is a non-empty subset of the field elements. Then

Pr [f(r1, . . . , rn) = 0] ≤ d

|S| ,

where r1, . . . , rn are random elements selected uniformly and independently
from S.

Thus, if we take |S| = 2d elements of the field then, assuming f 
= 0, the
algorithm will not discover this in one iteration with probability at most 1/2.
With 100 experiments repeated independently of each other, the probability
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16 The Polynomial Method

that this occurs every time is at most 2−100. So, if the algorithm does not
prove that f 
= 0, we can be pretty certain that actually f = 0. Not 100%
certain, but if we lose the bet, we would know that an experiment that had
only two possible outcomes ended with the one that had probability 2−100.
This should compensate for our trouble: we found a needle in a haystack!
As our next example, consider the following situation. We have two friends,

Alice and Bob. Alice maintains a large database of information. Bob main-
tains a second copy of the database. Periodically, they must compare their
databases for consistency. Because the transmission between Alice and Bob
is expensive, they would like to discover the presence of inconsistency with-
out transmitting the entire database between them. Denote Alice’s data by
the sequence a = a0 · · ·an−1 and Bob’s data by the sequence b = b0 · · · bn−1
where ai, bi ∈ {0, 1}. It is clear that any deterministic consistency check that
transmits fewer than n bits will fail (just because an adversary can modify the
unsent bits). Using randomness it is possible to design a strategy that detects
an inconsistency with high probability (at least 1− n−1) while transmitting
many fewer than n bits, namely only O(log n) bits.
Think of the strings a and b as (strings of coefficients of) univariate polyno-

mials over the field Fp where p is a prime such that n2 < p < 2n2 (theorems
regarding the density of primes guarantee the existence of such p). That is,
consider polynomials

A(x) = a0 + a1x+ . . .+ an−1x
n−1 (mod p),

B(x) = b0 + b1x+ . . .+ bn−1x
n−1 (mod p).

In order to detect whether a = b, Alice and Bob use the following strategy:

Alice picks uniformly at random a number r in F and sends to Bob the
numbers r and A(r). Bob responds with 1 if A(r) = B(r) and with 0
otherwise. The number of bits transmitted is 1 + 2 log p = O(log n).

If a = b then A(r) = B(r) for all r, so the output is always 1. If a 
= b we
have two distinct polynomials A(x) and B(x) of degree at most n − 1. By
Lemma 16.4, the probability of error is

Pr [A(r) = B(r)] ≤ n − 1
|F| =

n− 1
p

≤ 1
n
.

16.2 Solution of Kakeya’s problem in finite fields

A famous unsolved problem in mathematics is the Kakeya conjecture in geo-
metric measure theory. This conjecture is descended from the following ques-
tion asked in 1917 by Japanese mathematician Soichi Kakeya: What is the
smallest set in the plane in which one can rotate a needle around completely?
He likened this to a samurai turning his lance around in a small toilet. For
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16.2 Solution of Kakeya’s problem in finite fields

Fig. 16.1 As the middle (flexible) point moves around the smaller circle, the needle
rotates through 360◦.

instance, one can rotate a unit needle inside a unit disk, which has area π/4.
By using a deltoid one requires only π/8 area (see Fig. 16.1).
The Kakeya conjecture in more dimensions states that any subset of R

n

that contains a unit line segment in every direction has Hausdorff dimension
equal to n. This conjecture remains open in dimensions three and higher, and
gets more difficult as the dimension increases.
To approach this question, Wolff (1999) proposed a simpler finite field

analogue of the Kakeya conjecture. If F
n is a vector space over a finite field

F, define a Kakeya set to be a subset K ⊆ F
n which contains a line in every

direction, namely for any v ∈ F
n there exists a vector w ∈ F

n such that the
line {w + tv : t ∈ F} is contained in K; here, vector w is the origin and
vector v the direction of the line. The finite field Kakeya conjecture stated
that there exists a constant c > 0 depending only on the dimension n such
that every Kakeya set K ⊆ F

n has cardinality |K| ≥ c|F|n.
This finite field version of the conjecture has had a significant influence

on the subject, in particular inspiring work on the sum-product phenomenon
in finite fields, which has since proved to have many applications in number
theory and computer science. Modulo minor technicalities, the progress on
the finite field Kakeya conjecture was, however, essentially the same as that
of the original “Euclidean” Kakeya conjecture.
Recently Dvir (2009) used a surprisingly simple application of the polyno-

mial method to prove the finite field Kakeya conjecture.

Lemma 16.5. Let f ∈ F[x1, . . . , xn] be a polynomial of degree at most q − 1
over a finite field with q = |F| elements. If f vanishes on a Kakeya set K,
then f is the zero polynomial.

Proof. The argument is similar to that in the proof of Lemma 16.2. Suppose
for a contradiction that f is nonzero. We can write f =

∑d
i=0 fi, where

0 ≤ d ≤ q − 1 is the degree of f and fi is the i-th homogeneous component;
thus fd is nonzero. Since f vanishes on K, d cannot be zero. Hence, fd is a
nonzero polynomial.
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16 The Polynomial Method

Let v ∈ F
n \ {0} be an arbitrary direction. As K is a Kakeya set, K

contains a line {w + tv : t ∈ F} for some w ∈ F
n, thus f(w + tv) = 0 for

all t ∈ F. The left-hand side is a polynomial gw,v(t) in t of degree at most
q− 1, and must be the zero polynomial by the factor theorem, that is, all its
coefficients are zero. In particular, the coefficient of td, which is fd(v), must
be zero. Since v was arbitrary, it follows that the polynomial fd(x) vanishes
on all points in F

n. But since dqn−1 ≤ (q−1)qn−1 < qn, Lemma 16.2 implies
that fd must be a zero polynomial. ��
Theorem 16.6 (Dvir 2009). Let K ⊂ F

n be a Kakeya set. Then

|K| ≥
(|F |+ n− 1

n

)
≥ |F|n

n! .

Proof. Let q = |F| and suppose that |K| < (
n+q−1

n

)
. Then, by Lemma 16.1,

there exists a nonzero polynomial f ∈ F[x1, . . . , xn] of degree at most q − 1
that vanishes on K, which contradicts Lemma 16.5. ��

16.3 Combinatorial Nullstellensatz

The following special case of Hilbert’s Nullstellensatz has found numerous
applications in combinatorics.

Theorem 16.7 (Nullstellensatz). Let f ∈ F[x1, . . . , xn], and let S1, . . . , Sn
be nonempty subsets of F. If f(x) = 0 for all x ∈ S1 × · · · × Sn, then there
are polynomials h1, . . . , hn ∈ F[x1, . . . , xn] such that deg(hi) ≤ deg(f)− |Si|
and

f(x1, . . . , xn) =
n∑
i=1

hi(x1, . . . , xn)
∏
s∈Si
(xi − s) .

Proof (due to Alon 1999). Define di = |Si| − 1 for all i, and consider polyno-
mials

gi(xi) =
∏
s∈Si
(xi − s) = xdi+1

i −
di∑
j=0

aijx
j
i .

Observe that if xi ∈ Si then gi(xi) = 0, that is,

xdi+1
i =

di∑
j=0

aijx
j
i . (16.1)

Let f be the polynomial obtained by writing f as a linear combination of
monomials and replacing, repeatedly, each occurrence of xtii (1 ≤ i ≤ n),
where ti > di, by a linear combination of smaller powers of xi, using the
relations (16.1). The resulting polynomial f is clearly of degree at most di in
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16.3 Combinatorial Nullstellensatz

xi for each 1 ≤ i ≤ n, and is obtained from f by subtracting from it products
of the form higi, where deg(hi) ≤ deg(f)− deg(gi) = deg(f)− |Si|. So,

f(x) = f(x)−
n∑
i=1

hi(x)gi(xi) . (16.2)

Moreover, f(x) = f(x) for all x ∈ S1 ×· · ·×Sn, since the relations (16.1) hold
for these values of x. Since, by our assumption, f(x) = 0 for all these values,
we obtain that f(x) = 0 for all x ∈ S1 × · · · × Sn as well, and Exercise 16.5
implies that f(x) = 0 for all x ∈ F

n. Together with (16.2), this implies that
f =

∑n
i=1 higi, as desired. ��

Using the Nullstellensatz we can derive the following generalization of the
DeMillo–Lipton–Schwartz–Zippel lemma.

Theorem 16.8 (Combinatorial Nullstellensatz). Let f(x1, . . . , xn) be a poly-
nomial of degree d over a field F. Suppose that the coefficient of the monomial
xt1

1 · · ·xtnn in f is nonzero and t1+ · · ·+tn = d. If S1, . . . , Sn are finite subsets
of F with |Si| ≥ ti + 1, then there are exists a point x in S1 × · · · × Sn for
which f(x) 
= 0.
Proof. We may assume that |Si| = ti + 1 for all i. Suppose the result is
false, and define gi(xi) =

∏
s∈Si(xi − s). Let h1, . . . , hn be the polynomials

guaranteed by the Nullstellensatz. Hence,

deg(hi) ≤ deg(f)− deg(gi) = deg(f)− (ti + 1) (16.3)

and f(x) =
∑n

i=1 hi(x)gi(xi), that is,

f(x) =
n∑
i=1

xti+1
i hi(x) + (terms of degree < deg(f)) .

By assumption, the coefficient of
∏n
i=1 x

ti
i on the left-hand side is nonzero,

while it is impossible to have such a monomial on the right-hand side, a
contradiction. ��
In a similar vein is the following result.

Theorem 16.9 (Chevalley–Warning). Let p be a prime, and f1, . . . , fm poly-
nomials in Fp[x1, . . . , xn]. If

∑m
i=1 deg(fi) < n then the number of common

zeros of f1, . . . , fm is divisible by p. In particular, if there is one common
zero, then there is another one.

Although this theorem can be derived from the Combinatorial Nullstellen-
satz, we give a slightly more direct proof due to Alon (1995).
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Proof. By Fermat’s Little Theorem (see Exercise 1.15), ap−1 ≡ 1 mod p for
all a ∈ Fp, a 
= 0. Hence, the number N of common zeros of f1, . . . , fm
satisfies

N =
∑

x1,...,xn∈Fp

m∏
j=1

(
1− fj(x1, . . . , xn)p−1) . (in Fp) (16.4)

By expanding the right-hand side we get a linear combination of monomials
of the form

n∏
i=1

xtii with
n∑
i=1

ti ≤ (p − 1)
m∑
j=1
deg(fj) < (p − 1)n.

Hence, in each such monomial there is an i with ti < p − 1. But then (see
Exercise 16.1) ∑

xi∈Fp

xtii = 0 (in Fp),

implying that the contribution of each monomial to the sum (16.4) is 0 mod-
ulo p, completing the proof of the theorem. ��
We illustrate the potential applications of the Combinatorial Nullstellen-

satz on several examples.

16.3.1 The permanent lemma

Let A = (ai,j) be an n × n matrix over a field F. The permanent Per(A) of
A is the sum

Per(A) =
∑

(i1,i2,...,in)

a1,i1a2,i2 · · · an,in

of n! products, where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n).

Theorem 16.10. If Per(A) 
= 0, then for any vector b ∈ F
n, there is a subset

of columns of A whose sum differs from b in all coordinates.

This is just a special case of the following lemma for all Si = {0, 1}.
Lemma 16.11 (Permanent Lemma). Let b ∈ F

n and S1, . . . , Sn be subsets
of F, each of cardinality at least 2. If Per(A) 
= 0, then there exists a vector
x ∈ S1 × · · · × Sn such that Ax differs from b in all coordinates.

Proof. The polynomial

f =
n∏
i=1

( n∑
j=1

aijxj − bi
)
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16.3 Combinatorial Nullstellensatz

is of degree n and the coefficient of x1x2 · · ·xn in it is Per(A) 
= 0. The
result now follows directly from the Combinatorial Nullstellensatz with all
ti = 1. ��

16.3.2 Covering cube by affine hyperplanes

An affine hyperplane is a set of vectors H = {x ∈ R
n : 〈a, x〉 = b} with

a ∈ R
n and b ∈ R. How many such hyperplanes do we need to cover {0, 1}n?

If we have no further restrictions on the covering, then just two hyperplanes
H0 = {x ∈ R

n : 〈e1, x〉 = 0} and H1 = {x ∈ R
n : 〈e1, x〉 = 1} are enough,

where e1 = (1, 0, . . . , 0) is the first unit vector. But what if we, say, require
that the all-0 vector 0 remains uncovered? In this case n hyperplanes Hi =
{x ∈ R

n : 〈ei, x〉 = 1}, i = 1, . . . , n are still enough. It turns out that this is
already optimal.

Theorem 16.12. Suppose that the hyperplanes H1, H2, . . . , Hm in R
n avoid 0,

but otherwise cover all 2n − 1 vertices of the cube {0, 1}n. Then m ≥ n.

Proof. As 0 is not contained in Hi, we have that each hyperplane is of the
form Hi = {x ∈ R

n : 〈ai, x〉 = 1} for some ai ∈ R
n. Assume that m < n, and

consider the polynomial

f(x) =
m∏
i=1
(1− 〈ai, x〉)−

n∏
i=1
(1− xi) .

The degree of this polynomial is clearly n (since we assumed that m < n) and
the coefficient at x1 · · ·xn is (−1)n+1 
= 0. When applied with Si = {0, 1}
and ti = 1, the Combinatorial Nullstellensatz implies that there must be a
point x ∈ {0, 1}n for which f(x) 
= 0. We have x 
= 0, as f(0) = 1 − 1 = 0.
But then 〈ai, x〉 = 1 for some i (as x is covered by some Hi), implying that
f vanishes at this point, a contradiction. ��

16.3.3 Regular subgraphs

A graph is p-regular if all its vertices have degree p. The following sufficient
condition for a graph to contain a regular subgraph was derived by Alon,
Friedland and Kalai (1984) using the Combinatorial Nullstellensatz.

Theorem 16.13. Let G = (V,E) be a graph. Assume that G has no self-loops
but multiple edges are allowed. Let p be a prime number. If G has average
degree bigger than 2p−2 and maximum degree at most 2p−1, then G contains
a spanning p-regular subgraph.

Proof. Associate each edge e of G with a variable xe and consider the poly-
nomial

f =
∏
v∈V

[
1−

(∑
e∈E

av,exe

)p−1]
−

∏
e∈E
(1− xe)
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over GF (p), where av,e = 1 if v ∈ e and av,e = 0 otherwise. Note that
deg(f) = |E|, since the degree of the first product is at most (p − 1)|V | <
|E|, by the assumption on the average degree 2|E|/|V | of G. Moreover, the
coefficient of

∏
e∈E xe in f is (−1)|E|+1 
= 0.

We can therefore apply the Combinatorial Nullstellensatz with Se = {0, 1}
and te = 1 for all e ∈ E and obtain a (0, 1)-vector x = (xe : e ∈ E) such that
f(x) 
= 0. Consider the spanning subgraph H consisting of all edges e ∈ E for
which xe = 1. As f(0) = 0, we conclude that x 
= 0 and H is non-empty. The
second summand in f(x) is therefore zero and it follows from Fermat’s Little
Theorem (Exercise 1.15) that

∑
e∈E av,exe ≡ 0 mod p for every vertex v.

Therefore, in the subgraph H all degrees are divisible by p, and since the
maximum degree is smaller than 2p, all positive degrees are precisely p, as
needed. ��

16.3.4 Sum-sets

The Cauchy-Davenport Theorem, which has numerous applications in Addi-
tive Number Theory, is the following. Given two sets A and B of elements of
some field F, their sum-set is the set A+B = {a+ b : a ∈ A, b ∈ B}.
Theorem 16.14 (Cauchy–Davenport). If p is a prime, and A, B are two
non-empty subsets of Zp, then

|A+B| ≥ min{p, |A|+ |B| − 1} .

Wewill see in Sect. 25.3.1 that this theorem is just a special case of Kneser’s
theorem. Here we show how to derive this theorem from the Combinatorial
Nullstellensatz.

Proof. If |A|+ |B| > p the result is trivial, since in this case for every x ∈ Zp

the two sets A and x − B intersect, implying that A + B = Zp. Assume,
therefore, that |A| + |B| ≤ p and suppose that |A + B| ≤ |A| + |B| − 2. Let
C be a subset of Zp satisfying A + B ⊆ C and |C| = |A| + |B| − 2. Define
a polynomial f(x, y) =

∏
c∈C(x + y − c) and observe that by the definition

of C,
f(a, b) = 0 for all (a, b) ∈ A× B. (16.5)

Put t1 = |A| − 1, t2 = |B| − 1 and note that the coefficient of xt1yt2 in f is
the binomial coefficient(

t1 + t2
t1

)
=

(|A|+ |B| − 2
|A| − 1

)

which is nonzero in Zp, since |A| + |B| − 2 < p (see Exercise 1.14). We can
therefore apply the Combinatorial Nullstellensatz (with n = 2, S1 = A and
S2 = B) and obtain a poinr (a, b) ∈ A×B for which f(a, b) 
= 0, contradicting
(16.5) and completing the proof. ��
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16.3 Combinatorial Nullstellensatz

The Cauchy–Davenport theorem was extended in many ways. Let us men-
tion one important result in that direction. For a subset A ⊆ Zp and a natural
number 1 ≤ k ≤ |A|, let sk(A) be the number of elements b ∈ Zp that can be
represented as a sum b = a1 + · · ·+ ak of k distinct elements of A.

Theorem 16.15 (Dias da Silva and Hamidoune 1994). If p is a prime then,
for every subset A ⊆ Zp and every 1 ≤ k ≤ |A|,

sk(A) ≥ min{p, k|A| − k2 + 1} .

16.3.5 Zero-sum sets

Using the pigeonhole principle, one can show that any sequence a1, . . . , an of
n integers contains a non-empty consecutive subsequence ai, . . . , ai+m whose
sum is divisible by n.
To show this, make n pigeonholes labeled from 0 up to n−1 and place the

n sequences
(a1), (a1, a2), . . . , (a1, a2, . . . , an)

into the pigeonholes corresponding to the remainder when the sum is divided
by n. If any of these sequences is in the pigeonhole 0 then the sum of its
numbers is divisible by n. If not, then the n sequences are in the other n− 1
pigeonholes. By the pigeonhole principle some two of them, (a1, a2, . . . , ar)
and (a1, a2, . . . , as) with r < s, must lie in the same pigeonhole, meaning that
the sum ar+1 + ar+2 + · · ·+ as is divisible by n.
A question of a similar flavor is the following one. Given a natural number

n, what is the smallest N such that any sequence of N integers contains a
subsequence of n (not necessarily consecutive) numbers whose sum is divisible
by n? That is, this time we want to find a subsequence of a given length n.
The sequence 0n−11n−1 of n− 1 copies of 0 and n− 1 copies of 1 shows that
N ≥ 2n − 1. It turns out that this lower bound is also an upper bound for
the sequence length N .

Theorem 16.16 (Erdős–Ginzburg–Ziv 1961). Any sequence of 2n − 1 inte-
gers contains a subsequence of cardinality n, the sum of whose elements is
divisible by n.

There are several different proofs of this theorem – the interested reader
can find them, as well as some interesting extensions of this result to higher
dimensions, in the paper of Alon and Dubiner (1993). The original proof was
based on the Cauchy–Davenport theorem.

First proof of Theorem 16.16. We will first prove the theorem only for the
case when n = p is a prime number, and then show how the general case
reduces to it.
Let a1 ≤ a2 ≤ . . . ≤ a2p−1 be integers. If ai = ai+p−1 for some i ≤ p − 1,

then ai + ai+1 + · · · + ai+p−1 = pai = 0 (in Zp) and the desired result
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16 The Polynomial Method

follows. Otherwise, define Ai := {ai, ai+p−1} for i = 1, . . . , p−1. By repeated
application of the Cauchy-Davenport theorem, we conclude that

|A1 +A2 + · · ·+Ap−1| ≥ min{p, |A2 + · · ·+Ap−1|+ 1}
≥ min{p, |A3 + · · ·+Ap−1|+ 2}

· · ·
≥ min{p, |Ap−1|+ p − 2} = p ,

and hence, every number from Zp is a sum of precisely p−1 of the first 2p−2
elements of our sequence. In particular, the number −a2p−1 is such a sum,
supplying the required p-element subset whose sum is 0 in Zp.
The general case may be proved by induction on the number of primes

in the prime factorization of n. Put n = pm where p is a prime, and let
a1, . . . , a2n−1 be the given sequence. By the result for the prime case, each
subset of 2p− 1 members of the sequence contains a p-element subset whose
sum is 0 modulo p. Therefore, we can find pairwise disjoint p-element subsets
I1, . . . , I� of {1, . . . , 2n− 1}, where∑

j∈Ii
aj ≡ 0 mod p

for each i = 1, . . . , �. Moreover, � ≥ 2m−1 since otherwise the number of left
elements would still be 2pm− 1− (2m − 2)p = 2p − 1, and we could choose
the next subset I�+1. Now define a sequence b1, . . . , b2m−1 where

bi =
∑
j∈Ii

aj
p

(recall that each of these sums is divisible by p). By the induction hypothesis
this new sequence has a subset {bi : i ∈ J} of |J | = m elements whose sum
is divisible by m, and the union of the corresponding sets {aj : j ∈ Ii} with
i ∈ J supplies the desired n-element subset of our original sequence, whose
sum is divisible by n = pm. ��
Theorem 16.16 can also be derived using the Chevalley–Warning theorem

about the zeroes of multivariate polynomials (see Theorem 16.9).

Second proof of Theorem 16.16 (Alon 1995). We will prove the theorem only
for a prime n = p; the general case reduces to it (see the first proof of
Theorem 16.16).
Let a1, a2, . . . , a2p−1 be integers, and consider the following system of two

polynomials in 2p− 1 variables of degree p − 1 over Fp:

2p−1∑
i=1

aix
p−1
i = 0,

2p−1∑
i=1

xp−1
i = 0 .
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Exercises

Since 2(p − 1) < 2p − 1 and x1 = x2 = · · · = x2p−1 = 0 is a common
solution, Theorem 16.9 implies the existence of a nontrivial common solution
(y1, . . . , y2p−1). Since p is a prime, Fermat’s Little Theorem (see Exercise 1.15)
tells us that xp−1 = 1 in Fp for every x ∈ Fp, x 
= 0. So, if we take I = {i : yi 
=
0} then the first equation ensures that∑i∈I ai = 0, while the second ensures
that |I| ≡ 0 mod p, and hence, that |I| = p because |I| ≤ 2p − 1. This
completes the proof of the theorem for prime n. ��

Exercises

16.1. Let p ≥ 2 be a prime and consider the field Fp. From Algebra we know
that there is an a ∈ Fp such that Fp \{0} = {

ai : i = 0, 1, . . . , p− 2}. Use this
fact together with Fermat’s Little Theorem to prove that, for every t ≤ p−2,∑

x∈Fp
xt = 0 in Fp. Hint:

∑n

i=0 z
i = (zn+1 − 1)/(z − 1).

16.2 (Low local degree polynomials). Let f be a nonzero polynomial in n
variables over a field F. Suppose that the maximum exponent of each of its
variables in f does not exceed d. (Hence, the degree of f may be up to dn
which makes the bound given by Lemma 16.3 trivial, if |S| ≤ n.) Show that
we still have the following upper bound: For any subset S ⊆ F of size |S| ≥ d,

|{x ∈ Sn : f(x) 
= 0}| ≥ (|S| − d)n .

Hint: Argue by induction on n. In the induction step take a point (a1, . . . , an) ∈ F
n on

which f(a1, . . . , an) �= 0, and consider two polynomials:

f0(x1, . . . , xn−1) := f(x1, . . . , xn−1, an)
f1(xn) := f(a1, . . . , an−1, xn).

16.3. Show that the bound in Exercise 16.2 is the best possible. Hint: Consider
the polynomial f(x1, . . . , xn) =

∏d

i=1(x1 − i) · · ·∏d

i=1(xn − i) .

16.4. Use Exercise 16.2 to show the following: If S a subset of F that has
d+ 1 elements, then any nonzero polynomial of local degree d has a nonzero
point in Sn.

16.5. Prove the following “granulated” version of the result established in
Exercise 16.2. Let f ∈ F[x1, . . . , xn] be a polynomial, and let ti be the maxi-
mum degree of xi in f . Let Si ⊆ F with |Si| ≥ ti. If f(x) = 0 for all n-tuples
x ∈ S1 × · · · × Sn, then f(x) = 0 for all x ∈ F

n.

16.6. Let f(x1, . . . , xn) be a multivariate polynomial over a field F with the
degree sequence (d1, . . . , dn), which is defined as follows: let d1 be the maxi-
mum exponent of x1 in f , and let f1(x2, . . . , xn) be the coefficient of xd1

1 in f ;
then, let d2 be the maximum exponent of x2 in f1, and f2(x3, . . . , xn) be the
coefficient of xd2

2 in f1; and so on. Suppose that f is not the zero polynomial,
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16 The Polynomial Method

and let S1, . . . , Sn ⊆ F be arbitrary subsets. For ri ∈ Si chosen independently
and uniformly at random, show that

Pr [f(r1, . . . , rn) = 0] ≤ d1
|S1| +

d2
|S2| + · · ·+ dn

|Sn| .

16.7. (R. Freivalds 1977). Suppose that somebody gives us three n × n ma-
trices A,B,C with real entries and claims that C = A · B. We are too busy
to verify this claim exactly and do the following. We take a random vector
r of length n whose entries are integers chosen uniformly from the interval
{0, 1, . . . , N − 1}, and check whether A · (B · r) = C · r. If this is true we
accept the claim, otherwise we reject it. How large must N be set to make the
probability of false acceptance smaller than 1/100? Hint: Consider the matrix
X = A · B − C. If C �= A · B then X has a row x �= 0. Take a scalar product of this
row with the random vector r, observe that Pr [X · r = 0] ≤ Pr [x · r = 0], and apply
Exercise 16.2.

236



17. Combinatorics of Codes

In this chapter we will discuss some extremal properties of error-correcting
codes. We will also use expander graphs to construct very easily decodable
codes.

17.1 Error-correcting codes

Error-correcting codes enable one to store or transmit a message in such a
way that one can later recover the message even if it is partially corrupted,
that is, up to some number t of bits are flipped by noise. Messages are strings
of some fixed length k over some alphabet A. In order to be able to recover
corrupted messages, we encode our messages by strings of length n > k over
A (or some other alphabet). That is, we take a particular subset C ⊆ An

(called a code) and assign to each message w its own codeword x = xw ∈ C.
During the transmission some bits may be flipped (by noise, by an ad-

versary or whatever). So, the receiver is presented with a corrupted version
x′ ∈ An of the original codeword x ∈ C. The receiver knows the set of all
codewords C, as well as the encoding algorithm. He also knows that the re-
ceived vector x′ can differ from the original x codeword in at most t bits.
What conditions must the code C fulfill in order that we may recover the
original codeword x?
Here the notion of Hamming distance comes into the play. The Hamming

distance dist(x, y) between two strings x and y of the same length is just
the number of positions in which these two strings differ. The minimum
distance, dist(C), of a subset C ⊆ An is the minimal Hamming distance
dist(C) between any pair of distinct strings in C.
The key observation is that, if dist(C) ≥ 2t + 1, then the receiver can

(at least in principle) reconstruct the original codeword x from the received,
possibly corrupted vector x′. The point is that x is the only codeword in the
Hamming ball Bt(x′) = {y ∈ An : dist(x′, y) ≤ t} of radius t around the

S. Jukna,                                         , Texts in Theoretical Computer Science.
An EATCS Series, DOI
© Springer-Verlag Berlin Heidelberg 2011

,10.1007/978-3-642-17364-6_17
Extremal Combinatorics 237

http://dx.doi.org/10.1007/978-3-642-17364-6_17


17 Combinatorics of Codes

corrupted vector x′: were another codeword y ∈ C also to lie in Bt(x′) then
we would have that dist(x, y) ≤ dist(x, x′) + dist(x′, y) ≤ 2t, contradicting
dist(C) ≥ 2t+ 1.
Thus, the larger dist(C) is, the better, the more errors we can correct.

Another important parameter of codes is their size, that is, the total number
of codewords the sender has in his disposal. The larger |C| is, the better, the
more distinct messages can be encoded.
Of course, if each two codewords must differ in many positions, then we

cannot have many codewords. In particular, we have the following general
upper bound.

Theorem 17.1 (Singleton bound). If C ⊆ An and d = dist(C) then

|C| ≤ |A|n−d+1 .

Proof. Clearly, all codewords in C are distinct. If we delete the first d − 1
letters of each codeword, then all resulting codewords must still be pairwise
different, since all original codewords in C have Hamming distance at least
d from each other. Thus the size of the code remains unchanged. The newly
obtained codewords each have length n− (d− 1) = n− d+ 1 and thus there
can be at most |A|n−d+1 of them. ��
We now construct codes achieving this upper bound. These codes were

proposed by Reed and Solomon (1960). Let k ≤ n ≤ q, where q is a power of
a prime. As our alphabet we take a field A := Fq with |A| = q elements. Fix
n distinct elements α1, . . . , αn of Fq; here we need that q ≥ n. Messages are
strings w = (w1, . . . , wk) of elements of Fq. We identify each such message
with the polynomial pw(z) = w1 + w2z + · · · + wkz

k−1 of degree at most
k − 1 over Fq. The codeword of the message w is then the string xw =(
pw(α1), . . . , pw(αn)

)
of the evaluation of the polynomial pw(z) at all n fixed

points. Let C = {xw : w ∈ Ak} be the resulting code.
Since, by the factor theorem, no two distinct polynomials of degree at most

k−1 can agree on k or more points, we have that dist(C) ≥ n−k+1. In this
way we have constructed a code C ⊆ An of minimum distance d = n− k + 1
and size |C| = |A|k = |A|n−d+1.
Thus, Reed–Solomon codes meet the Singleton bound. The drawback of

these codes is the condition that q ≥ n. The problem is that we need each
coordinate of a codeword to correspond to a distinct element of Fq.
There are different ways to reduce the alphabet size. A trivial one is just

to encode all q elements of Fq by binary strings of length �log2 q	. Then one
obtains a binary code C ⊆ {0, 1}n with codeword length n = q�log2 q	, size
|C| ≥ qk and minimum distance dist(C) ≥ n− k + 1. Although binary codes
with better parameters are known, the binary Reed–Solomon codes are one of
the most commonly used codes in practical applications. In particular, they
are used to store information, music, and video on compact discs (CDs) and
digital video discs (DVDs).
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17.2 Bounds on code size

Another way to reduce the field size q is to use multivariate polynomials.
In particular, using bivariate polynomials, q only needs to be

√
n. For this,

let the message length be k = (t/2 + 1)2 and look at messages w ∈ F
k
q as

(t/2+1)×(t/2+1) matrices w = (wij) over Fq. Each such message determines
a bivariate polynomial

pw(y, z) =
t/2∑
i,j=0

wijy
izj

of degree at most t over Fq. The codeword of the message w is then the string
xw =

(
pw(α, β) : α, β ∈ Fq

)
of the values of the polynomial pw on all points

of Fq ×Fq. Thus we only require that q2 ≥ n, instead of q ≥ n. As before, the
resulting code C = {xw : w ∈ F

k
q} has |C| = qk codewords. Further, since

the polynomials are of degree at most t, the DeMillo–Lipton–Schwartz–Zippel
lemma implies that dist(C) ≥ (1− t/q)n.
Extending this idea to multivariate polynomials, we arrive at Reed–Muller

codes. In this case we identify messages with polynomials of degree at most
t in m variables z1, . . . , zm. The codeword length in this case is n = qm. The
number of codewords is the number of monomials of degree at most � in m
variables which, by Exercise 13.22, is equal to

(
m+t
t

)
. Finally, the DeMillo–

Lipton–Schwartz–Zippel lemma implies that dist(C) ≥ (1 − t/q)n.
A binary Reed–Muller code C ⊆ {0, 1}n corresponds to the case when

q = 2 and t = 1. That is, messages are multilinear polynomials in m variables
over F2. In this case we have that |C| = (

m+1
1

)
= m+ 1 codewords of length

n = 2m, and the minimum distance is at least n/2. Note that these codes have
exactly the same parameters as Hadamard codes constructed in Sect. 14.3
(see Theorem 14.10).

17.2 Bounds on code size

If the minimum distance d is given, how large can |C| then be? To answer this
question, let Vol(n, r) be the number of vectors in the Hamming ball Br(0)
of radius r around the all-0 vector. Since this ball consists of all vectors with
at most r ones, we have that

2n·H(r/n)−O(logn) ≤ Vol(n, r) =
r∑
i=0

(
n

i

)
≤ 2n·H(r/n) ,

where H(x) = −x log2 x − (1− x) log2(1− x) is the binary entropy function;
the estimates in terms of this function are proved in Exercises 1.16 and 1.17.

Theorem 17.2 (Gilbert–Varshamov and Hamming bounds). Codes C ⊆
{0, 1}n of minimal distance d and size
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17 Combinatorics of Codes

|C| ≥ 2n

Vol(n, d) (17.1)

exist, and for any such code with d ≥ 2t+ 1, we have that

|C| ≤ 2n

Vol(n, t) . (17.2)

The lower bound (17.1) is known as the Gilbert–Varshamov bound, and
the upper bound (17.2) as the Hamming bound.

Proof. The lower bound can be obtained by a simple algorithm: Pick any
vector x ∈ {0, 1}n, include it in C, remove the whole ball Bd(x) around this
vector, and do the same in the set of the remaining vectors.
To show the upper bound, let C ⊆ {0, 1}n be a code of minimum distance

d ≥ 2t+1. Draw a ball of radius t around each of the vectors in C. If the balls
around some two codewords were to intersect, then the Hamming distance
between these two codewords would be at most 2t < d, a contradiction.
Therefore, the balls are disjoint, and their number is limited by the overall
volume divided by the volume of each ball. ��
More upper bounds on the size of codes can be obtained using linear

algebra. For this, we first embed the Hamming spaces (binary cubes) into
Euclidean spaces over the reals. We embed a vector v ∈ {0, 1}n as the vector
xv ∈ R

n by changing its coordinates by the rules 0 �→ +1 and 1 �→ −1. Thus,
xv is a ±1 vector.
The following relations between the Hamming and Euclidean distances are

easy to verify (do this!).

Proposition 17.3. For u, v ∈ {0, 1}n with Hamming distance dist(u, v) = d,
we have that 〈xu, xv〉 = n− 2d, ‖xu‖2 = n and ‖xu − xv‖2 = 4d.

Our first goal is to prove a geometric fact: In n dimensions there exist at
most 2n vectors that pairwise subtend an angle of at least π/2 at the origin
(that is, their pairwise scalar products are ≤ 0).
Lemma 17.4 (Obtuse angles).

(i) Let x1, . . . , xm be vectors in R
n, and α a positive number. If ‖xi‖ = 1

and 〈xi, xj〉 ≤ −α for all i �= j, then m ≤ 1 + α−1.
(ii) If y, x1, . . . , xm ∈ R

n satisfy 〈xi, xj〉 ≤ 0 for all i �= j, while 〈y, xi〉 > 0
for all i, then m ≤ n.

(iii) If x1, . . . , xm ∈ R
n are nonzero and satisfy 〈xi, xj〉 ≤ 0 for all i �= j,

then m ≤ 2n.
Proof. (i) Let z = x1 + · · · + xm. On the one hand, we have 〈z, z〉 ≥ 0. On
the other hand, we have
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17.2 Bounds on code size

〈z, z〉 =
m∑
i=1

〈xi, xi〉+
m∑

i�=j∈[m]

〈xi, xj〉

≤ m · 1 +m(m− 1) · (−α)
= m(1− α(m − 1)) .

Putting the two inequalities together, we have 1 − α(m − 1) ≥ 0, implying
m ≤ 1 + 1/α.
(ii) Assume for the sake of contradiction that m ≥ n + 1. Then there

must exist a linearly dependent set of vectors among the xi’s. Specifically,
there exist disjoint sets S, T ⊆ [m] and positive λi, for i ∈ S ∪ T , such that∑

i∈S λixi =
∑

j∈T λjxj . It is not necessary that both S and T be non-empty,
but at least one, say S, is non-empty. Let z =

∑
i∈S λixi =

∑
j∈T λjxj . Our

analysis divides into two cases depending on whether or not z = 0.
If z �= 0, then we obtain a contradiction as follows:

0 < 〈z, z〉 =
〈∑
i∈S

λixi,
∑
j∈T

λjxj

〉
=

∑
i∈S

∑
j∈T

λiλj〈xi, xj〉 ≤ 0 ,

where the last inequality uses the fact that S and T are disjoint and so
〈xi, xj〉 ≤ 0 for every i ∈ S and j ∈ T .
If z = 0, then we use the existence of the vector y to obtain a contradiction

as follows:

0 = 〈y,0〉 = 〈y, z〉 =
〈
y,

∑
i∈S

λixi

〉
=

∑
i∈S

λi〈y, xi〉 > 0 .

The last inequality is strict since S �= ∅, λi > 0 and 〈y, xi〉 > 0.
(iii) Pick a vector y such that 〈y, xi〉 �= 0 for all i ∈ [m]. At least half of the

vectors xi must have a positive scalar product with either y or −y. Assume
w.l.o.g. that x1, . . . , x�m/2� have a positive scalar product with y. Applying
part (ii) to these vectors and y, we get �m/2	 ≤ n. ��

Theorem 17.5 (Plotkin bound). If C ⊆ {0, 1}n and d = dist(C), then

|C| ≤ d2n−2d+2 .

Proof. We first prove the following claim: If d ≥ n/2 then |C| ≤ 2n. Let
c1, . . . , cm be the codewords of C, and let x1, . . . , xm be their ±1 versions.
Since d ≥ n/2, Proposition 17.3 implies that 〈xi, xj〉 ≤ n − 2d ≤ 0 for all
i �= j, and Lemma 17.4(iii) implies that m ≤ 2n, as claimed.
To derive the theorem from this claim, write n = 2d + k. By restricting

C to the most commonly occurring pattern in the first k coordinates and
deleting these coordinates, we get a set C′ ⊆ {0, 1}2d of size |C′| ≥ |C|/2k
and minimum distance d. By the claim we just proved, this implies
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17 Combinatorics of Codes

|C| ≤ |C′| · 2k ≤ 2(2d) · 2k ≤ d2k+2 = d2n−2d+2 . ��

One of the best upper bounds is the following one.

Theorem 17.6 (Johnson bound). If C ⊆ {0, 1}n and dist(C) ≥ δn then

|C| ≤ n2n

Vol(n, τn − 1) ≤ 2(1−H(τ))n ,

where τ = (1− √
1− 2δ)/2.

Proof. For a set of strings C ⊆ {0, 1}n and a positive integer t, let degt(C)
denote the maximum number of vectors from C in a Hamming ball of radius
t. If dist(C) ≥ 2t+ 1, then clearly degt(C) ≤ 1. Hence, the following claim
generalizes the Hamming bound (17.2).

Claim 17.7. For every subset C ⊆ {0, 1}n, and every positive integer t, we
have that

|C| ≤ 2
n · degt(C)
Vol(n, t) .

Proof of Claim 17.7. If we consider the balls of radius t around the strings
in C, then any string in {0, 1}n is considered at most degt(C) times. Thus
the sum of volumes of these balls is at most 2n · degt(C). ��
Now let c1, . . . , cm be the codewords of a code of minimum distance d = δn

that are within a Hamming ball of radius t = τn − 1 from some string
b ∈ {0, 1}n. By the claim above, it is enough to show that m ≤ n.
For i ∈ [m], let xi be the ±1 version of ci scaled (i.e., multiplied) by

1/
√
n, and let y be the ±1 version of b scaled by 1/√

n. We scale the vectors
just to achieve ‖xi‖ = 1 and ‖y‖ = 1. By Proposition 17.3, we have that
〈xi, xj〉 ≤ 1−2δ for all i �= j, and 〈y, xi〉 > 1−2τ for all i. Note the syntactic
similarity of these conditions to those in Part (ii) of Lemma 17.4. In fact we
can reduce our problem to exactly this case. We will just shift our origin to a
new vector v := αy so that from this vector, the vectors xi mutually subtend
an angle at least π/2.

Claim 17.8. There exists an 0 ≤ α < 1 such that for v := αy we have that
〈xi − v, xj − v〉 ≤ 0 and 〈xi − v, y − v〉 > 0 for all i �= j.

Together with Lemma 17.4(ii), this claim gives the desired upper bound
m ≤ n. So, it remains to prove the claim.

Proof of Claim 17.8. We will not specify α yet, only that it will lie in the
interval 0 ≤ α < 1. Since 〈xi, xj〉 ≤ 1 − 2δ and 〈y, xi〉 > 1 − 2τ , for such an
α we have that

〈xi − αy, xj − αy〉 ≤ 1− 2δ − 2α(1− 2τ) + α2 = (1 − α)2 + 4ατ − 2δ .
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The right-hand side is minimized at α := 1 − 2τ , and for this setting, it
is equal to 4τ − 4τ2 − 2δ. Since τ = (1 − √

1− 2δ)/2 (by our choice), we
have that (1 − 2τ)2 = 1 − 2δ, which in turn implies 2δ = 1 − (1 − 2τ)2 =
4τ − 4τ2, and hence, 4τ − 4τ2 − 2δ = 0. We conclude that for this setting
〈xi −αy, xj −αy〉 ≤ 0, as desired. Since 〈y, xi〉 > 1− 2τ , for the same setting
α = 1− 2τ , we also have that

〈xi −αy, (1−α)y〉 = (1−α)〈xi, y〉 −α(1−α)‖y‖2 = (1−α)[〈xi, y〉 −α] > 0 ,

which yields the other part of the claim. ��

17.3 Linear codes

If C ⊆ {0, 1}n forms a linear subspace over F2, then C is called a linear code.
Being a linear subspace over F2 just means that x ⊕ y ∈ C for all x, y ∈ C.
It can easily be verified (do this!) that the Reed–Solomon and Reed-Muller
codes we constructed above using polynomials are linear.
If C has dimension k, then |C| = 2k and the code C can be described

using its generator matrix. This is a k×n matrix G whose rows form a basis
of C; hence, C = {u�G : u ∈ F

k
2}. Dually, the parity-check matrix of C is

the generator matrix H of the dual code

C⊥ = {y ∈ F
n
2 : 〈x, y〉 = 0 for all x ∈ C} .

That is, H is an (n − k)× n matrix H such that C = {x : Hx = 0}.
A general scenario is then as follows. Messages we want to send to our

friend are vectors u in F
k
2 . We encode such a message as a vector x = u�G

and send it. Our friend receives some vector x′ which may differ from x on
up to t bits. He then searches for the unique vector x such that Hx = 0 and
dist(x, x′) ≤ t. In fact, it is enough to search for a unique vector a ∈ Bt(0)
for which Ha = Hx′; then x = x′ ⊕ a because H(x′ ⊕ a) = 0. This decoding
procedure is known as syndrome decoding, because a gives us the locations
of the errors.
The first important property of a linear code C (not shared by arbitrary

codes) is the following fact. By a weight |x| of a vector x we mean the number
of its nonzero coordinates.

Proposition 17.9. Every linear code has minimum distance equal to the
minimum weight of its nonzero codewords.

Proof. Let C ⊆ {0, 1}n be a linear code, and let w(C) be the minimum
weight of a nonzero codeword. Take vectors x �= y and z �= 0 in C such
that dist(x, y) = dist(C) and |z| = w(C). Then dist(C) = |x ⊕ y| ≥ w(C),
since x ⊕ y belongs to C. On the other hand, we have that w(C) = |z| =
dist(z,0) ≥ dist(C), since vector 0 belongs to C. ��
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The next important property of linear codes is that their minimum dis-
tance is related to linear independence of the columns of their parity-check
matrices.

Theorem 17.10. Let C be a linear code with parity-check matrix H. Then
the minimum distance of C is d if and only if every set of d − 1 columns of
H are linearly independent but some d columns are linearly dependent.

Proof. We already know that the minimum distance of C is equal to the
smallest of the weights of the nonzero codewords. On the other hand, Hx = 0
for a nonzero vector x �= 0 means that the columns of H corresponding to
the 1-positions of x are linearly dependent. Thus, if d = dist(C) then some
d columns of H must be linearly dependent (since C contains a codeword of
weight d), and no d − 1 columns can be linearly dependent, for otherwise C
would contain a codeword of weight smaller than d. ��
This fact can be used to show that linear codes with minimum distance d

and about 2n/nd codewords exist.

Theorem 17.11. A linear code C ⊆ {0, 1}n of dimension k and minimum
distance d exists provided that

d−2∑
i=0

(
n− 1
i

)
< 2n−k . (17.3)

That is, linear codes of size |C| ≥ 2n/Vol(n−1, d−2) exist. This is almost
the same bound as for arbitrary codes given in (17.1).

Proof. We shall construct an (n−k)×n matrix H over F2 with the property
that no d − 1 columns are linearly dependent. Put r = n − k. Choose the
first column of H to be any nonzero r-tuple in F

r
2 Then choose the second

column to be any nonzero r-tuple different from the first. Continue choosing
successive columns so that each new column is not a linear combination of
any d − 2 or fewer previous columns. When we come to try to choose the
i-th column, those r-tuples not available to us will be the N(i) =

∑d−2
j=0

(
i−1
j

)
linear combinations of d− 2 or fewer columns from the i− 1 columns already
chosen. Not all of these linear combinations need be distinct vectors, but
even in the worst case, where they are distinct, provided N(i) is less than
the total number 2r of all r-tuples, then an i-th column can be added to the
matrix. Thus, since (17.3) holds, we will reach a matrix H having n columns,
as required. ��
We are not going to sink into different constructions of explicit codes: there

are so many of them. We just mention that so-called BCH codes, constructed
by Bose, Chaudhuri and Hocquenghem, are linear codes with quite good
parameters: for every integers m ≥ 3 and t < 2m−1 there is an explicit linear
code C ⊆ {0, 1}n with n = 2m − 1, |C| ≥ 2n−mt and dist(C) ≥ 2t + 1. See
the book by MacWilliams and Sloane (1977) for more constructions.
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17.4 Universal sets from linear codes

Recall that a set of 0-1 strings A ⊆ {0, 1}n is (n, k)-universal if, for any
subset S ⊆ [n] of |S| = k coordinates, the projection of A onto the indices in
S contains all possible 2k configurations.
In Sect. 10.5 we have shown how to construct explicit (n, k)-universal sets

of size about n, when k ≤ (log n)/3. This construction was based on Paley
graphs. Here we will show how to construct such sets of size nO(k) for arbitrary
k. The construction is based on some elementary properties of linear codes.
We already know that the minimal distance of C coincides with the min-

imum weight of (i.e., the number of 1s in) a nonzero vector from C. This
simple property of linear codes implies that their duals are universal.

Proposition 17.12. If C is a linear code of length n and its dual C⊥ has
minimal distance at least k + 1 then the code itself is (n, k)-universal.

Since a parity-check matrix of C is a generator matrix of C⊥, an equivalent
condition on C is that any k columns of its generator matrix must be linearly
independent.

Proof. Take a set S ⊆ {1, . . . , n} with |S| = k. The set of all projections of
vectors in C onto S forms a linear subspace in {0, 1}|S| of dimension k. If
this subspace were proper then, by Proposition 13.2, some nonzero vector x,
whose support {i : xi �= 0} lies in S, would belong to C⊥, implying that
dist(C⊥) ≤ |S| = k, which contradicts our assumption. ��
It is known (see, for example, MacWilliams and Sloane (1977)) that the

dual of a binary BCH code of minimal distance k has only O(n	k/2
) vec-
tors. By Proposition 17.12, these codes give us explicit (n, k)-universal sets
consisting of only so many vectors.
One of the best known explicit constructions of (n, k)-universal sets of

size only 2O(k4) logn is due to Alon (1986a). His construction is based on a
Justesen-type code constructed by Friedman (1984).

17.5 Spanning diameter

So far, we have used algebraic properties of linear spaces to derive some
results in combinatorics. But these spaces themselves have some interesting
combinatorial properties as well.
Let A be a set of vectors in {0, 1}n and consider its span over the field F2.

Each vector in spanA is a linear combination of some vectors from A. Some
of these combinations may be short, but some may be long. Given A, we are
interested in the smallest number k such that every vector from spanA is a
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sum (over F2) of at most k vectors of A; we call this k the spanning diameter
of A.
Of course, the answer depends on how large the span is, compared with

the set itself. It is easy to show that if |A| > |spanA|/2, then the spanning
diameter of A is at most 2 (see Exercise 17.3). But what if A is a smaller
fraction of spanA, say, an α-fraction for some α > 1/4? It turns out that then
the spanning diameter does not exceed 4. In general, we have the following
upper bound on k.

Theorem 17.13. Let A ⊆ {0, 1}n. If |A| ≥ α · |spanA| for some 0 < α ≤ 1,
then every vector from spanA is a sum of at most k vectors from A, where
k is the maximal number satisfying the inequality

k − �log2 k� − 1 ≤ log2(1/α) (17.4)

Theorem 17.13 can be derived from known bounds on the covering radius
of binary linear codes (see, for example, Cohen et al. 1997; Theorem 8.1.21).
Here we present a direct argument due to Pavel Pudlák.

Proof. Take a maximal set of vectors a1, a2, . . . , ak in A such that the vector

v = a1 + a2 + · · ·+ ak, (17.5)

cannot be represented as a sum of fewer than k vectors from A. (Here and
throughout the proof all the sums are over F2.) Our goal is to show that then
k must satisfy (17.4). Since α ≤ 1, the cases k = 1 and k = 2 are trivial. So,
assume that k ≥ 3.
We will need a lower bound on the size of distance-3 codes. Such codes can

be obtained by shortening the Hamming code (see, for example, MacWilliams
and Sloane (1977)); Exercise 17.6 sketches a way to do this.

Claim 17.14. There exists a set C ⊆ F
k
2 such that any two vectors of C

differ in at least 3 coordinates and log2 |C| ≥ k − �log2 k� − 1.
Fix such a set C, and let B be the set of all those vectors b from spanA

which can be represented in the form b = c1a
1 + c2a

2 + · · · + cka
k for c =

(c1, . . . , ck) ∈ C. The key point is that all the translates

b+A := {b+ a : a ∈ A},

with b ∈ B, are mutually disjoint.

Claim 17.15. For every pair b, b′ of distinct vectors from B, the sets b+ A
and b′ +A are disjoint.

Proof of Claim 17.15. Suppose not. Then for some a, a′ ∈ A we have b+ a =
b′ + a′, and hence, a+ a′ = b + b′. Let c, c′ be the vectors from C for which
b = c1a

1 + · · ·+ ckak and b′ = c′1a
1 + · · ·+ c′kak. Then
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17.6 Expander codes

a+ a′ = b+ b′ = (c1 + c′1)a1 + (c2 + c′2)a2 + · · ·+ (ck + c′k)ak.

Since vectors c and c′ differ in at least three coordinates, we have on the
right-hand side the sum of at least three vectors, say ai1 + · · · + ail , with
l ≥ 3. But then in the equation (17.5) we can replace these three (or more)
vectors ai1 , . . . , ail by two vectors a, a′, which contradicts the minimality of k.

��
The same argument also implies that no two distinct vectors c, c′ ∈ C

can lead to one and the same vector b ∈ B, that is, c �= c′ ∈ C implies∑
i cia

i �=∑
i c
′
ia
i. This means that |B| = |C|.

This, together with Claim 17.15, implies

|A| · |C| = |A| · |B| =
∑
b∈B

|b+A| = |
⋃
b∈B
(b+A)| ≤ |spanA|.

Hence, log2 |C| ≤ log2(1/α) which, together with Claim 17.14, yields the
desired upper bound (17.4) on k. ��

17.6 Expander codes

If C ⊆ {0, 1}n is a linear code with a k × n generator matrix G, then the
encoding of messages w ∈ {0, 1}k is very easy: just encode w by the codeword
x = w�G. However, the decoding—that is, given a vector y ∈ {0, 1}n find
a codeword x ∈ C closest to y—is in general linear codes a very difficult
problem (it is “NP-hard”).
We now show how using expander graphs one can construct linear codes

for which decoding is almost trivial—it can be done in linear time! Moreover,
if the expansion of the graph is good enough then the resulting codes achieve
very good rate (log2 |C|)/n and minimal distance (both these parameters are
then absolute positive constants).
Let G = (L ∪ R,E) be a bipartite graph with |L| = n, |R| = m and

E ⊆ L × R. Each such graph defines a linear code C ⊆ {0, 1}n as follows.
Associate with each vertex u ∈ L a boolean variable xu. Given a vector
x ∈ {0, 1}n, say that a vertex v ∈ R is satisfied by this vector if∑

u∈Γ (v)

xu mod 2 = 0 ,

where Γ (v) = {u ∈ L : uv ∈ E} is the set of all neighbors of v on the left
side (see Fig. 17.1). The code defined by the graph G is the set of vectors

C = {x ∈ {0, 1}n : all vertices in R are satisfied by x} .
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Fig. 17.1 Vertex v2 is satisfied whereas v1 is not satisfied by the vector x = (1010).

That is, C is just the set of all solutions of m linear equations in n variables.
Therefore, C is linear and |C| ≥ 2n−m.
Let dist(C) be the minimal Hamming distance between two different vec-

tors in C. A graph G = (L ∪ R,E) is left d-regular if each vertex in L has
degree d. Such a graph is an (α, c)-expander if every subset I ⊆ L with
|I| ≤ αn has |Γ (I)| > c|I| neighbors on the right side.
Lemma 17.16. If C ⊆ {0, 1}n is a code of a left d-regular (α, c)-expander
with c > d/2, then

dist(C) > αn .

Proof. Assume that dist(C) ≤ αn. Then C must contain a vector x with at
most αn ones. Hence, if we take the set I = {u ∈ L : xu = 1}, then |I| ≤
dist(C) ≤ αn. Since G is an (α, d/2)-expander, this implies |Γ (I)| > d|I|/2.
We claim that there must exist a vertex v0 ∈ Γ (I) with exactly one neigh-

bor in I, that is, |Γ (v0) ∩ I| = 1. Indeed, otherwise every vertex v ∈ Γ (I)
would have at least two neighbors in I. Therefore the number of edges leav-
ing I would be at least 2 · Γ (I) > 2 · (d|I|/2) = d|I|, contradicting the left
d-regularity of G.
Since xu = 0 for all u �∈ I, this implies that exactly one of the bits xu of x

with u ∈ Γ (v0) is equal to 1. So,
∑

u∈Γ (v0) xu = 1, and the vertex v0 cannot
be satisfied by the vector x, a contradiction with x ∈ C. ��
By Lemma 17.16, expander codes can correct relatively many errors, up

to αn/2. Much more important, however, is that the decoding algorithm for
such codes is very efficient. The decoding problem is the following one: given
a vector y ∈ {0, 1}n of Hamming distance ≤ αn/2 from some (unknown)
codeword x ∈ C, find this codeword x. The decoding algorithm for expander
codes is amazingly simple:

While there exists a variable such that most of its neighbors are not satisfied
by the current vector, flip it.

Lemma 17.17 (Sipser–Spielman 1996). If C is a code of a left d-regular
(α, c)-expander with c > 3

4d, then the algorithm solves the decoding problem
in a linear number of steps.
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Proof. Let y ∈ {0, 1}n be a vector of Hamming distance ≤ αn/2 from some
(unknown) codeword x ∈ C. Our goal is to find this codeword x. Let

I = {u ∈ L : yu �= xu}

be the set of errors in y. If I is empty, we are done. Otherwise, assume
that |I| ≤ αn. We need this assumption to guarantee the expansion, and we
will prove later that this assumption holds throughout the running of the
algorithm.
Partition the set Γ (I) = S ∪ U into the set S of neighbors satisfied by y

and the set U of neighbors not satisfied by y. Since c > 3d/4, we have that

|U |+ |S| = |Γ (I)| > 3
4d|I| . (17.6)

Now, count the edges between I and Γ (I). At least |U | of these edges must
leave U . Moreover, at least 2|S| of them must leave S because every vertex
v ∈ S must have at least two neighbors in I: If v had only one such neighbor,
then y would not satisfy the vertex v since y �= x, x satisfies v and y coincides
with x outside I. Since the total number of edges between I and Γ (I) is d|I|,
this implies |U |+ 2|S| ≤ d|I|. Combining this with (17.6) we get that

d|I| − |U | ≥ 2|S| > 2 ( 34d|I| − |U |)

and therefore
|U | > 1

2d|I| . (17.7)

So, more than d|I|/2 neighbors of the |I| vertices in I are unsatisfied. There-
fore there is a variable in I that has more than d/2 unsatisfied neighbors. We
have therefore shown the following claim:

If I �= ∅ and |I| ≤ αn then there is a variable with > d/2 unsatisfied
neighbors.

This implies that as long as there are errors and |I| ≤ αn holds, some variable
will be flipped by the algorithm. Since we flip a vertex with more unsatisfied
neighbors than satisfied ones, |U | decreases with every step (flipping xu can
only affect the satisfiability of neighbors of u). We deduce that if the distance
|I| of the actual vector y from x does not exceed αn/2 throughout the run
of the algorithm, then the algorithm will halt with the codeword x after a
linear number of iterations.
To show that |I| can never exceed αn, recall that |I| ≤ αn/2, and hence,

|U | ≤ |Γ (I)| ≤ 1
2αdn (17.8)

hold in the beginning. Moreover, |U | decreases after each iteration. Hence, if
at some step we had that |I| > αn, then (17.7) would imply |U | > αdn/2,
contradicting (17.8). ��

249



17 Combinatorics of Codes

In general, every linear code C ⊆ {0, 1}n is defined by its parity-check
matrix H such that x ∈ C iff Hx = 0. Note that, if C is a code defined by
a bipartite graph G, then H is just the transpose of the adjacency matrix of
G. If G is left d-regular, then every row of H has exactly d ones. If G is an
(α, c)-expander, then every subset I of |I| ≤ αn columns of H has ones in at
least c|I| rows. The decoding algorithm above is, given a vector y ∈ {0, 1}n
such that Hy �= 0, to flip its i-th bit provided that vector H(y⊕ei) has fewer
ones than vector Hy.

17.7 Expansion of random graphs

Explicit constructions of bipartite left d-regular (α, c)-expanders with α =
Ω(1) and c > 3d/4 are known. These constructions are however too involved
to be presented here. Instead of that, we will show that random bipartite
left-regular graphs have good expansion properties.
Let d ≥ 3 be a constant. We construct a random bipartite left d-regular

n × n graph Gn,d = (L ∪ R,E) as follows: For each vertex u ∈ L choose its
d neighbors independently at random, each with the same probability 1/n.
The graph obtained may have multi-edges, that is, some pairs of vertices may
be joined by several edges.

Theorem 17.18. For every constant d ≥ 3, there is a constant α > 0 such
that for all sufficiently large n, the graph Gn,d is an (α, d− 2) expander with
probability at least 1/2.

Proof. Set (with foresight) α := 1/(e3d4). Fix any s ≤ αn, and take any
set S ⊆ L of size |S| = s. We want to upper bound the probability that
S does not expand by d − 2. This means that the ds neighbors (including
multiplicities) of the vertices in S hit fewer than (d− 2)s distinct vertices on
the right side, that is, some 2s of these ds neighbors land on previously picked
vertices. Each neighbor lands on a previously picked vertex with probability
at most ds/n, so

Pr [S does not expand by (d − 2)] ≤
(
ds

2s

)(
ds

n

)2s
.

By the union bound, the probability that at least one subset S of size s does
not expand by (d − 2) is at most(

n

s

)(
ds

2s

)(
ds

n

)2s
≤

(
en
s

)s(eds
2s

)2s(
ds

n

)2s
≤

(
e3d4

4n

)s
≤

(
1
4

)s
,

by the choice of α. Thus, the probability that some set S of size |S| ≤ αn
does not expand by (d − 2) does not exceed
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αn∑
s=1
4−s <

∞∑
s=1
4−s < 12 .

Hence, the graph Gn,d is an (α, d− 2) expander with probability at least 1/2.
��

Exercises

17.1. Prove the following stronger version of Proposition 17.12. Let C be a
linear code of length n and minimal distance at least k+1 and let C⊥ be its
dual. Then for every subset S of l ≤ k coordinates, every 0-1 string of length
l appears as a projection of C⊥ onto S the same number of times. Hint: Take
a matrix whose rows form a basis of C⊥, observe that every k columns of this matrix
are linearly independent and use Proposition 13.3.

17.2. Let V ⊆ F
n
2 be a subspace of dimension d. Show that |V | = 2d.

17.3. Let A ⊆ F
n
2 and suppose that |A| > |spanA|/2. Prove that every vector

in spanA is the sum of at most 2 vectors from A. Hint: Show that, for every
v ∈ spanA, the set A ∩ (v + A) has at least one vector.

17.4. Theorem 17.13 gives an upper bound on the spanning diameter of sets
A in terms of their density α = |A|/|spanA|. Show that for infinitely many
values of k, the bound (17.4) is optimal, that is, exhibit sets A whose spanning
diameter is the maximal number satisfying (17.4). Hint: Consider the set consist-
ing of the all-0 vector and k vectors with precisely one 1; its density is α = (k + 1)/2k.

17.5. (Hamming code). Let r be a positive integer, and let k = 2r−1. Consider
the r × k matrix H whose columns are all the distinct nonzero vectors of
{0, 1}r. Let C ⊆ F

k
2 be the set of vectors, each of which is orthogonal (over

F2) to all the rows of H . Prove that C is a linear code of minimal distance 3
and has precisely 2k−r code words. Hint: Show that no vector of weight 1 or 2 can
be orthogonal to all the rows of H, and use Proposition 17.9.

17.6. Prove Claim 17.14. Hint: If k has the form k = 2r − 1, then we can take C to
be a Hamming code (see previous exercise). Otherwise, take r such that k = 2r + x for
some integer 0 ≤ x < 2r − 1, and let C be a Hamming code of length K = 2r+1 − 1.
By fixing the last K − k of coordinates to appropriate constants, it is possible to obtain
from C a set of vectors C′ ⊆ {0, 1}k of size |C′| ≥ |C|/2K−k = 2k−r−1, such that any
two of its vectors still differ in at least 3 coordinates. The code C′ obtained may be not
linear, but we do not require that.

17.7. Prove that among any 2k−1 + 1 vectors in F
n
2 some k of them must be

linearly independent. Hint: Take a maximal subset of linearly independent vectors
and form all possible sums (over F2).
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18. Linearity of Expectation

Let X1, . . . , Xn be random variables, and X = c1X1 + · · ·+ cnXn. Linearity
of expectation states that

E [X ] = c1E [X1] + · · ·+ cnE [Xn] .

The power of this principle comes from there being no restrictions on the
dependence or independence of the Xi’s. In applications we often use the
fact that there must be a point in the probability space for which X ≥ E [X ]
and a point for which X ≤ E [X ]. This principle (known as the pigeonhole
property of the expectation) is used in most arguments.

18.1 Hamilton paths in tournaments

A tournament is an oriented graph T = (V,E) such that (x, x) �∈ E for all
x ∈ V , and for any two vertices x �= y exactly one of (x, y) and (y, x) belongs
to E. The vertices are players, each pair of which participates in a single
match, and (x, y) ∈ E if and only if x beats y. Given such a tournament, a
Hamiltonian path in it is defined as a permutation (x1, x2, . . . , xn) of players
such that, for every i, xi beats xi+1.
It is easy to show (see Exercise 18.5) that every tournament contains

a Hamiltonian path. On the other hand, there are tournaments with only
one Hamiltonian path (the path itself). Are there tournaments with many
Hamiltonian paths? The existence of such “rich” tournaments was proved by
T. Szele in 1943. His proof is considered to be the first application of the
probabilistic method in combinatorics.
Theorem 18.1 (Szele 1943). There is a tournament T with n players and
at least n!/2n−1 Hamiltonian paths.
Proof. Take a random tournament T (where the outcome of each game is
determined by the flip of fair coin), and let X be the number of Hamiltonian
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18 Linearity of Expectation

paths in it. For each permutation π = (x1, x2, . . . , xn) of players, let Xπ

denote the indicator random variable for the event “π is a Hamiltonian path
in T .” Then X =

∑
Xπ, the summation being over all n! permutations π. For

a given π, E [Xπ] = 2−(n−1), since that is the probability that the n−1 games
xi versus xi+1 all have the desired outcome. By the linearity of expectation,

E [X ] =
∑
π

E [Xπ] = n!2−(n−1).

Since (by the pigeonhole property of the expectation) a random variable
cannot always be smaller than its expectation, at least one tournament must
have at least E [X ] Hamiltonian paths. ��
In the same paper, Szele also established an upper bound O(n!/23n/4) on

the maximal possible number of Hamiltonian paths in any tournament with n
players. Based on the solution of the well-known conjecture of H. Minc about
the permanent of 0-1 matrices (found by Bregman in 1973), Alon (1990b) has
essentially improved this upper bound to

cn3/2n!/2n−1 , (18.1)

where c is a positive constant independent of n.

18.2 Sum-free sets

Suppose we are given a finite set of nonzero integers, and are asked to mark
an as large as possible subset of them under the restriction that the sum of
any two marked integers cannot be marked. It turns out that (independent of
what the given integers actually are!) we can always mark at least one-third
of them.
A subset B of an additive group is called sum-free if x + y �∈ B for all

x, y ∈ B (x = y is allowed). For example, the set of all odd integers is
sum-free, and the subset B = {n+ 1, n+ 2, , . . . , 2n} is a sum-free subset of
A = {1, . . . , 2n}. We are interested in the case when A is an arbitrary set of
numbers: can we also then choose large sum-free subsets?

Theorem 18.2 (Erdős 1965). Let A ⊆ Z be a set of N nonzero integers.
Then there is a sum-free subset B of A with |B| > N/3.

Proof. Let p = 3k + 2 be a prime, which satisfies p > 2maxa∈A |a|. Such a
prime exists by Dirichlet’s prime number theorem, stating that for any two
positive co-prime integers a and d, there are infinitely many primes of the
form a + nd, where n ≥ 0. In other words: there are infinitely many primes
which are congruent to a modulo d.
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Write S = {k+1, k+2, . . . , k+(k+1)}, and observe that S is a sum-free
subset of the group Zp (the integers modulo p), because, by the choice of p,
the sum of any two numbers from S, taken modulo p, does not belong to S.
Indeed, the sum (k+1)+ (k+1) = 2k+2 > 2k+1 is too large, whereas the
sum (2k + 1) + (2k + 1) = 4k + 2 = k mod p = k < k + 1 is too small.
We choose a subset of A as follows. Pick a random element t ∈ Zp \ {0},

and let
At = {a ∈ A : at mod p ∈ S} .

Note that At is sum-free, because for any a, b ∈ At, the residues of at and bt
modulo p belong to S (by definition of At) whereas the residue of (a+ b)t =
at+bt cannot belong to S, by sum-freeness of S. It remains to show that At is
large for some t. To do this, observe that for any fixed a �= 0, as t ranges over
all numbers 1, 2, . . . , p−1, the residues of a ·t modulo p range over all nonzero
elements of Zp. Thus, Pr [at mod p ∈ S] = |S|/(p−1) = (k+1)/(3k+1) > 1/3,
for every a ∈ A. By the linearity of expectation, we have that

E [|At|] =
∑
a∈A
Pr [a ∈ At] =

∑
a∈A
Pr [at mod p ∈ S] > 1

3 |A| ,

By the pigeonhole property of expectation, there is a value of t for which
|At| > |A|/3. ��
It is not clear what is the largest constant that works in place of 1/3 in

the previous theorem. It is only known (see Alon and Kleitman 1990) that it
must be smaller than 12/29.

18.3 Dominating sets

A dominating set of vertices in a graph G = (V,E) is a set S ⊆ V such that
every vertex of G belongs to S or has a neighbor in S.

Theorem 18.3 (Alon 1990c). If G = (V,E) is an n-vertex graph with min-
imum degree d > 1, then G has a dominating set with at most n 1+ln(d+1)

d+1
vertices.

Proof. Form a random vertex subset S ⊆ V by including each vertex inde-
pendently with probability p := ln(d + 1)/(d + 1). Given S, let T be the
set of vertices outside S having no neighbor in S; adding T to S yields a
dominating set. So, it remains to estimate the expected size of this union.
Since each vertex appears in S with probability p, E [|S|] = np.
The random variable |T | is the sum ∑

v∈V Xv of n indicator variables Xv

for whether individual vertices v belong to T . We have Xv = 1 if and only
if v and its neighbors all fail to be in S, the probability of which is bounded
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by (1− p)d+1, since v has degree at least d. Hence, E [|T |] =∑
v∈V E [Xv] ≤

n(1− p)d+1. As (1 − p)d+1 ≤ e−p(d+1), we have

E [|S ∪ T |] ≤ np+ ne−p(d+1) = n
1 + ln(d+ 1)

d+ 1 .

By the pigeonhole property of the expectation, there must be some S for
which S ∪ T is a dominating set of size no larger than this. ��

18.4 The independence number

The independence number α(G) of a graph G is the maximum number of
vertices with no edges between them. The following result is due to Caro
(unpublished) and Wei (1981).

Theorem 18.4. Let G be a graph on n vertices and let di denote the degree
of the i-th vertex. Then

α(G) ≥
n∑
i=1

1
di + 1

. (18.2)

Proof. (Alon–Spencer 1992). Let V = {1, . . . , n} and let π : V → V be
a random permutation taking its values uniformly and independently with
probability 1/n!. This permutation corresponds to a random ordering of ver-
tices in V . Let Ai be the event that all neighbors j of i in G are greater
than i in the ordering, i.e., that π(j) > π(i) for all di neighbors j of i. There
are

(
n

di+1
)
possibilities to choose a (di + 1)-element set S ⊆ V of possible

π-images of i and all its di neighbors. After that there are (|S| − 1)! = di!
possibilities to arrange the π-images of neighbors of i within S (the place of
π(i) is fixed – it must come first), and (n − |S|)! = (n− di − 1)! possibilities
to arrange the vertices outside S. Thus,

Pr [Ai] =
(

n

di + 1

)
di!(n− di − 1)!

n! = 1
di + 1

.

Let U be the set of those vertices i for which Ai holds. By linearity of expec-
tation

E [|U |] =
n∑
i=1
Pr [Ai] =

n∑
i=1
1/(di + 1) .

Thus, for some specific ordering, |U | ≥ ∑n
i=1 1/(di + 1). Now let {i, j} be an

edge of G. Then either π(i) < π(j) or π(j) < π(i). In the first case j �∈ U ,
and in the second case i �∈ U . That is, U is an independent set. ��
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The celebrated theorem due to P. Turán (1941) states: if a graph G has
n vertices and has no k-clique then it has at most (1− 1/(k − 1))n2/2 edges
(see Theorem 4.8). Its dual form states (see Exercise 4.8):

If G has n vertices and nk/2 edges, then α(G) ≥ n/(k + 1).

This dual form of Turán’s theorem also follows from Theorem 18.4: fixing the
total number of edges, the sum

∑n
i=1 1/(di + 1) is minimized when the di’s

are as nearly equal as possible, and, by Theorem 1.8, 1
2
∑n

i=1 di is exactly the
number of edges in G.

18.5 Crossings and incidences

Given a set P of n points and a set L of m lines in the plane, the point-line
incidence graph is a bipartite n×m graph with parts P and L, where p ∈ P
and l ∈ L are adjacent iff the point p lies on the line l (see Fig. 18.1). How
many edges can such a graph have?

4

3 3
pp4

p

l

l

lp

p p
1

1

2 2

3
3 p

p

l

l

l

1 1

2 2

Fig. 18.1 We have four points and three lines. The number of incidences (edges in the
point-line incidence graph on the right) is 7.

Since any two points can lie on at most one common line, and two lines
intersect in at most one point, each point-line incidence graph is C4-free, that
is, contains no cycles on four vertices. We already know (see Exercise 2.6)
that the number of edges in such graphs cannot exceed either nm1/2 + m
or mn1/2 + n. For n = m this is about n3/2. Szemerédi and Trotter (1983)
obtained a much better upper bound which, for n = m, is about n4/3 � n3/2.
We will derive this theorem from another (seemingly unrelated) result about
the number of crossings when a graph is drawn on the plane.

18.5.1 Crossing number

Given a graph G, the crossing number of the graph, denoted cr(G), is the min-
imum number of edge-crossings possible amongst all drawings of the graph
with edges as straight line segments and vertices as points in the plane. Thus
a graph G is planar if and only if cr(G) = 0. A natural question is: given a
graph with e edges and n vertices, how large is its crossing number?
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The well-known Euler’s polyhedron formula states that if a finite, con-
nected, planar graph is drawn in the plane without any edge intersections,
and n is the number of vertices, e is the number of edges and f is the num-
ber of faces (regions bounded by edges, including the outer, infinitely-large
region), then n − e + f = 2. If e ≥ 3 then every face is adjacent to at least
three edges, whereas every edge is adjacent to exactly two faces. By double
counting the edge-face incidences, we get 3f ≤ 2e. Eliminating f , we conclude
that e ≤ 3n− 6 for all planar graphs.
If a graph G can be drawn with only cr(G) crossings, then we can delete

one of the crossings by removing an edge associated with that crossing, and
so we can remove all the crossings by deleting at most cr(G) edges, leaving
at least e − cr(G) edges (and v vertices). Since the graph obtained is planar,
we obtain the following lower bound on the crossing number of any graph G:

cr(G) ≥ e − 3n+ 6 > e − 3n . (18.3)

By applying this inequality to random induced subgraphs of G, Ajtai,
Chvátal, Newborn, and Szemerédi (1982), and Leighton (1984) were able to
improve this lower bound.

Theorem 18.5 (The crossing number inequality). Let G be a graph with n
vertices and e ≥ 4n. Then

cr(G) ≥ e3

64n2 .

Proof. Let G be embedded in the plane and suppose the crossing number
of the drawing is x. Independently select vertices of G with probability p,
and let H be the (induced) subgraph of edges between selected vertices. By
the linearity of expectation, H is expected to have pn vertices and p2e edges.
(The events that each edge ends up in H are not quite independent, but
the great thing about linearity of expectation is that it works even without
assuming any independence.) Observe that each crossing involves two edges
and four vertices. Thus, the probability that the crossing survives in this
drawing is only p4. By one last application of linearity of expectation, the
expected number of crossings of this drawing that survive for H is p4x. This
particular drawing may not be the optimal one for H , so we end up with an
inequality E [cr(H)] ≤ p4x. By (18.3), the number of crossings in any graph
H is always at least the number of edges minus three times the number of
vertices of H . Consequently

p4x ≥ E [cr(H)] ≥ p2e − 3pn .

Taking p := 4n/e gives the desired lower bound on x = cr(G). ��
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18.5 Crossings and incidences

18.5.2 The Szemerédi–Trotter theorem

From the above result on crossing numbers one deduces a short proof of the
Szemerédi–Trotter theorem in combinatorial geometry. It gives an almost
tight upper bound on the number of incidences, that is, on the number of
point-line pairs such that the point lies on the line.

Theorem 18.6 (Szemerédi–Trotter 1983). Let P be a set of n distinct points
in the plane, and let L be a set of m distinct lines. Then the number of
incidences between P and the lines in L is at most 4(mn)2/3 +m+ 4n.

The original proof of this theorem was somewhat complicated, using a
combinatorial technique known as cell decomposition. Later, Székely (1997)
discovered a much simpler proof using crossing numbers of graphs.

Proof (due to Székely 1997). Let x = |{(p, l) ∈ P ×L : p ∈ l}| be the number
of incidences. Let G be the graph whose vertex set is P and whose vertices
are adjacent if they are consecutive on some line in L. A line l ∈ L which
is incident to kl points in P will thus contain kl − 1 line segments between
points in P . Since the sum of all the kl over all lines l ∈ L is exactly the total
number x of incidences, the graph G has x − m edges. Clearly cr(G) < m2

since two lines cross at no more than one point. By the result on crossing
numbers, we deduce

m2 >
(x − m)3

64n2 − n

(we put “−n” just to eliminate the condition e ≥ 4n) and therefore x ≤
4(mn)2/3 +m+ 4n. ��
To see that the theorem is tight up to a constant factor, take the grid

P = [k] × [4k2] together with the set L of all straight lines y = ax + b with
slope a ∈ [k] and intercept b ∈ [2k2]. Then for x ∈ [k] one has ax + b ≤
ak + b ≤ k2 + 2k2 < 4k2. So, for each x = 1, . . . , k each line contains a point
(x, y) of P . We get a total of roughly 2k4 incidences, as compared to the
upper bound of roughly 4k4.
In applications the following corollary of this theorem is often used (we

will also use it in Sect. 25.4). We will say that a function f “is at most about”
another function g if f = O(g).

Theorem 18.7. For n points in the plane, the number of lines, each contain-
ing at least k of them, is at most about n2/k3 + n/k.

Proof. Let P be a set of n points, and L a set ofm lines, each of which contains
at least k points of P . Then these lines generate at least mk incidences and
so, by Theorem 18.6, we have that m(k−1) ≤ 4(mn)2/3+4n. If n ≤ (nm)2/3

then the right-hand side is at most 8(mn)2/3, from which m = O(n2/k3)
follows. If n ≥ (nm)2/3 then the right hand side is at most 8n, from which
m = O(n/k) follows. ��
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The importance of Theorem 18.7 lies in the fact that the exponent of k
in the denominator is strictly larger than 2. A bound of m ≤ (

n
2
)
/
(
k
2
)
, which

is about n2/k2, is trivial by just double-counting the pairs of points. (Prove
this!)
The so-called Two Extremities Theorem says that finite collections of

points in the plane fall into one of two extremes: one where a large frac-
tion of points lie on a single line, and one where a large number of lines are
needed to connect all the points.

Theorem 18.8 (Beck 1983). Given any n points in the plane, at least one
of the following statements is true:

1. There is a line which contains at least Ω(n) of the points.
2. There exist at least Ω(n2) lines, each of which contains at least two of the
points.

Proof. Consider a set P of n points in the plane. Let t be a positive integer.
Let us say that a pair of points x, y in the set P is t-connected if the (unique)
line connecting x and y contains between 2t and 2t+1−1 points of P (including
x and y). By Theorem 18.7, the number of such lines is at most about n2/23t+
n/2t. Since each such line connects together at most about 22t pairs of points
of P , we thus see that at most about n2/2t + n2t pairs of points can be
t-connected.
Now, let C be a large constant. By summing the geometric series, we see

that the number of pairs of points which are t-connected for some t satisfying
C ≤ 2t ≤ n/C is at most about n2/C. On the other hand, the total number
of pairs is

(
n
2
)
.

Thus if we choose constant C to be large enough, we can find at least,
say, n2/4 pairs of points which are not t-connected for any C ≤ 2t ≤ n/C.
The lines that connect these pairs either pass through fewer than C points,
or pass through more than n/C points. If the latter case holds for even one
of these pairs, then we have the first conclusion of Beck’s theorem. Thus
we may assume that all of the n2/4 pairs are connected by lines which pass
through fewer than C points. But each such line can connect at most C2

pairs of points. Thus there must be at least n2/4C2 lines connecting at least
two points of P . ��
More about combinatorial problems in geometry as well as their cute so-

lutions can be found in a beautiful book by Matoušek (2002).

18.6 Far away strings

The Hamming distance between two binary strings is the number dist(x, y)
of positions in which these strings differ. How many binary strings can we
find such that each two of them lie at Hamming distance at least n/2? In
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Sect. 14.3 we used Hadamard matrices to construct such a set consisting of
2n strings (see Theorem 14.10). But what if we relax the condition and only
require the pairwise distance be at least, say, n/4? It turns out that then
much larger sets exist.
To show this, we will use the following Chernoff’s inequality: If X is

the sum of n independent and uniformly distributed 0-1 variables, then
Pr [X ≤ n/2− a] ≤ e−2a2/n.

Theorem 18.9. There exists a set of en/16 binary strings of length n such
that any pair is at Hamming distance at least n/4 from each other.

Proof. Consider a random string in {0, 1}n generated by picking each bit
randomly and independently. For any two such strings x and y, let Xi be the
indicator random variable for the event that xi �= yi. Then E [Xi] = 1/2, and
dist(x, y) = X1+· · ·+Xn. By the linearity of expectation, E [dist(x, y)] = n/2.
Using Chernoff’s inequality, we have that

Pr [dist(x, y) ≤ n/2− a] ≤ e−2a2/n .

Now generateM := en/16 strings at random and independently. Set a := n/4.
By the union bound, the probability that any pair of these strings lies at
distance at most n/4, is at most

(
M
2
)
e−2a2/n < M2e−n/8 = 1 , implying that

the desired set of strings exists. ��
This result has an interesting interpretation in the Euclidean setting. Re-

call that a unit vector is a vector x ∈ R
n such that ‖x‖ = 1, where

‖x‖ = √
x2

1 + · · ·+ x2
n is the norm of x. The set of all unit vectors forms

the unit sphere. The Euclidean distance between two vectors x, y ∈ R
n is the

norm ‖x− y‖ of their difference.
Corollary 18.10. The unit sphere in R

n contains a set of en/16 points, each
two of which are at Euclidean distance at least one from each other.

Proof. Let P ⊆ {0, 1}n be the set of binary strings guaranteed by Theo-
rem 18.9. Associate with each binary string u = (u1, . . . , un) a unit vector
xu ∈ R

n whose i-th coordinate is defined by xu(i) := 1√
n
(−1)ui . Then, for

any two vectors u, v ∈ P and for any coordinate i, we have that

(
xu(i)− xv(i)

)2
= 1
n

(
(−1)ui − (−1)vi

)2
=

{
0 if ui = vi,
4
n if ui �= vi.

Hence,

‖xu − xv‖2 =
n∑
i=1

(
xu(i)− xv(i)

)2
= 4
n

· dist(x, y) ≥ 1 ,

as desired. ��
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18.7 Low degree polynomials

In this section we consider polynomials f(x1, . . . , xn) on n variables over the
field F2. Such a polynomial has degree at most d if it can be written in the
form

f(x1, . . . , xn) = a0 +
m∑
i=1

∏
j∈Si

xj ,

where a0 ∈ {0, 1} and S1, . . . , Sm are subsets of {1, . . . , n} of size at most d;
here and throughout the section the sum is modulo 2.
If f1, . . . , fm are polynomials of degree at most d, then their product can

have degree up to dm. The following result says that the product can still be
approximated quite well by a polynomial of relatively small degree.

Lemma 18.11 (Razborov 1987). Let f =
∏m
i=1 fi, where f1, . . . , fm are poly-

nomials of degree at most d over F2. Then, for any r ≥ 1, there exists a
polynomial g of degree at most dr such that g differs from f on at most 2n−r
inputs.

Proof. Let S be a random subset of {1, . . . ,m}, that is, we choose S randomly
from the family of all 2m subsets with probability 2−m. Let S1, . . . ,Sr be
independent copies of S. Consider a (random) function of the form

g =
r∏
j=1

hj , where hj = 1−
∑
i∈Sj

(1 − fi) . (18.4)

We claim that, for every (fixed) input a ∈ {0, 1}n,

Pr [g(a) �= f(a)] ≤ 2−r . (18.5)

Indeed, if f(a) = 1 then all fi(a) = 1, and hence, g(a) = 1 with probability
1. Suppose now that f(a) = 0. Then fi0(a) = 0 for at least one i0. Since
each of the sets S1, . . . ,Sr contains i0 with probability 1/2, we have that
Pr [hj(a) = 1] ≤ 1/2 for all j = 1, . . . , r (consult Exercise 18.11 for this
conclusion). Hence,

Pr [g(a) = 0] = 1− Pr [h1(a) = . . . = hr(a) = 1] ≥ 1− 2−r ,

as claimed.
For an input vector a ∈ {0, 1}n, let Xa denote the indicator random vari-

able for the event that g(a) �= f(a), and let X be the sum of Xa over all a.
By (18.5) and the linearity of expectation, the expected number of inputs on
which g differs from f is

E [X ] =
∑
a

E [Xa] =
∑
a

Pr [Xa = 1] ≤ 2n−r .
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By the pigeonhole principle of expectation, there must be a point in the
probability space for which this holds. This point is a polynomial of the form
(18.4); it has degree at most dr and differs from f on at most 2n−r inputs. ��
Razborov used this lemma to prove that the majority function cannot

be computed by constant-depth polynomial-size circuits with unbounded
fanin And, Or and Parity gates. The majority function is a boolean func-
tion Majn(x1, . . . , xn) which outputs 1 if and only if x1 + · · ·+ xn ≥ n/2.

Theorem 18.12 (Razborov 1987). Every unbounded fanin depth-c circuit
with And, Or and Parity gates computing Majn requires 2Ω(n1/2c) gates.

The idea is as follows. If f can be computed by a depth-c circuit of size
� then, by Lemma 18.11, there exists a polynomial g of degree at most rc
such that g differs from f on at most � · 2n−r inputs. The desired lower
bound is then obtained by showing that the majority function cannot be
approximated sufficiently well by such polynomials (see Lemma 13.8). Taking
r to be about n1/(2c) and making necessary computations this leads to a lower
bound � ≥ 2Ω(n1/(2c)). This final step requires some routine calculations, and
we omit it.

18.8 Maximum satisfiability

In most of the above applications it was enough to take a uniform distribution,
that is, every object had the same probability of appearing. In this section
we will consider the situation where the distribution essentially depends on
the specific properties of a given family of objects.
An And-Or formula or a CNF (or simply, a formula) over a set of variables

x1, . . . , xn is an And of an arbitrary number of clauses, where a clause is an
Or of an arbitrary number of literals, each literal being either a variable xi
or a negated variable xi. For example:

F = (x1 ∨ x3)(x1 ∨ x2 ∨ x3)(x2)(x1 ∨ x2) .

An assignment is a mapping which assigns each variable one of the values 0
or 1. We can look at such assignments as binary vectors v = (v1, . . . , vn) ∈
{0, 1}n, where vi is the value assigned to xi. If y is a literal, then we say that
v satisfies y if either y = xi and vi = 1, or y = xi and vi = 0. An assignment
satisfies a clause if it satisfies at least one of its literals. An assignment sat-
isfies a formula if it satisfies each of its clauses. For the formula above, the
assignment v = (1, 0, 0) is satisfying. A formula is satisfiable if at least one
assignment satisfies it. A formula F is k-satisfiable if any subset of k clauses
of F is satisfiable.
It is an interesting “Helly-type” phenomenon, first established by Lieberher

and Specker (1981), which says that if a formula is 3-satisfiable then at least
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2/3 of its clauses are simultaneously satisfiable. For 2-satisfiable formulas this
fraction is 2/(1 +

√
5) > 0.618 (the inverse of the golden ratio). The original

proof of these facts was rather involved. Yannakakis (1994) has found a very
simple proof of these bounds using the probabilistic method.

Theorem 18.13 (Yannakakis 1994). If F is a 3-satisfiable formula then at
least a 2/3 fraction of its clauses are simultaneously satisfiable.

Proof. Given a 3-satisfiable formula F , define a random assignment v =
(v1, . . . , vn), where each bit vi takes its value independently from other bits
and with probability

Pr [vi = 1] =

⎧⎨
⎩
2/3 if F contains a unary clause (xi);
1/3 if F contains a unary clause (xi);
1/2 otherwise.

Note that this definition is consistent since it is impossible to have the unary
clauses (xi) and (xi) in the same 3-satisfiable formula. Simple (but crucial)
observation is that each singular literal y ∈ {xi, xi}, which appears in the
formula F , is falsified with probability ≤ 2/3 (independent of whether this
literal forms a unary clause or not). To see this, let y = xi and p = Pr [vi = 0].
We have three possibilities:

- either (xi) is a unary clause of F , and in this case p = 1− 2/3 = 1/3;
- or F contains a unary clause (xi), and in this case p = 1− 1/3 = 2/3;
- or neither xi nor xi appears in a unary clause, in which case p = 1/2.

Using this observation, we can prove the following fact.

Claim 18.14. Every clause is satisfied by v with probability at least 2/3.

For unary clauses the claim is trivial. On the other hand, if C contains
three or more literals, then, by the above observation, each of these literals
can be falsified with probability at most 2/3, and hence, the clause is satisfied
with probability at least 1− (2/3)3 = 0.7037... > 2/3; for longer clauses the
probabilities are even better.
It remains to consider binary clauses. Assume w.l.o.g. that C = (x1 ∨ x2).

If at least one of x1 and x2 is satisfied with probability 1/2 then the clause
C is satisfied with probability 1 − Pr [v1 = 0] · Pr [v2 = 0] ≥ 1 − 1

2 · 2
3 =

2
3 .

Thus, the only bad case would be when both literals x1 and x2 are satisfied
only with probability 1/3. But this is impossible because it would mean that
the formula F contains the clauses (x1 ∨x2), (x1), (x2), which contradicts the
fact that F is 3-satisfiable.
We now conclude the proof of the theorem in a standard manner. Suppose

that F consists of the clauses C1, . . . , Cm. LetXi denote the indicator random
variable for the event “the i-th clause Ci is satisfied by v”. ThenX =

∑m
i=1 Xi

is the total number of satisfied clauses of F . By Claim 18.14, Pr [Xi = 1] ≥
2/3 for each i, and by the linearity of expectation, E [X ] =

∑m
i=1 E [Xi] ≥ 2m

3 .
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18.9 Hash functions

By the pigeonhole property of the expectation, at least one assignment v must
satisfy so many clauses of F , as desired. ��
It is worth mentioning that, for large values of k, the right fraction for all

k-satisfiable formulas is 3/4. Namely, Trevisan (2004) has proved that, if rk
stands for the largest real such that in any k-satisfiable formula at least an rk-
th fraction of its clauses are satisfied simultaneously, then limk→∞ rk = 3/4.

18.9 Hash functions

A set V of vectors of length t over an alphabet A = {1, . . . , n} is called k-
separated if for every k distinct vectors there is a coordinate in which they
are all distinct. How many vectors can such a set have?
This question is equivalent to the question about the maximum size

N = N(n, k, t) of a domain for which there exists a family of (n, k) hash
functions with t members, that is, a family of t partial functions f1, . . . , ft
mapping a domain of size N into a set of size n so that every subset of k
elements of the domain is mapped in a one-to-one fashion by at least one
of the functions. To see this equivalence, it is enough to consider the set of
vectors (f1(x), . . . , ft(x)) for each point x of the domain.
The problem of estimating N(n, k, t), which is motivated by the numerous

applications of perfect hashing in theoretical computer science, has received
a considerable amount of attention. The interesting case is when the number
t of hash functions is much bigger than the size n of the target set (and, of
course, n ≥ k). The following are the best known estimates for N(n, k, t):

1
k − 1 log

1
1− g(n, k) � 1

t
logN(n, k, t) (18.6)

and
1
t
logN(n, k, t) � min

1≤r≤k−1
g(n, r) log n − r + 1

k − r
, (18.7)

where
g(n, k) := (n)k

nk
= n(n− 1) · · · (n− k + 1)

nk
.

In particular, (18.7) implies that

N(n, k, t) ≤
(
n

k

)t
.

The lower bound (18.6), proved by Fredman and Komlós (1984), can be
derived using a probabilistic argument (the deletion method) discussed in
Chap. 20: one chooses an appropriate number of vectors randomly, shows
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18 Linearity of Expectation

that the expected number of non-separated k-tuples is small, and omits a
vector from each such “bad” k-tuple. The proof of the upper bound (18.7)
was much more difficult. For r = k−1, a slightly weaker version of this bound
was proved in Fredman and Komlós (1984), and then extended to (18.7) by
Körner and Marton (1988). All these proofs rely on certain techniques from
information theory.
A short and simple probabilistic proof of (18.7), which requires no information-

theoretic tools, was found by Nilli (1994) (c/o Noga Alon). We only present
the key lemma of this proof.

Lemma 18.15. Let U be a set of m vectors of length t over the alphabet B∪
{∗}, where B = {1, . . . , b}, and let xv denote the number of non-∗ coordinates
of v ∈ U . Let x =

∑
xv/m be the average value of xv. If for every d distinct

vectors in U there is a coordinate in which they all are different from ∗ and
are all distinct, then

m ≤ (d − 1)
(

b

d− 1
)x

.

Proof. For every coordinate i, choose randomly and independently a subset
Di of cardinality d − 1 of B. Call a vector v ∈ U consistent if for every
i, vi ∈ Di ∪ {∗}. Since each set Di has size d − 1, the assumption clearly
implies that for any choice of the sets Di there are no more than d − 1
consistent vectors. On the other hand, for a fixed vector v and its coordinate
i, Pr [vi ∈ Di] = (d − 1)/b. So, each vector v is consistent with probability(
(d − 1)/b)xv and, by the linearity of expectation, the expected number of
consistent vectors in U is

∑
v∈U

(
d− 1
b

)xv
≥ m

(
d− 1
b

)x
,

where the inequality follows from Jensen’s inequality (see Proposition 1.12),
since the function g(z) =

(
(d − 1)/b)z is convex. ��

18.10 Discrepancy

Let X1, . . . , Xk be n-element sets, and X = X1 × · · · × Xk. A subset Ti
of X is called a cylinder in the i-th dimension if membership in Ti does
not depend on the i-th coordinate. That is, (x1, . . . , xi, . . . , xk) ∈ Ti implies
that (x1, . . . , x

′
i, . . . , xk) ∈ Ti for all x′i ∈ Xi. A subset T ⊆ X is a cylinder

intersection if it is an intersection T = T1 ∩T2 ∩· · ·∩Tk, where Ti is a cylinder
in the i-th dimension. The discrepancy of a function f : X → {−1, 1} on a set
T is the absolute value of the sum of the values of f on points in T , divided
by the total number |X | of points:
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18.10 Discrepancy

discT (f) =
1

|X |

∣∣∣∣∣∑
x∈T

f(x)

∣∣∣∣∣ .
The discrepancy of f is the maximum disc(f) = maxT discT (f) over all cylin-
der intersections T ⊆ X .
The importance of this measure stems from the fact that functions with

small discrepancy have large multi-party communication complexity. (We will
discuss this in Sect. 27.4 devoted to multi-party games.) However, this fact
alone does not give immediate lower bounds for the multi-party communica-
tion complexity, because disc(f) is very hard to estimate. Fortunately, the
discrepancy can be bounded from above using the following more tractable
measure.

.  .  .

.  .  .

b

a a

b

a

b

k1

1 k2

2

Fig. 18.2 A cube

A k-dimensional cube is defined to be a multi-set D = {a1, b1} × · · · ×
{ak, bk}, where ai, bi ∈ Xi (not necessarily distinct) for all i. Being a multi-
set means that one element can occur several times. Thus, for example, the
cube D = {a1, a1} × · · · × {ak, ak} has 2k elements.
Given a function f : X → {−1, 1} and a cube D ⊆ X , define the sign of f

on D to be the value
f(D) =

∏
x∈D

f(x) .

Hence, f(D) = 1 if and only if f(x) = −1 for an even number of vectors
x ∈ D. We choose a cube D at random according to the uniform distribution.
This can be done by choosing ai, bi ∈ Xi for each i according to the uniform
distribution. Let

E(f) := E [f(D)] = E
[ ∏
x∈D

f(x)
]

be the expected value of the sign of a random cube D. To stress the fact that
the expectation is taken over a particular random object (this time, over D)
we will also write ED [f(D)] instead of E [f(D)].

Example 18.16. The difference between the measures disc(f) and E(f) can
best be seen in the case when k = 2. In this case X = X1 ×X2 is just a grid,
and each function f : X → {−1, 1} is just a ±1 matrix Mf . Cylinder inter-
sections T ⊆ X in this case correspond to submatrices of Mf , and discT (f)
is just the sum of all entries in T divided by |X |. Thus, to determine disc(f)
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18 Linearity of Expectation

we must consider all submatrices of Mf . In contrast, to determine E(f) it is
enough to only consider all s× t submatrices with 1 ≤ s, t ≤ 2.
The following result was proved in Chung (1990) and generalizes a similar

result from Babai et al. (1992).

Theorem 18.17. For every f : X → {−1, 1},

disc(f) ≤ E(f)1/2k .

The theorem is very useful because E(f) is a much simpler object than
disc(f). For many functions f , it is relatively easy to compute E(f) exactly
(we will show this in the next section). In Chung and Tetali (1993), E(f) was
computed for some explicit functions, resulting in the highest known lower
bounds for the multi-party communication complexity of these functions.

Proof (due to Raz 2000). We will only prove the theorem for k = 2; the
general case is similar. So let X = X1 × X2 and f : X → {−1, 1} be a
given function. Our goal is to show that disc(f) ≤ E(f)1/4. To do this, pick
at random (uniformly and independently) an element x ∈ X . The proof
consists of showing two claims.

Claim 18.18. For all functions h : X → {−1, 1}, E(h) ≥ (Ex [h(x)])4.

Claim 18.19. There exists h such that
∣∣Ex [h(x)]

∣∣ ≥ disc(f) and E(h) =
E(f).
Together, these two claims imply the theorem (for k = 2):

E(f) = E(h) ≥ (Ex [h(x)])4 =
∣∣∣Ex [h(x)]

∣∣∣4 ≥ disc(f)4 .

In the proof of these two claims we will use two known facts about the mean
value of random variables:

E
[
ξ2] ≥ E [ξ]2 for any random variable ξ; (18.8)

and
E [ξ · ξ′] = E [ξ] · E [ξ′] if ξ and ξ′ are independent. (18.9)

The first one is a consequence of the Cauchy–Schwarz inequality, and the
second is a basic property of expectation.

Proof of Claim 18.18. Take a random 2-dimensional cube D = {a, a′} ×
{b, b′}. Then
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E(h) = ED [h(D)] = ED
[ ∏
x∈D

h(x)
]

= Ea,a′Eb,b′ [h(a, b) · h(a, b′) · h(a′, b) · h(a′, b′)]
= Ea,a′

[
(Eb [h(a, b) · h(a′, b)])2

]
by (18.9)

≥ (Ea,a′Eb [h(a, b) · h(a′, b)])2 by (18.8)

=
(
EaEb

[
h(a, b)2

])2 Pr [a′] = Pr [a]

=
(
Ea (Eb [h(a, b)])2

)2
by (18.9)

≥ (Ea,b [h(a, b)])4 by (18.8). ��

Proof of Claim 18.19. Let T = A×B be a cylinder intersection (a submatrix
of X , since k = 2) for which disc(f) is attained. We prove the existence
of h by the probabilistic method. The idea is to define a random function
g : X1 × X2 → {−1, 1} such that the expected value E [g(x)] = Eg [g(x)] is
the characteristic function of T . For this, define g to be the product g(x) =
g1(x) ·g2(x) of two random functions, whose values are defined on the points
x = (a, b) ∈ X1 × X2 by:

g1(a, b) =
{
1 if a ∈ A;
set randomly to ±1 otherwise

and

g2(a, b) =
{
1 if b ∈ B;
set randomly to ±1 otherwise.

These function have the property that g1 depends only on the rows and
g2 only on the columns of the grid X1 × X2. That is, g1(a, b) = g1(a, b′)
and g2(a, b) = g2(a′, b) for all a, a′ ∈ X1 and b, b′ ∈ X2. Hence, for x ∈ T ,
g(x) = 1 with probability 1, while for x �∈ T , g(x) = 1 with probability 1/2
and g(x) = −1 with probability 1/2; this is so because the functions g1, g2
are independent of each other, and x �∈ T iff x �∈ A×X2 or x �∈ X1 ×B. Thus,
the expectation E [g(x)] takes the value 1 on all x ∈ T , and takes the value
1
2 + (− 1

2 ) = 0 on all x �∈ T , i.e., E [g(x)] is the characteristic function of the
set T :

E [g(x)] =
{
1 if x ∈ T ;
0 if x �∈ T .

Now let x be a random vector uniformly distributed in X = X1 ×X2. Then

discT (f) =
∣∣Ex [f(x) · Eg [g(x)]]

∣∣ = ∣∣ExEg [f(x) · g(x)] ∣∣
=

∣∣EgEx [f(x) · g(x)] ∣∣ .
So there exists some choice of g = g1 · g2 such that
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18 Linearity of Expectation

|Ex [f(x) · g(x)]| ≥ discT (f)

and we can take h(x) := f(x) · g(x). Then ∣∣Ex [h(x)]
∣∣ ≥ disc(f). Moreover,

E(h) = E(f) because g1 is constant on the rows and g2 is constant on the
columns so the product g(D) =

∏
x∈D g(x) cancels to 1. ��

This completes the proof of Theorem 18.17 in case k = 2. To extend it for
arbitrary k, just repeat the argument k times. ��
Say that a (0, 1) matrix A is odd if the number of its all-1 rows is odd.

Note that, if the matrix has only two columns, then it is odd iff the scalar (or
inner) product of these columns over GF (2) is 1. By this reason, a boolean
function, detecting whether a given matrix is odd, is called the “generalized
inner product” function. We will assume that input matrices have n rows and
k columns.
That is, the generalized inner product function gip(x) is a boolean function

in kn variables, arranged in an n× k matrix x = (xij), and is defined by:

gip(x) =
n⊕
i=1

k∧
j=1

xij .

Since we want our function to have range {−1, 1}, we will consider the func-
tion

f(x) = (−1)gip(x) =
n∏
i=1
(−1)xi1xi2···xik . (18.10)

Theorem 18.20. For the ±1 version f(x) of the generalized inner product
function we have that

E(f) =
(
1− 1
2k

)n
. (18.11)

Proof. In our case, the function f is a mapping f : X1×X2×· · ·Xk → {−1, 1},
where the elements of each set Xj are column vectors of length n. Hence, a
cube D in our case is specified by two n × k (0, 1) matrices A = (aij) and
B = (bij). The cube D consists of all 2k n × k matrices, the j-th column in
each of which is either the j-th column of A or the j-th column of B. By
(18.10), we have that

f(D) =
∏
x∈D

f(x) =
∏
x∈D

n∏
i=1
(−1)xi1xi2···xik with xij ∈ {aij , bij}

=
n∏
i=1

∏
x∈D
(−1)xi1xi2···xik

=
n∏
i=1
(−1)(ai1+bi1)(ai2+bi2)···(aik+bik) .
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Note that the exponent (ai1 + bi1)(ai2 + bi2) · · · (aik + bik) is even if aij = bij
for at least one 1 ≤ j ≤ k, and is equal to 1 in the unique case when aij �= bij
for all j = 1, . . . , k, that is, when the i-th row of B is complementary to the
i-th row of A. Thus,

f(D) = −1 iff the number of complementary rows in A and B is odd.

Now, E(f) is the average of the above quantity over all choices of matrices A
and B. We fix the matrix A and show that the expectation over all matrices
B is precisely the right-hand side of (18.11). Let A1, . . . , An be the rows of
A and B1, . . . , Bn be the rows of B. Then f(D) =

∏n
i=1 g(Bi), where

g(Bi) := (−1)(ai1+bi1)(ai2+bi2)···(aik+bik) =
{
+1 if Bi �= Ai ⊕ 1,
−1 if Bi = Ai ⊕ 1.

Thus, for every fixed matrix A, we obtain that

EB
[ n∏
i=1

g(Bi)
]
=

n∏
i=1
EBi [g(Bi)] by (18.9)

=
n∏
i=1

1
2k

∑
Bi

g(Bi)

=
n∏
i=1

1
2k

(
2k − 1)

=
(
1− 1
2k

)n
. ��

18.11 Large deviation inequalities

A simple, but one of the most basic inequalities concerning the expectation
of random variables states that a non-negative random variable X can take
values much larger than E [X ] with only small probability.

Theorem 18.21 (Markov’s Inequality). If X is a non-negative random vari-
able then, for every real number a > 0,

Pr [X ≥ a] ≤ E [X ]
a

, that is, Pr [X ≥ a · E [X ]] ≤ 1
a
.

Proof.

E [X ] =
∑
i

i · Pr [X = i] ≥
∑
i≥a

a · Pr [X = i] = a · Pr [X ≥ a] . ��
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Intuitively, when a ≤ E [X ] the inequality is trivial. For a > E [X ], it
means the larger a is relative to the mean, the harder it is to have X ≥ a.
In particular, if A1, . . . , An is a sequence of events, then Markov’s inequality
and the linearity of expectation (of their indicator random variables) implies
that

Pr [fewer than k events hold] ≥ 1−
∑n

i=1 Pr[Ai]
k

.

In Markov’s inequality, X can be an arbitrary non-negative random variable.
In applications, however, X is often a sum of independent random variables.
In these cases, Markov’s inequality can be substantially sharpened. The main
observation (due to Sergei Bernstein) is that, if X is a random variable and
t > 0, then Markov’s inequality yields

Pr [X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ] · e−ta . (18.12)

There are many resulting inequalities known under a common name “Cher-
noff’s inequalities.” We mention just one of them.
Theorem 18.22 (Chernoff’s Inequality). Let X1, . . . , Xn be independent ran-
dom variables taking their values in the interval [0, 1]. Let X = X1+ · · ·+Xn

and μ = E [X ]. Then, for every real number a > 0, both Pr [X ≥ μ+ a] and
Pr [X ≤ μ − a] are at most e−a2/2n.
Note that the variables Xi need not be 0-1 variables: they can take arbi-

trary real values in the interval [0, 1]. Important restriction, however, is that
these variables must be independent.

Proof. Consider random variables Yi = Xi − E [Xi]. Then E [Yi] = 0 and for
their sum Y = Y1+· · ·+Yn we have that Y =

∑n
i=1 Xi−

∑n
i=1 E [Xi] = X−μ.

Using (18.12) we have for every t > 0,

Pr [X ≥ μ+ a] = Pr [Y ≥ a] ≤ e−ta E [
etY

]
= e−ta E

[
e
∑
n

i=1
tYi

]
= e−taE

[ n∏
i=1
etYi

]
= e−ta

n∏
i=1
E
[
etYi

]
, (18.13)

where in the last equality we used the independence of random variables Yi,
and hence, also of random variables etYi .
In order to estimate E[etYi ] from above, consider the function f(x) = etx

and its derivatives. Since t > 0, the second derivative f ′′(x) is positive, mean-
ing that f(x) is convex. Let c+ dx be a line through the points (−1, f(−1))
and (1, f(1)). Then c− d = f(−1) = e−t and c+ d = f(1) = et, from which

c = e
t + e−t

2 and d = e
t − e−t
2

follows. Since f(x) is convex, all values f(x) with x ∈ [−1, 1] must lie below
the line c+dx, that is, etx = f(x) ≤ c+dx for all x ∈ [−1, 1]. Since E [Yi] = 0,
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we obtain

E
[
etYi

] ≤ E [c+ dYi] = c+ d · E [Yi] = c = 12
(
et + e−t

)
.

Using the Taylor series ex =
∑∞

k=0 x
k/k! we get

E
[
etYi

] ≤ 12
(
1 + t+ t2

2! +
t3

3! +
t4

4! + · · ·
)

+ 12

(
1− t+ t2

2! − t3

3! +
t4

4! − · · ·
)

= 1 + t2

2! +
t4

4! + · · ·+ t2k

(2k)! + · · ·

≤ 1 + t2

21 · 1! +
t4

22 · 2! + · · ·+ t2k

2k · k! + · · · since 2k · k! ≤ (2k)!

= 1 + x+ x2

2! + · · ·+ xk

k! + · · · for x = t2/2

= et
2/2 .

Together with (18.13) this gives the upper bound

Pr [X ≥ μ+ a] ≤ e−ta+t2n/2 .

The desired upper bound Pr [X ≥ μ+ a] ≤ e−a2/(2n) now follows by taking
t = a/n.
To prove the second inequality Pr [X ≤ μ− a] ≤ e−a2/2n, it is enough to

consider the random variable X ′ := −X . Then X ≤ μ − a if and only if
X ′ ≥ μ′ + a, where μ′ = E [X ′] = −μ. ��
For sums of uniformly distributed ±1 random variables we have the follow-

ing bounds. Let Y = Y1 + · · ·+ Yn, where Pr [Yi = +1] = Pr [Yi = −1] = 1/2
and the Yi are mutually independent. Then for any a > 0, both Pr [Y > a]
and Pr [Y < −a] are smaller than e−a2/2n.
Using Jensen’s inequality to upper bound E

[
etXi

]
, the following more

general inequality can be derived: If X1, . . . , Xn are mutually independent
random variables with |Xi| ≤ ci and E [Xi] = 0, then

Pr [X1 + · · ·+Xn > a] < exp
(

− a2

2(c2
1 + · · ·+ c2

n)

)
.

For sums of independent 0-1 random variables, the proof of Theorem 18.22
yields somewhat tighter bounds. Let X = X1 + · · · + Xn be the sum of
independent 0-1 random variables with Pr [Xi = 1] = pi. Let μ = E [X ] =
p1+ · · ·+ pn. Since each Xi can only take values 0 or 1, the random variable
etXi can also take only values 1 or et. Hence, setting a = (1 + δ)μ and
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t = ln(1 + δ) in (18.12) and using the estimate

E[(1 + δ)Xi ] = pi · (1 + δ) + (1− pi) · 1 = 1 + δpi ≤ eδpi

we obtain that

Pr [X ≥ (1 + δ)μ] ≤ eδμ(1 + δ)−(1+δ)μ .

Depending on how large the parameter δ is, one obtains different estimates.
For example, if δ > 2e−1 then (1+ δ)1+δ ≥ (2e)1+δ ≥ 21+δeδ, and we obtain
that

Pr [X ≥ (1 + δ)μ] ≤ 2−(1+δ)μ

in this case. If 0 < δ < 1, then simple calculus yields

Pr [X ≥ (1 + δ)μ] ≤ e−δ2μ/3 .

Similarly, Pr [X ≤ (1− δ)μ] ≤ e−δ2μ/2 holds for all δ > 0.

Exercises

18.1.We have n letters going to n different persons and n envelopes with
their addresses. We insert each letter into an envelope independently from
each other at random (several letters may go in the same envelope). What is
the expected number of correct matches? (Answer: E = 1.)

18.2. There are k people in a lift at the ground floor. Each wants to get off
at a random floor of one of the n upper floors. What is the expected number
of lift stops? Hint: Consider the indicator random variables Xi for the events that at
least one person is off at the i-th floor, and apply the linearity of expectation. Answer:
E = n(1− (1 − 1/n)k).

18.3. Let Ω be a uniform sample space, and let X : Ω → {0, 1, . . . ,M} be a
random variable with the expectation μ =M −a for some a. Prove that then,
for any 1 ≤ b ≤ M , Pr [X ≥ M − b] ≥ (b − a)/b. Hint: Let B be the set of those
points ω ∈ Ω for which X(ω) < M − b. Then Pr [B] · (M − b) +Pr

[
B
]
·M ≥M − a, or

Pr [B] ≤ a/b.

18.4. Let T be a random tournament chosen uniformly among all tourna-
ments on n players. Then, by Szele’s theorem, the expected number μ of
Hamiltonian paths in it is n!2−(n−1). Use the argument of the previous exer-
cise and Alon’s upper bound (18.1) to prove that, with probability at least
Ω(n−3/2), T has at least n!2−n Hamiltonian paths. Hint: Let M = Δ · μ with
Δ = cn3/2, and take a =M(1− 1/Δ), b =M(1− 1/2Δ).
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18.5. (Rédei 1934) Prove that every tournament contains a Hamiltonian path.
Hint: Every path missing at least one player can be prolonged by adding him to that
path.

18.6. Design an algorithm which, given an n-vertex graph G = (V,E) of
minimal degree d, constructs a dominating set S ⊆ V of size |S| ≤ n 1+ln(d+1)

d+1 ,
whose existence is guaranteed by Theorem 18.3. Hint: For S ⊆ V , let D(S) be
the set of vertices dominated by S (i.e., v ∈ D(S) if either v ∈ S or v is joined by an
edge with some vertex in S). Let N(S) = V \D(S). First show that, given S ⊆ V , there
exists a vertex in V \S which dominates at least |N(S)|(d+1)/n vertices in N(S). Now
construct the desired set S by iteratively adding a vertex with the maximum number
of neighbors undominated by the vertices already chosen. Prove that at most n/(d+ 1)
vertices remain undominated after n ln(d+1)/(d+1) steps, such that adding them yields
a dominating set of size at most n 1+ln(d+1)

d+1 .

18.7. Show that Theorem 18.4 implies Turán’s theorem: if a graph G has n
vertices and nk/2 edges, then α(G) ≥ n/(k+1) (see Exercise 4.8). Hint: Use the
Cauchy–Schwarz inequality

(∑n

i=1 aibi
)2 ≤

(∑n

i=1 a
2
i

) (∑n

i=1 b
2
i

)
with ai = (di+1)1/2

and bi = 1/ai.

18.8. Prove the Lieberher-Specker result for 2-satisfiable formulas: if F is a
2-satisfiable formula then at least γ-fraction of its clauses are simultaneously
satisfiable, where γ = (

√
5−1)/2. Sketch: (Yannakakis 1994): Define the probability

of a literal y to be satisfied to be: a if y occurs in a unary clause, and 1/2 otherwise.
Observe that then the probability that a clause C is satisfied is a if C is a unary clause,
and at least 1 − a2 otherwise (at worst, a clause will be a disjunction of two literals
whose negations appear as unary clauses); verify that a = 1− a2 for a = γ.

18.9. Prove that for any And-Or formula there is an input which satisfies at
least half of its clauses. Is this bound optimal?

18.10. Given a graph G = (V,E), define the And-Or formula

FG =
∧

{i,j}	∈E
(xi ∨ xj).

Each assignment v = (v1, . . . , vn) ∈ {0, 1}n can be interpreted as an incidence
vector of the set of vertices Sv = {i : vi = 1}. Show that Sv is a clique in G
if and only if v satisfies the formula FG.

18.11. Let u be a random vector uniformly distributed over Fn2 , and let u, v ∈
F
n
2 be any two distinct vectors with v �= 0. The scalar product of u and v over

F2 is the sum 〈u, v〉 =∑n
i=1 uivi mod 2. Show that: Pr [〈u, v〉 = 1] = 1/2 for

every v �= 0, and Pr [〈u, v〉 = 〈u, w〉] = 1/2 for every v �= w. Hint: Exercise 13.2.

18.12. Recall that the length (or the norm) ‖v‖ of a vector v ∈ R
n is the

square root of the scalar product 〈v, v〉. Prove that for any vectors v1, . . . , vn
in {+1,−1}n there are scalars ε1, . . . , εn ∈ {+1,−1} such that
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18 Linearity of Expectation

‖ε1v1 + · · ·+ εnvn‖ ≤ n.

Hint: Choose the εi’s independently at random to be +1 or −1 with probability 1/2, and
use the linearity of expectation to evaluate the expected length of the vector

∑
εivi by

computing the square of that quantity. When doing this, use the fact that εi and εj are
independent and therefore E [εi · εj ] = E [εi] · E [εj ] = 0.

18.13. Prove the following generalization of the previous result. Let v1, . . . , vn
be vectors in {+1,−1}n; p1 . . . , pn be real numbers in [0, 1], and set w =
p1v1 + · · · + pnvn. Then there exist ε1, . . . , εn ∈ {0, 1} such that, setting
v = ε1v1 + · · ·+ εnvn, we have ‖w − v‖ ≤ n/2. Hint: Pick the εi’s independently
with Pr [εi = 1] = pi and Pr [εi = 0] = 1−pi. Consider a random variable X = ‖w−v‖2,
and prove that E [X ] ≤ n2/4.

18.14. Theorem 3.2 says that there exist (n, k)-universal sets of 0-1 vectors
of size at most r = k2k logn. Give an alternative proof of this result using the
linearity of expectation. Hint: Choose a random set A uniformly and independently
from the family of all r-element subsets of {0, 1}n; the probability of one particular subset
to be chosen is hence

(2n
r

)−1. For a set S of k coordinates and a vector u ∈ {0, 1}k , let
XS,u denote the indicator random variable for the event u �∈ projS(A), and let X be the
sum of these random variables over all S and u. Show that for r = k2k lnn, E [X ] < 1.
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19. The Lovász Sieve

Assume that we have a family of “bad” events. How can we make sure that
there is some non-zero probability that none of the bad events will happen?
By the union bound Pr [A ∪ B] ≤ Pr [A]+Pr [B], this probability is non-zero
if the sum of probabilities of all these bad events is smaller than 1. In one
sense this is best possible: when bad events are pairwise disjoint, the condition
cannot be weakened. If we know that the bad events are independent, we can
get a much better bound, by multiplying all the probabilities that each single
bad event does not happen. This will work as long as each bad event has
probability smaller than 1. But this will immediately fail, if at least two of
the bad events are not independent.
In such cases—when there is some relatively small amount of dependence

between events—one can use a powerful generalization of the union bound,
known as the Lovász Local Lemma.

19.1 The Lovász Local Lemma

An event A is mutually independent of a collection of events if conditioning on
any sub-collection B1, . . . , Bm of these events does not affect the probability
of A, that is,

Pr[A |C1 · · ·Cm] = Pr [A]
for all Ci ∈ {Bi, Bi}, i = 1, . . . ,m. Note that A might be independent of each
of the events B1, . . . , Bm, but not be mutually independent of them. To see
this, consider flipping a fair coin twice and the three events: B1, B2, A, where
Bi is the event that the i-th flip is a head and A is the event that both flips
are the same. Then A is independent of B1 and of B2 but Pr[A |B1B2] = 1.
Let A1, . . . , An be events. A graph G = (V,E) on the set of vertices

V = {1, . . . , n} is said to be a dependency graph if, for all i, Ai is mutu-
ally independent of all the events Aj such that j is not adjacent to i in G, i.e.,
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19 The Lovász Sieve

for which {i, j} �∈ E. We emphasize that Ai must not only be independent
of each such Aj individually but also must be independent of any boolean
combination of the Aj ’s. Such a graph G may be not uniquely defined, but
we will not care about this. We will only be interested in the smallest possible
degree of such a graph, which we call the degree of dependence of the events
A1, . . . , An.
The following fact is known as the Lovász Local Lemma.

Lemma 19.1 (Erdős–Lovász 1975). Let A1, . . . , An be events with Pr[Ai] ≤ p
for all i, and let d be the degree of their dependence. If ep(d + 1) ≤ 1 then
Pr[A1A2 · · ·An] > 0.
As in the original proof of Erdős and Lovász, we will prove the lemma

under the slightly stronger condition 4pd ≤ 1, and later show that the lemma
remains true under weaker condition ep(d+ 1) ≤ 1, as well.
In the proof we will use two properties of the conditional probability which

follow fairly easily from its definition as Pr [A |B ] = Pr [AB] /Pr [B]:

Pr [A |BC ] = Pr [AB |C ]
Pr [B |C ] (19.1)

and
Pr [A |BC ] · Pr [B |C ] · Pr [C] = Pr [ABC] . (19.2)

Proof (Spencer 1995). Fix a dependency graph G of our events of degree d.
We prove by induction on m that for any m events (calling them A1, . . . , Am
for convenience only)

Pr[A1 |A2 · · ·Am] ≤ 2p.
For m = 1 this is obvious. Let 2, . . . , k be the vertices from {2, . . . ,m} which
are adjacent to 1 in the dependency graph G. Using the identity (19.1), we
can write

Pr[A1 |A2 · · ·Am] = Pr[A1A2 · · ·Ak |Ak+1 · · ·Am]
Pr[A2 · · ·Ak |Ak+1 · · ·Am]

. (19.3)

We bound the numerator

Pr[A1A2 · · ·Ak |Ak+1 · · ·Am] ≤ Pr[A1 |Ak+1 · · ·Am]
= Pr [A1] ≤ p

since A1 is mutually independent of Ak+1, . . . , Am. The denominator, on the
other hand, can be bounded by the induction hypothesis
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19.1 The Lovász Local Lemma

Pr[A2 · · ·Ak |Ak+1 · · ·Am] = 1− Pr[A2 ∪ · · · ∪ Ak |Ak+1 · · ·Am]

≥ 1−
k∑
i=2
Pr[Ai |Ak+1 · · ·Am]

≥ 1− 2p(k − 1) ≥ 1/2,

because k − 1 ≤ d and 2pd ≤ 1/2. Thus

Pr[A1 |A2 · · ·Am] ≤ p/(1/2) = 2p,

completing the induction. Finally, by (19.2),

Pr[A1 · · ·An] =
n∏
i=1
Pr[Ai |A1 · · ·Ai−1] ≥ (1− 2p)n > 0.

��
When the events Ai are not symmetric (i.e., when their probabilities might

be very different) a more general form of the Lovász sieve is appropriate. This
generalization is due to Spencer (1977).

Lemma 19.2. Let G = (V,E) be a dependency graph of events A1, . . . , An.
Suppose there exist real numbers x1, . . . , xn, 0 ≤ xi < 1, so that, for all i,

Pr[Ai] ≤ xi ·
∏

{i,j}∈E
(1 − xj).

Then

Pr[A1A2 · · ·An] ≥
n∏
i=1
(1 − xi).

In particular, with positive probability no event Ai holds.

Proof. The induction hypothesis of the earlier proof is replaced by

Pr[A1 |A2 · · ·Am] ≤ x1,

and, using the same identity (19.1), the denominator of (19.3) is set equal to

k∏
j=2
Pr[Aj |Aj+1 · · ·Am],

which by the induction hypothesis, is at least

k∏
j=2
(1 − xj) =

∏
{1,j}∈E

(1 − xj) . ��
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19 The Lovász Sieve

That, in the symmetric case, Lemma 19.1 holds with condition 4pd ≤ 1
replaced by ep(d+1) ≤ 1 follows from Lemma 19.2 by taking all xi = 1/(d+1)
and observing that

xi(1− xi)d =
1

d+ 1

(
1− 1

d+ 1

)d
>
1

d+ 1 · 1e ≥ p ,

by assumption of Lemma 19.1 and the fact that (1− 1/(d+1))d > 1/e. This
last fact is equivalent to 1 + 1/d < e1/d, and holds because the Taylor series
of e1/d is (see (1.2)):

e1/d = 1 + 1
d
+ 12!

(
1
d

)2
+ 13!

(
1
d

)3
+ · · · .

The Lovász sieve works well when we have “much independence” between
the events. In a similar vein, there is also an estimate, due to Razborov (1988),
which works well if the events are “almost k-wise independent.”
Let A1, . . . , An be events, each of which appears with the same probability

Pr [Ai] = p. If all these events are mutually independent, then

Pr
[ n⋃
i=1

Ai

]
= 1− Pr

[ n⋂
i=1

Ai

]
= 1− (1− p)n ≥ 1− e−pn .

The mutual independence is a very strong requirement. It turns out that a
reasonable estimate can be obtained also in the case when Pr

[⋂
i∈I Ai

]
is

only “near” to p|I| for the sets I of size up to some number k; in this case
the events A1, . . . , An are also called almost k-wise independent.
Lemma 19.3 (Razborov 1988). Let n > 2k be any natural numbers, let
0 < p, δ < 1, and let A1, . . . , An be events such that, for every subset
I ⊆ {1, . . . , n} of size at most k,∣∣∣∣Pr

[⋂
i∈I

Ai

]
− p|I|

∣∣∣∣ ≤ δ.

Then

Pr
[ n⋃
i=1

Ai

]
≥ 1− e−pn −

(
n

k + 1

)
(δk + pk).

Note that if the events are k-wise independent, then δ = 0 and the ob-
tained estimate worse by an additive term

(
n
k+1

)
pk than that for mutual

independence.

Proof. Let us first consider the case where k is even. Let B1, . . . , Bn be in-
dependent events, each having the success probability p. Applying the Bon-
ferroni inequalities to Pr [

⋃n
i=1 Ai] and Pr [

⋃n
i=1 Bi] (see Exercise 1.37), we

obtain that
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19.2 Disjoint cycles

Pr
[ n⋃
i=1

Ai

]
≥

k∑
ν=1
(−1)ν+1

∑
|I|=ν

Pr
[⋂
i∈I

Ai

]
(19.4)

and

Pr
[ n⋃
i=1

Bi

]
≤

k∑
ν=1
(−1)ν+1

∑
|I|=ν

p|I| +
∑

|I|=k+1

pk+1. (19.5)

The assumption of the lemma that A1, . . . , An are almost k-wise independent
implies that the right-hand side in (19.4) is at least

k∑
ν=1
(−1)ν+1

∑
|I|=ν

p|I| − δk

(
n

k

)
. (19.6)

On the other hand, the independence of B1, . . . , Bn implies that

Pr
[ n⋃
i=1

Bi

]
= 1− (1 − p)n ≥ 1− e−pn. (19.7)

Combining (19.4), (19.5), (19.6) and (19.7) yields

Pr
[ n⋃
i=1

Ai

]
≥ 1− e−pn − δk

(
n

k

)
− pk+1

(
n

k + 1

)

≥ 1− e−pn −
(

n

k + 1

)
(δk + pk+1).

In the case where k is odd, we use the above argument with k−1 substituted
for k. ��

19.2 Disjoint cycles

By a digraph we will mean a directed graph without parallel edges. Such a
graph is k-regular if every vertex has exactly k outgoing edges.

Theorem 19.4. Every k-regular digraph has a collection of 
k/(3 lnk)� vertex-
disjoint cycles.

Proof. Let G = (V,E) be a k-regular digraph. Set r := 
k/(3 lnk)�, and color
the vertices uniformly at random using colors {1, . . . , r}. That is, each vertex
v gets a particular color independently and with the same probability 1/r.
Let Av be the event that v does not have any out-neighbor of the same color
as v. (An out-neighbor of v is the second endpoint of an edge leaving v.) We
need only to show that Pr[∩v∈V Av] > 0.
Since each vertex has k out-neighbors, we have that
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19 The Lovász Sieve

Pr[Av] =
(
1− 1

r

)k
< e−k/r ≤ e−3 ln k = k−3 .

For a vertex v, let N(v) be the set consisting of v and all its k out-neighbors.
Then Av is mutually independent of the events in {Au : N(u) ∩ N(v) = ∅}.
Since this set contains at most (k + 1)2 events, the degree of dependence of
the events Av is d ≤ (k + 1)2. Hence, to apply the Lovász Local Lemma we
only need that 4k−3(k + 1)2 ≤ 1, which is true for k ≥ 6. For k < 6 the
theorem is trivially true since then r = 1. ��
Alon, McDiarmid and Molloy (1996) proved that, in fact, Ω(k2) vertex-

disjoint cycles exist and conjectured that at least
(
k+1

2
)
cycles should exist.

19.3 Colorings

A striking feature of the Lovász sieve is the lack of conditions on the total
number n of events – only the degree of their dependence is important. This
is particularly useful when dealing with large families whose members share
not too many points in common. Let us demonstrate this with several typical
examples.
First, let us consider 2-colorings of hypergraphs. Recall that a family of

sets F is 2-colorable if it is possible to color the points of the underlying
set in red and blue, so that no member of F is monochromatic. A family is
k-uniform if all its members have size k.
In Chap. 2 (see Theorem 3.4) we proved that if the family F is relatively

small then it is 2-colorable: Every k-uniform family of fewer than 2k−1 sets
is 2-colorable.
Let us recall the argument. Suppose F is a k-uniform family with at most

2k−1 − 1 sets. Consider a random coloring, each element independently col-
ored red or blue with probability 1/2. Any one member of F will then be
monochromatic with probability 2 · 2−k = 21−k, and so the probability that
some member will be monochromatic, does not exceed |F| · 21−k, which is
strictly smaller than 1. Therefore, at least one coloring must leave no member
of F monochromatic.
Now suppose that F has more than 2k members. Then the above random

coloring will be doomed since the chances of it to be a proper 2-coloring will
tend to zero. Fortunately, we do not require a high probability of success, just
a positive probability of success. For example, if F is a family of m mutually
disjoint k-element subsets of some set, then the events Ai=“the i-th member
of F is monochromatic” are mutually independent, and so the probability that
none of them holds is exactly

(
1− 2−(k−1))m, which is positive no matter how

large m is. Therefore, F is 2-colorable.

284



19.3 Colorings

Of course for general families F , the eventsA1, . . . , Am are not independent
as some pairs of members may intersect. In such situations the Lovász sieve
shows its surprising power.

Theorem 19.5 (Erdős–Lovász 1975). If every member of a k-uniform family
intersects at most 2k−3 other members, then the family is 2-colorable.

Proof. Suppose F = {S1, . . . , Sm} is a family of k-element subsets of some set
X . Consider a random coloring of X , each point independently colored red or
blue with probability 1/2. Let Ai denote the event that Si is monochromatic.
Then Pr[Ai] = p where p = 2(1/2)|Si| = 21−k. Our goal is to show that
Pr[A1 · · ·Am] > 0. Define a dependency graph by joining Ai and Aj if and
only if Si∩Sj �= ∅. By the assumption, this graph has degree at most d = 2k−3.
Since 4dp = d23−k ≤ 1, Lemma 19.1 yields the result. ��
In the general (not necessarily uniform) case we have the following.

Theorem 19.6 (Beck 1980). Let F be a family of sets, each of which has at
least k (k ≥ 2) points. Also suppose that for each point v,

∑
S∈F :v∈S

(1− 1/k)−|S|2−|S|+1 ≤ 1
k
.

Then F is 2-colorable.

Proof. Let F = {S1, . . . , Sm} and (again) color the points with red and blue
at random, independently of each other and with probability 1/2. Let Ai
denote the event that Si is monochromatic; hence Pr[Ai] = 2−|Si|+1. Consider
the same dependency graph G = (V,E) as above: {i, j} ∈ E if and only if
Si∩Sj �= ∅. We shall prove that the condition of Lemma 19.2 is satisfied with

xi := (1− 1/k)−|Si| 2−|Si|+1.

Indeed, by the definition of the graph G, for every i = 1, . . . ,m we have

xi
∏

{i,j}∈E
(1− xj) ≥ xi

∏
v∈Si

∏
j:v∈Sj

(1− xj)

≥ xi
∏
v∈Si

[
1−

∑
j:v∈Sj

xj

]
≥ xi(1− 1/k)|Si|,

since, by the condition of the theorem,
∑

j:v∈Sj xj ≤ 1/k. Thus,

xi
∏

{i,j}∈E
(1 − xj) ≥ xi (1− 1/k)|Si| = 2−|Si|+1 = Pr[Ai].

By the application of Lemma 19.2 we obtain Pr[A1A2 · · ·An] > 0, i.e., there
is a 2-coloring in which no set of F is monochromatic. ��
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19 The Lovász Sieve

Later, Beck (1991) was even able to design an efficient randomized algo-
rithm finding a desired coloring. This was the first time when an algorithmic
version of the Lovász Local Lemma was found.
Let us now consider yet another coloring problem. Let F be a family of k-

element sets and suppose that no point appears in more than l of its members.
By induction on k, it can be shown (see Exercise 19.5) that then it is possible
to color the points in r = l(k−1)+1 colors so that no member of F contains
two points of the same color. On the other hand, if we have only r < k colors,
then every member of F will always have at least k/r points of the same
color. Is it possible, also in this case (when r < k) to find a coloring such
that no member has much more than k/r points of one color? The following
result says that, if k = l and if we have about k/ log k colors, then such a
coloring exists.

Theorem 19.7 (Füredi–Kahn 1986). Let k be sufficiently large. Let F be a
k-uniform family of sets and suppose that no point belongs to more than k
sets of F . Then it is possible to color the points in r = 
k/ log k� colors so
that every member of F has at most v = �2e log k� points of the same color.

In fact, Füredi and Kahn proved a stronger result, where v = 
4.5 log k�
and the members of F have size at most k. The argument then is the same
but requires more precise computations.

Proof. Color the points of X by r colors, each point getting a particular
color randomly and independently with probability 1/r. Let A(S, i) denote
the event that more than v points of S get color i. We are going to apply
Lemma 19.1 to these events. Events A(S, i) and A(S′, i′) can be dependent
only if S ∩ S′ �= ∅. So, we consider the following dependency graph G for
these events: the vertex set consists of the pairs (S, i) where S ∈ F and
1 ≤ i ≤ r, and two vertices (S, i) and (S′, i′) are joined by an edge if and only
if S ∩ S′ �= ∅.
Let d be the maximum degree of G. By the condition on our family F ,

every member can intersect at most k(k − 1) other members, implying that
d ≤ (1 + k(k − 1))r ≤ k3. By Lemma 19.1, it remains to show that each of
the events A(S, i) can happen with probability at most 1/(4k3).
Since |S| = k, the probability that only the points of a subset I ⊆ S get

color i, is (1/r)|I|(1 − 1/r)k−|I|. Summing over all subsets I of S, then the
event A(S, i) happens with probability at most

∑
t>v

(
k

t

)(
1
r

)t(
1− 1

r

)k−t
≤

(
k

v

)(
1
r

)v
<

(
ek
vr

)v
≤ 2−v < k−4.

By Lemma 19.1, with positive probability, none of the events A(S, i) will
happen, and the desired coloring exists. ��
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19.4 The k-SAT problem

19.4 The k-SAT problem

Let x1, . . . , xn be boolean variables. A literal is a boolean variable xi or its
negation xi. A k-CNF formula (conjunctive normal form) is an And of clauses,
each being an Or of k literals. Such a CNF formula ϕ is satisfiable if these
exists a truth assignment a ∈ {0, 1}n for which ϕ(a) = 1.
The k-SAT problem is, given a k-CNF, to decide whether it is satisfiable or

not; here k ≥ 3 is assumed to be a fixed constant. Of course, this question can
always be solved in 2n trials: just test all 2n possible assignments one by one.
This dummy strategy will, however, take a huge amount of time on formulas
with, say, n = 100 variables. Are there any quicker algorithms working, say
in time nc for some constant c? To show that no such algorithm exists is one
of the central problems (if not the central) of the whole of computer science,
and is known under the name “P vs. NP problem.”
On the other hand, the Lovász Local Lemma gives us a tool to quickly

recognize some satisfiable CNFs by just looking at their structure!
We say that two clauses overlap if they have a common variable xi, regard-

less of whether the variable is negated or not in the clauses. In this case we
also say that the clauses share the variable xi.

Lemma 19.8. Let ϕ be a k-CNF formula. If each of its clauses overlaps with
at most 2k−2 clauses, then ϕ is satisfiable.

Note that the total number n of variables is irrelevant here!

Proof. Consider a random experiment where the variables in ϕ are assigned
truth values by independent tosses of a fair coin. Let Ai be the event that
the i-th clause of ϕ is not satisfied. For this event to happen, all k literals
in Ci must receive a “wrong” value. Hence, p = Pr[Ai] = 2−k. Further, each
Ai is mutually independent of the set of all Aj such that the i-th clause Ci
and the j-th clause Cj of ϕ do not overlap. Hence, the dependency graph of
the events Ai has degree d ≤ 2k/4. Since 4dp ≤ 42k−22−k = 1, Lemma 19.1
applies and ϕ will be satisfied with non-zero probability. ��
This lemma is “non-constructive:” it gives no clue on how to find a satis-

fying assignment in a reasonable (polynomial) time.
Beck (1991) achieved a breakthrough by proving that a polynomial-time

algorithm exists which finds a satisfying assignment to every k-CNF formula
in which each clause has a neighbourhood of at most 2k/48 other clauses.
His approach was deterministic and used the nonconstructive version of the
Lovász Local Lemma as a key ingredient, basically proving that even after
truncating clauses to a 48th of their size (a step used to simplify the formula
and make it fall apart into small components), a solution remains guaranteed
and can then be looked for by exhaustive enumeration. Alon (1991) simplified
Beck’s algorithm and analysis by introducing randomness and presented an
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19 The Lovász Sieve

algorithm that works up to neighbourhoods of 2k/8 in size. Czumaj and Schei-
deler (2000) later demonstrated that a variant of the method can be made to
work for the non-uniform case where clause sizes vary. Srinivasan (2008) im-
proved the bound of what was polynomial-time feasible to essentially 2k/4 by
a more accurate analysis. Finally, Moser (2009) published a polynomial-time
algorithm that can cope with neighbourhood size up to 2k−5 neighbours,
which is asymptotically optimal with a constant gap. Recently, Moser and
Tardos (2010) gave a randomized algorithm for the general (non-symmetric)
version of the Lovász Local Lemma.

Theorem 19.9 (Moser 2009). There is a constant c such that, given a k-CNF
formula ϕ with m clauses, none of which overlaps with more than r = 2k−c
other clauses, one can find a satisfying assignment for ϕ in expected time
polynomial in m.

We are not going to prove this theorem in full detail. We rather give a
coarse, intuitive and convincing argument that this “must” hold.
Moser’s algorithm Solve(ϕ) is a randomized algorithm consisting of recur-

sive calls of (also recursive) procedures Fix(C) for clauses C of ϕ: Pick a
random assignment a ∈ {0, 1}n; while there is an unsatisfied clause C, call
Fix(C). The procedure Fix(C) itself is the following recursive procedure:

Step 1: Replace the variables of C with new random values.
Step 2: While there is a clause D that shares a variable with C that is not
satisfied, call Fix(D).

First, observe that, if Fix(C) terminates, then every clause A that was
satisfied before Fix(C) is called will remain satisfied after Fix(C) is called.
This holds because each flipping of the variables in a clause C can only affect
the values of clauses that share a common variable with C. So, if the value
of A is turned from true to false at some moment of the execution of Fix(C),
then Fix(A) is called.
By this observation, Solve makes at most m calls to Fix, if Fix(C) always

terminates. So we need to show all the Fix(C) terminate. Suppose the al-
gorithm makes at least s Fix calls including all the recursive ones. We will
show that s is bounded by O(m logm), and thus the algorithm terminates in
almost linear expected time.
This can be proved (at least at an intuitive level) by Kolmogorov com-

plexity arguments. An extensive account concerning these arguments can be
found in the book by Li and Vitányi (2008). Here we just describe this argu-
ment on an informal level.
The Kolmogorov complexity,K(x), of a string x is the length of the string’s

shortest description in some fixed universal description language. Such a de-
scription language can be based on any programming language. If P is a
program which outputs a string x, then P is a description of x. The length of
the description is just the length of P as a character string. In determining
the length of P , the lengths of any subroutines used in P must be accounted
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19.4 The k-SAT problem

for. The length of any integer constant n which occurs in the program P is the
number of bits required to represent n, that is (roughly) log2 n. For example,
a huge string x = 010101 · · ·01 with 01 repeated 2100 times can be described
as a program “repeat 01 2100 times”, whose length (after binary encoding)
is only about 100 bits. In general, any string containing some repeating pat-
terns has small Kolmogorov complexity. On the other hand, random strings
are “resistant” against compression, and hence, have large Kolmogorov com-
plexity.
It is straightforward to compute upper bounds for K(x): simply compress

the string x with some method, implement the corresponding decompresser in
the chosen language, concatenate the decompresser to the compressed string,
and measure the resulting string’s length.
A string x is compressible by a number c if it has a description whose

length does not exceed |x| − c, that is, if K(x) ≤ |x| − c, where |x| is the
length of (number of symbols in) x. Otherwise x is incompressible by c. A
string incompressible by 1 is said to be simply incompressible or Kolmogorov
random; by the pigeonhole principle, incompressible strings must exist, since
there are 2n bit strings of length n but only 2n − 1 shorter strings, that is
strings of length n− 1 or less.
For the same reason, "most" strings are complex in the sense that they

cannot be significantly compressed: K(x) is not much smaller than |x|, the
length of x in bits. To make this precise, fix a value of n. There are 2n
binary strings of length n. Let x be a string chosen uniformly at random with
probability 2−n. It is easy to show that the probability that x is compressible
by c is negligible: it is 2−c+1 − 2−n. To see this, it is enough to observe that
the number of descriptions of length not exceeding n − c is given by the
geometric series: 1 + 2 + 22 + · · ·+ 2n−c = 2n−c+1 − 1, and there remain at
least 2n − 2n−c+1+1 binary strings of length n that are incompressible by c.
Now, the so-called incompressibility argument works as follows: In order

to show that some condition holds, assume it does not hold and use this
assumption to show that then some Kolmogorov random string x would have
a description much shorter than K(x).
After this short excursion into Kolmogorov complexity, let us return to

Moser’s algorithm. Fix a Kolmogorov random string x of length n+sk (where
n is the total number of variables) and assume the algorithm uses the first
n bits as the initial assignment a, and k bits each to replace the variables in
each Fix call. (If we choose the string x randomly then it will be Kolmogorov
random with high probability.) The random string x is used in Step 1 of
Fix(C) to replace the values of variables in C by “fresh” random values, and
each time next k bits of x are used.
If we know which clause is being fixed, we know the clause is violated so

we know all the bits of this clause and thus we learn k bits of x (recall that
assignments used by an algorithm are from the string x). We then replace
those bits with another part of x.
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19 The Lovász Sieve

So we can describe x by the list of clauses we fix plus the remaining n
bits of the final assignment. We can describe each clause C such that Fix(C)
is called by Solve using O(m logm) bits. The remaining fixed clauses can
be described by log2 r + α bits (for a constant α) because either it is one
of r clauses that intersects the previous clause or we indicate the end of a
recursive call (keeping track of the recursion stack). This is exactly the place
where the compression comes: Since the clause was not satisfied, we reveal k
bits of information about the string x, but since r ≤ 2k−c, we can describe
this information using only k − c bits. Since the string x was Kolmogorov
random, we must have

O(m logm) + s(log r + α) + n ≥ n+ sk

or s(k− log r−α) ≤ O(m logm). Now, if r ≤ 2k−c for c > α, then k− log r−α
is a positive constant (not exceeding k, which is also a constant), implying
that s = O(m logm).

Exercises

19.1. Let A1, . . . , An be events, and suppose that each of them is mutually
independent of all the other events except for at most d of them. Let 0 < ε < 1,
and assume that

Pr[Ai] ≤ ε

n

(
1− ε

n

)d
for all i = 1, . . . , n Prove that then Pr[∩iAi] ≥ 1− ε.

19.2. Let F be a k-uniform k-regular family, i.e., each set has k points and
each point belongs to k sets. Let k ≥ 10. Show that then at least one 2-
coloring of points leaves no set of F monochromatic.
19.3. The van der Waerden number W (2, k) is the least number n such that
any coloring of {1, 2, . . . , n} in two colors gives a monochromatic arithmetic
progression with k terms. Prove that W (2, k) > 2k/(2ek). Hint: Assume that
n ≤ 2k/(2ek) and observe that one progression with k terms intersects at most nk
others.

19.4. (Erdős–Lovász 1975). Consider the colorings of real numbers in r colors.
Say that a set of numbers is multicolored if it contains elements of all r colors.
Fix a finite set X of real numbers, and let m be such that

4rm(m − 1)
(
1− 1

r

)m
< 1.

Using Lemma 19.1 prove that then, for any set S of m numbers there is an
r-coloring under which every translate x+S := {x+y : y ∈ S}, with x ∈ X ,
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is multicolored. Hint: Take a random r-coloring Y =
⋃
x∈X (x + S) which, for every

point y ∈ Y , takes a particular color randomly and independently with probability 1/r.
Consider events Ax saying that x + S is not multicolored, and show that Pr[Ax] ≤
r
(
1− 1

r

)m. Also observe that for each point x there are at most m(m− 1) other points
x′ for which (x+ S) ∩ (x′ + S) �= ∅.

19.5. (Füredi–Kahn 1986). Let F be a family of rank a, i.e., each member has
at most a points, and suppose that no point belongs to more than b members
of F . Prove that then it is possible to color the points in r = (a − 1)b + 1
colors so that every member of F is differently colored, i.e., no member of
F has two points of the same color. Hint: By induction on a. The case a = 2 is
Exercise 4.27. For the induction step, select a sequence of points V = {x1, x2, . . . , xm}
by the following rule: at the i-th step take a set F ∈ F disjoint from {x1, . . . , xi−1}, and
let xi be an arbitrary point in this set. If we delete the points V from all members of
F , we obtain a family F ′ of rank at most a − 1. By the induction hypothesis, F ′ can
be differently colored using only (a− 2)b + 1 colors. So, it remains to color the deleted
points. For this, consider the graph G = (V, E) where two points are joined by an edge
iff both these points belong to the same member of F . Show that Δ(G) ≤ b − 1 and
apply Exercise 4.27.
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20. The Deletion Method

As described in previous sections, the basic probabilistic method works as
follows: trying to prove that an object with certain properties exists, one
defines an appropriate probability space of objects and then shows that the
desired properties hold in this space with positive probability. In this section,
we consider situations where the “random” object does not have all the de-
sired properties but may have a few “blemishes.” With a small alteration, we
remove the blemishes, giving the desired structure.

20.1 Edge clique covering

An edge clique covering of a graph G is a family of complete subgraphs of G
such that every edge of G is an edge of at least one member of the family.
The minimum cardinality of such a family is the edge clique covering number
of G, denoted by cc(G).
The following general upper bound on this number was proved by Alon

(1986b). A non-neighbor of a vertex v in a given graph is a vertex u �= v
which is non-adjacent to v.

Theorem 20.1 (Alon 1986b). Let G be a graph on n vertices such that every
vertex has at least one neighbor and at most d non-neighbors. Then

cc(G) = O(d2 lnn) .

As often happpens in probabilistic proofs, the following estimates turn
out to be very useful (see inequalities (1.4) and (1.4) in Chap. 1.5): For every
t > 0, 1 + t < et and 1− t > e−t−t2/2.

Proof. Consider the following procedure for choosing a complete subgraph of
G = (V,E). In the first phase, pick every vertex v ∈ V independently, with
probability p = 1/(d+ 1), to get a set W . In the second phase remove from
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20 The Deletion Method

W all vertices having at least one non-neighbor in W . Clearly, the resulting
set is the set of vertices of a complete subgraph of G.
Now apply the above procedure, independently, t times to get t complete

subgraphs K1, . . . ,Kt of G; here, t is a parameter to be specified soon. Let us
estimate the expected value of the number of edges of G that are not covered
by the union of the Ki’s. Let uw be an edge of G, and fix an i, 1 ≤ i ≤ t.
Note that the edge uw is covered by Ki, if both its endpoints u and w and
none of their ≤ 2d non-neighbors were chosen in the first phase. Hence

Pr [Ki covers uw] ≥ p2(1 − p)2d = 1
(d+ 1)2

(
1− 1

d+ 1

)2d
≥ 1
e2(d+ 1)2 .

By the union bound,

Pr [none of the Ki’s covers uw] ≤
(
1− 1
e2(d+ 1)2

)t
≤ exp(−t/e2(d+ 1)2) .

By the linearity of expectation, the expected number of non-covered edges is
at most (

n

2

)
· exp(−t/e2(d+ 1)2) .

By taking t := �cd2 log2 n� for a sufficiently large (absolute) constant c, this
expectation can be made < 1. Hence, by the pigeonhole principle of expec-
tation, there is at least one choice of t complete subgraphs of G that form a
clique covering of G and cc(G) ≤ t, as needed. �	

20.2 Independent sets

Here is a short argument that gives roughly half of Turán’s celebrated theo-
rem. A set of vertices in a graph is independent if no two vertices from this
set are joined by an edge; the independence number α(G) is the maximum
number of vertices in G with no edges between them. Turán’s theorem states:
if G has n vertices and nk/2 edges, then α(G) ≥ n/(k + 1). We can get
“halfway” to this result with the deletion method.

Theorem 20.2. If a graph G = (V,E) has n vertices and nk/2 edges, then
α(G) ≥ n/2k.

Proof (Spencer 1987). Form a random subset S ⊆ V of vertices by including
each vertex independently with probability p. That is, we take a coin which
comes up heads with probability p and flip it for each x ∈ V to see if x is
“chosen” to be in S. Let X denote the number of vertices in S, and let Y
denote the number of edges of G, both ends of which lie in S. For each edge
e ∈ E, let Ye be the indicator random variable for the event e ⊆ S. Then for
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20.3 Coloring large-girth graphs

each edge e ∈ E, E[Ye] = p2 as two vertices must be chosen for e to be inside
S. So, by linearity of expectation,

E[Y ] =
∑
e∈E
E[Ye] =

nk

2 p
2.

Clearly, E[X ] = np, so, again by linearity of expectation,

E[X − Y ] = np − nk

2 p
2.

We choose p = 1/k to maximize this quantity, giving

E[X − Y ] = n

k
− n

2k =
n

2k .

Thus, there exists at least one point in the probability space for which the
difference X − Y is at least n/2k. That is, there is a set S which has at
least n/2k more vertices than edges. Delete one vertex from each edge from
S leaving a set S′. This set S′ is independent and has at least n/2k vertices.

�	

20.3 Coloring large-girth graphs

A cycle of length k in a graphG = (V,E) is a sequence of vertices v1, v2, . . . , vk
such that: v1 = vk, vi �= vj for all 1 < i < j ≤ k, and all the edges {vi, vi+1}
belong to E. The girth g(G) of a graph is the length of the shortest cycle
in G. Recall also that the chromatic number χ(G) is the minimal number of
colors which we need to color the vertices of G so that no two vertices of the
same color are joined by the edge.
A striking example of the deletion method is the proof that for fixed k

and l, there are graphs with girth at least l and chromatic number at least k.
This result was proved by Erdős, and is highly unintuitive. If the girth is large
there is no simple reason why the graph could not be colored with a few colors:
locally it is easy to color such a graph with three colors. Thus, we can force
the chromatic number only by some global considerations and the deletion
method helps in doing this. The proof we present here is a simplification of
the Erdős proof, due to Alon and Spencer (1992).

Theorem 20.3 (Erdős 1959). For all k, l there exists a finite graph G with
χ(G) ≥ k and g(G) ≥ l.

Since every color class must be an independent set, we have an obvious
relation: χ(G) ≥ n/α(G). So, instead of showing that χ(G) ≥ k it is sufficient
to show that α(G) ≤ n/k. We will use this simple trick in the proof below.
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Proof (Alon–Spencer 1992). Fix θ < 1/l. Let n be large enough and let G be
a random graph on n vertices, where each pair of nodes is joined by an edge
with independent probability p = nθ−1. Let X be the number of cycles in
G of length at most l. How many cycles v1, v2, . . . , vi, v1 of length i can our
graph have?
There are (n)i = n(n− 1) · · · (n− i+1) sequences v1, v2, . . . , vi of distinct

vertices, and each cycle is identified by 2i of those sequences: there are two
possibilities to choose the “direction” and i possibilities to choose the first
vertex of the cycle. Thus, for 3 ≤ i ≤ t there are (n)i/2i ≤ ni/2i potential
cycles of length i, each of which is in G with probability pi. By the linearity
of the expectation

E [X ] =
l∑

i=3

(n)i
2i p

i ≤
l∑

i=3

nθi

2i = o(n)

as θl < 1. By Markov’s inequality,

Pr [X ≥ n/2] ≤ 2E [X ]
n

= o(1).

Set x := � 3
p lnn�, so that

Pr [α(G) ≥ x] ≤
(
n

x

)
(1− p)(

x
2) <

[
ne−p(x−1)/2

]x
= o(1).

Let n be sufficiently large so that both these events have probability less than
1/2. Then there is a specific G with less than n/2 “short” cycles, i.e., cycles
of length less than l, and with α(G) < x ≤ 3n1−θ lnn. Remove from G a
vertex from each short cycle. This gives a graph G′ which has no short cycles
and still has at least n/2 vertices. Hence, G′ has girth greater than l and
α(G′) ≤ α(G) (since α(G) cannot grow when we delete vertices). Thus

χ(G′) ≥ |G′|
α(G′) ≥ n/2

3n1−θ lnn =
nθ

6 lnn.

To complete the proof, it remains to take n sufficiently large so that this is
greater than k. �	

20.4 Point sets without obtuse triangles

Around 1950, Erdős conjectured that every set of more than 2n points in R
n

determines at least one obtuse angle, that is, an angle that is strictly greater
than π/2. In other words, any set of points in R

n which only has acute angles
(including right angles) has size at most 2n.
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20.4 Point sets without obtuse triangles

In 1962, Danzer and Grünbaum proved this conjecture. They also con-
structed configurations of 2n − 1 points in R

n with only acute angles, and
conjectured that this may be best possible. But 21 years later, Erdős and
Füredi – using a probabilistic argument – disproved this conjecture. It turns
out that, if the dimension n is high, the bound 2n− 1 is not even near to the
truth.

Theorem 20.4 (Erdős–Füredi 1983). For every n ≥ 1 there is a set of at
least m = � 1

2 (
2√
3 )
n� points in the n-dimensional Euclidean space R

n, such
that all angles determined by three points from the set are strictly less than
π/2.

The theorem is an easy consequence of the following lemma.

Lemma 20.5. For every n ≥ 1 there is a family F of m = � 1
2 (

2√
3 )
n� subsets

of {1, . . . , n}, such that there are no three distinct members A,B,C of F
satisfying

A ∩ B ⊆ C ⊆ A ∪ B. (20.1)
Proof of Lemma 20.5. Let A be a random subset of {1, . . . , n}, where each
element appears randomly and independently with probability 1/2. Let A
be a family of 2m independent copies of A. For a triple A,B,C of sets
in A, what is the probability that they satisfy the condition (20.1)? This
condition just means that for each i = 1, . . . , n, neither i ∈ A∩B, i �∈ C nor
i �∈ A ∪ B, i ∈ C hold. For each i, each of these two events happens with
probability (1/2)3 = 1/8. Therefore, the sets A,B,C satisfy the condition
(20.1) with probability (1 − 2/8)n = (3/4)n. Since there are 3(2m

3
)
possible

triplesA,B,C (there are 3 possibilities to chooseC in a triple), the expected
number of triples that satisfy (20.1) is

3
(
2m
3

)
(3/4)n = m(2m− 1)(2m− 2)(3/4)n < m(2m)2(3/4)n ≤ m,

where the last inequality follows from the choice of m.
Thus, there is a choice of a family A of 2m subsets of {1, . . . , n} in which

the number of triples A,B,C satisfying (20.1) is at most m. By deleting one
set from each such triple we obtain a family F of at least 2m−m = m subsets
satisfying the assertion of the lemma. Notice that the members of F are all
distinct since (20.1) is trivially satisfied if A = C. This completes the proof
of the lemma. �	
Proof of Theorem 20.4. We select the points of a set X in R

n from the points
of the n-dimensional cube {0, 1}n. We view the vertices of the cube, which
are 0-1 vectors of length n, as the incidence vectors of subsets of an n-element
set.
It is easy to verify that the three points a, b and c of the n-cube, corre-

sponding to the sets A,B and C, respectively, determine a right angle at c if
and only if (20.1) holds.
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20 The Deletion Method

Indeed, the angle θ at c is the angle between the vectors u = a − c and
v = b − c. This angle can be computed from

cos θ = 〈u, v〉
‖u‖ · ‖v‖ ,

where 〈u, v〉 = ∑n
i=1 uivi is the scalar product and ‖u‖ = (∑n

i=1 u
2
i

)1/2 is
the norm of u. Since a, b and c are 0-1 vectors, the angle θ can be right if
and only if 〈u, v〉 = 0. This can happen if and only if (ai − ci)(bi − ci) = 0 for
all i = 1, . . . , n, which in its turn can happen if and only if for each i neither
ai = bi = 0, ci = 1 nor ai = bi = 1, ci = 0 hold. This is precisely the condition
(20.1), and the result follows immediately from Lemma 20.5. �	

20.5 Affine cubes of integers

A collection C of integers is called an affine d-cube if there exist d+1 positive
integers x0, x1, . . . , xd so that

C =
{
x0 +

∑
i∈I

xi : I ⊆ {1, 2, . . . , d}
}
.

Such a cube is replete if all the sums are distinct, i.e., if |C| = 2d. If an affine
cube is generated by x0, x1, . . . , xd then we write C = C(x0, x1, . . . , xd). For
example, C(1, 1, 1) = {1, 2, 3} is not replete, while C(1, 3, 9) = {1, 4, 10, 13}
is a replete affine 2-cube. Note also that C(x0, x1, . . . , xd) may be different
from, say, C(x1, x0, . . . , xd).
Typical extremal problems related to affine cubes are the following:

1. Partition problem: Given r and d, what is the smallest integer n = H(r, d)
such that, for any partition of {1, . . . , n} into r classes, at least one class
contains an affine d-cube?

2. Density problem: Given a set of integers A ⊆ {1, 2, . . .}, how large must A
be to contain an affine d-cube?

Concerning the first (partition) problem, the existence of H(r, d) for all r
and d was first proved by Hilbert (1892). This result was then strengthened by
van der Waerden (1927), whose celebrated theorem says that, for every r and
d there is an integer n = W (r, d) such that, for any partition of {1, . . . , n}
into r classes, at least one class contains an arithmetic progression with d
terms. We will prove this theorem in Chap. 26. Note that it implies Hilbert’s
result because any such progression a, a+ b, a+2b, . . . , a+(d− 1)b is also an
affine (d − 1)-cube C(a, b, b, . . . , b).
At present not much is known about the rate of growth of van der Waer-

den’s function W (r, d) except that it is primitive recursive (Shelah 1988). For
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20.5 Affine cubes of integers

small values of r and d we know better bounds. Using the counting sieve we
have proved that W (2, d) > 2d/2 (see Theorem 25.3). Behrend (1949) proved
a lower bound for the density of sets without arithmetic progressions of length
three: there are subsets A of [n] with |A| ≥ n ·2−O(

√
logn) and no length-three

arithmetic progressions (see Theorem 25.6).
If we consider affine cubes instead of arithmetic progressions then the

situation is better. In particular, the following bounds for Hilbert’s function
H(r, d) are known. Brown et al. (1985) have shown that there exist constants
ε > 0 and c > 0 such that rεd ≤ H(r, d) ≤ rc

d

, where c ∼ 2.6 follows
from Hilbert’s original proof. Quite recently, these bounds were improved by
Gunderson and Rödl (1998):

Theorem 20.6. For any integers d ≥ 3 and r ≥ 2,

r(1−ε)(2d−1)/d ≤ H(r, d) ≤ (2r)2d−1
, (20.2)

where ε → 0 as r → ∞.

The proof of the upper bound in (20.2) is based on the following density
result, known as Szemerédi’s cube lemma whose strengthened version, found
by Graham (1981) and Graham, Rothschild and Spencer (1990), is as follows
(see Sect. 25.2 for the proof).

Lemma 20.7. Let d ≥ 2 be given. Then, for every sufficiently large n, every
subset A of {1, . . . , n} of size |A| ≥ (4n)1−1/2d−1 contains an affine d-cube.

The proof of the lower bound in (20.2) is based on the following lemma,
whose proof gives one more illustration of the deletion method at work.

Lemma 20.8 (Gunderson–Rödl 1998). For each d ≥ 2 and every set X of
positive integers, there exists an A ⊆ X with

|A| ≥ 1
8 |X |1−d/(2d−1),

which does not contain any replete affine d-cubes.

Proof. Fix d ≥ 3, a set X , and let

p := |X |−d/(2d−1).

Without loss of generality, we can assume that X is large enough so that
1
8p|X | > 2d − 1, because if not, then any set A of at most 2d − 1 elements
would satisfy the lemma.
Let Y be a random subset of X whose elements are chosen independently

with probability p.
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Since any replete affine d-cube C = C(x0, x1, . . . , xd) is uniquely deter-
mined by d + 1 distinct integers x0, x0 + x1, . . . , x0 + xd in X , the expected
number of replete affine d-cubes in Y is bounded above by( |X |

d+ 1

)
· Pr [C ⊆ Y ] =

( |X |
d+ 1

)
· p2d .

Therefore (by Markov’s inequality), with probability at least 1/2, the number
of replete affine d-cubes in Y does not exceed

2
( |X |
d+ 1

)
p2d < 1

3 |X |p, (20.3)

because

2 ·
( |X |
d+ 1

)
· p2d < 2

(
e|X |
d+ 1

)d+1
· p2d

= 2
(
e

d+ 1

)d+1
|X |d+1 · |X |−d2d/(2d−1)

≤ 1
3 |X |1−d/(2d−1) = 1

3 |X |p.

On the other hand, the number |Y | of elements in a random subset Y of X
is a binomially distributed random variable with expectation |X |p. It can be
shown (see Exercise 20.2) that then

Pr [|Y | ≤ 1
2 |X |p] < 2

(
2
e

)|X|p/2
. (20.4)

Since p|X | > 8(2d − 1) and d ≥ 2, this implies that

Pr [|Y | ≥ � 1
2 |X |p�] > 12 . (20.5)

Hence, there must exist an instance Y ⊆ X of Y satisfying both above events;
fix such Y . Due to (20.3) and (20.5), this set has at least � 1

2 |X |p� elements
and contains fewer that 1

3 |X |p replete affine d-cubes. Deleting an element
from each of these cubes, we get a set A ⊆ Y with no replete affine d-cubes
such that

|A| > |Y | − 1
3 |X |p ≥ � 1

2 |X |p� − 1
3 |X |p > 1

3 |X |p,
where the last inequality follows from our assumption that |X |p is larger than
8(2d − 1) ≥ 24. �	
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Exercises

20.1. Prove the following analogon of Theorem 20.1 for bipartite graphs: If
a bipartite n × n graph has minimum degree n − d, then its edges can be
covered by at most O(d log n) complete bipartite subgraphs. Hint: Pick every
vertex on the left side independently, with probability p = 1/(d+ 1) to get a set S, and
let T be the set of all vertices on the right side joined to all vertices in S. Show that
O(d log n) such bipartite complete subgraphs S × T are enough to cover all edges.

20.2. Let Sn = X1 + · · · +Xn where Xi are independent random variables
with Pr [Xi = 1] = p and Pr [Xi = 0] = 1− p. Show that

Pr [Sn ≤ pn/2] < 2(2/e)pn/2.

Hint: Recall that Pr [Sn ≤ pn/2] = ∑
k≤pn/2

(
n
k

)
pk(1 − p)n−k; show that each term

in this sum is more than two times larger than the previous one, and hence,
Pr [Sn = pn/2 − k] < 2−kPr [Sn = pn/2], for k < pn/2. Sum up and use the estimate
for

(
n
pn

)
obtained in Exercise 1.16.

20.3. Show that every graph on n vertices has an independent set of size
at least n/(2d), where d is the average degree of its vertices. Hint: Combine
Theorem 20.2 with Euler’s theorem from Chap. 1.

20.4. (Gunderson–Rödl 1998). Prove that if a finite collection X of distinct
positive integers contains an affine d-cube then either X contains a replete
affine d-cube or an arithmetic progression of length 3 (or both). Hint: First, show
that if C = C(x0, x1, . . . , xd) ⊆ X is an affine d-cube, but is not replete (i.e., |C| < 2d)
then we can find two subsets I, J ⊂ [n] such that I �= J but

∑
i∈I\J xi =

∑
j∈J\I xj �= 0,

and consider the triple of integers

x0 +
∑
i∈I∩J

xi, x0 +
∑
i∈I

xi, x0 +
∑
i∈I∪J

xi.

20.5. (Zarankiewicz’s problem; Erdős–Spencer 1974). Let ka(n) be the mini-
mal k such that all n×n 0-1 matrices containing more than k ones contain an
a× a submatrix consisting entirely of ones (the “all-ones” submatrix). Prove
that for every constant a ≥ 2 there is an ε > 0 such that ka(n) ≥ εn2−2/a.
Hint: Argue as in the proof of Theorem 20.2. Take a random n× n 0-1 matrix A, each
entry of which takes value 1 independently and with probability p = n−2/a. Associate
with each a × a submatrix e of A the indicator random variable Ye for the event “e is
an all-ones submatrix.” Switch one entry of each such submatrix to 0 and argue that in
the resulting matrix we still can expect at least n2p −

(
n
a

)2
pa

2
ones. (A more accurate

choice of p leads to a somewhat better bound ka(n) ≥ εn2−2/(a+1).)

20.6. (Reiman 1958). Improve the above bound on ka(n) when a = 2: show
that k2(n) ≥ (1 − o(1))n3/2. Hint: Let n = p2 + p + 1 for a prime p, and consider
the incidence matrix of lines in a projective plane of order p (see Sect. 12.4).
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20 The Deletion Method

20.7. (Spencer 1990). Let F be an r-uniform family of subsets on an n-
element set. Supose that, in average, each element belongs to d members
of F . Prove that there exists a set S of elements such that S is independent
(i.e., contains no member of F) and has size |S| ≥ (1 − 1/r) · n · d−1/(r−1).
Hint: Argue as in the proof of Theorem 20.2 with p = d−1/(r−1).
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21. The Second Moment Method

The pigeonhole property of expectation says that a random variableX cannot
always be smaller (or always greater) than its expectation E [X ]. The second
moment property tells us more: if the variance of X is much smaller than
E [X ]2 then X is almost always near to E [X ], that is, the values of X are
concentrated around its expectation.

21.1 The method

Let X be a random variable and Var [X ] be its variance,

Var [X ] = E
[
(X − E [X ])2] = E [

X2] − E [X ]2 .

The second moment method uses the fact that, if Var [X ] = o(E [X ]2), then
X ∼ E [X ], i.e., X is almost always almost equal to its expectation E [X ].
This follows from Chebyshev’s inequality

Pr [|X − E [X ] | ≥ t] ≤ Var [X ]
t2

(21.1)

which itself is an easy consequence of Markov’s inequality (see Exercise 21.1).
In particular, setting t = E [X ] we arrive at

Pr [X = 0] ≤ Pr [X ≥ 0] ≤ Var [X ]
E [X ]2

. (21.2)

The following refined form of this inequality is often useful:

Pr [X = 0] ≤ Var [X ]E [X2] . (21.3)
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21 The Second Moment Method

To prove this inequality, let IX be the indicator random variable for the
event X �= 0. Using the Cauchy–Schwarz inequality (see Proposition 13.4)
we obtain

E [X ]2 = E [IX ·X ]2 ≤ E [IX ] E
[
X2] = Pr [X �= 0] · E [

X2] ,
or equivalently,

Pr [X = 0] = 1− Pr [X �= 0] ≤ 1− E [X ]
2

E [X2] =
Var [X ]
E [X2] .

If X = X1+ · · ·+Xn is a sum of random variables, then the variance can be
computed by the formula

Var [X ] =
n∑

i,j=1
Cov (Xi, Xj) =

n∑
i=1
Var [Xi] +

∑
i�=j
Cov (Xi, Xj) ,

where Cov (Xi, Xj) is the covariance and is defined as

Cov (Xi, Xj) := E [XiXj ]− E [Xi] · E [Xj ] .

In general, if Xi and Xj are independent, then E [XiXj] = E [Xi] · E [Xj ],
and hence, Cov (Xi, Xj) = 0. This often considerably simplifies the variance
calculations.
Let us mention that there are several forms of Chebyshev’s inequality –

the usual form (stated above), and the following, less standard form (see, for
example, Hardy, Littlewood and Pólya (1952), Theorem 43):

Proposition 21.1. Let a1, . . . , an be a non-decreasing sequence and b1, . . . , bn
be a non-increasing sequence of non-negative numbers. Then,

n∑
i=1

aibi ≤ 1
n

( n∑
i=1

ai

)( n∑
i=1

bi

)
.

21.2 Distinct sums

Let f(n) denote the maximal m such that there exists a set x1, . . . , xm of
m distinct numbers in [n] = {1, . . . , n} all of whose sums are distinct. An
example of such a set consists of all numbers of the form 2i with i ≤ log2 n;
this shows that f(n) ≥ 1+ �log2 n�. We now use the second moment method
to show that this lower bound is almost optimal: f(n) ≤ (1 + o(1)) log2 n.

Theorem 21.2. f(n) ≤ log2 n+ log2 log2 n+O(1).
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21.3 Prime factors

Proof. Let x1, . . . , xm be a subset of m = f(n) integers in [n] all of whose
sums are distinct. Let I1, . . . , Im be independent random variables, each tak-
ing values 0 and 1 with equal probability 1/2. Consider the random variable
X = I1x1 + · · ·+ Imxm. Then

E [X ] = x1 + · · ·+ xm
2 and Var [X ] = x2

1 + · · ·+ x2
m

4 ≤ n2m

4 .

Setting Y := X − E [X ] and using Chebyshev’s inequality with t :=
2
√
Var [X ] ≤ n

√
m, after reversing the inequality we obtain

Pr [|Y | ≤ t] ≥ 1− 14 = 0.75 .

On the other hand, due to the assumption that all sums of x1, . . . , xm are
distinct, the probability that X takes a particular value is either 0 or 2−m. In
particular, Pr [Y = s] ≤ 2−m for every integer s in the interval [−t, t]. Since
there are only 2t+ 1 such integers, the union bound implies that

Pr [|Y | ≤ t] ≤ 2−m(2t+ 1) .

Comparing the above inequalities and remembering that t ≤ n
√
m leads to

0.75 · 2m ≤ 2t+ 1 ≤ 2n√
m+ 1, it follows that 2m/

√
m ≤ Cn for a constant

C, and the desired upper bound on m = f(n) follows. 	


21.3 Prime factors

Number theory has its foundation in the Fundamental Theorem of Arithmetic,
which states that every integer x > 1 can be written uniquely in the form

x = pk1
1 pk2

2 · · · pkrr ,

where the pi’s are primes and the ki’s are positive integers. Given x, we
are interested in the number r of prime factors of x, that is, in the number
of distinct primes pi in such a representation of x. This number of primes
dividing x is usually denoted by ν(x).
An important result in number theory, due to Hardy and Ramanujan

(1917) states that almost every integer number between 1 and n has about
ln lnn prime factors. “Almost all” here means all but o(n) numbers.

Theorem 21.3. Let α = α(n) be an arbitrarily slowly growing function.
Then almost all integers x in [n] satisfy |ν(x) − ln lnn| ≤ α

√
ln lnn.

Proof (due to Turán 1934). Throughout this proof, let p, q denote prime num-
bers. We need two well known results from number theory, namely,
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21 The Second Moment Method∑
p≤x

1
p

≤ ln ln x+O(1) , (21.4)

π(x) = (1 + o(1)) x

ln x , (21.5)

where π(x) denotes the number of primes smaller than x.
We now choose x randomly from the set {1, . . . , n}. For prime p, let Xp

be the indicator random variable for the event that p divides x, and let
X =

∑
p≤xXp; hence, X = ν(x).

Since x can be chosen in n different ways, and in �n/p� cases it will be
divisible by p, we have that

E [Xp] =
�n/p�
n

≤ 1
p
,

and by (21.4) we also have

E [X ] ≤
∑
p≤x

1
p

≤ ln lnn+O(1) .

Now we bound the variance

Var [X ] =
∑
p≤x
Var [Xp] +

∑
p�=q≤n

Cov (XpXq) ≤ E [X ] +
∑

p�=q≤n
Cov (XpXq) ,

since Var [Xp] ≤ E [Xp]. Observe that XpXq = 1 if and only if both p and q
divide x, which further implies that pq divides x. In view of this we have

Cov (XpXq) = E [XpXq]− E [Xp] E [Xq] =
�n/(pq)�

n
− �n/p�

n
· �n/q�

n

≤ 1
pq

−
(1
p

− 1
n

)(1
q

− 1
n

)
≤ 1
n

(1
p
+ 1
q

)
.

Then by (21.5)

∑
p�=q≤n

Cov (XpXq) ≤ 2π(n)
n

∑
p≤n

1
p
= O

( ln lnn
lnn

)
→ 0 .

Applying Chebyshev’s inequality with t = α
√
ln lnn yields the desired result.
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21.4 Separators

21.4 Separators

In complexity theory we often face the following problem. We have a set of
players, each of whom can see some small portion of the input bits, and we
want to split the players into two groups so that for each group there is a
large set of “forbidden” bits which are seen by no member of that group. To
avoid trivial situations, we also assume that every bit is seen by at least one
player. This question can be formalized as follows.
Let F = {F1, . . . , Fm} be a family of subsets of some set X . By a separator

for F we will mean a pair (S, T ) of disjoint subsets of X such that each
member of F is disjoint from either S or from T ; the size of such a separator
is the minimum of |S| and |T |.
To approach the question raised at the beginning, interpret X as the set

of bits and let Fi be the set of bits seen by the i-th player. The problem is,
given F , to make the sets of “forbidden bits” S and T as large as possible.
Intuitively, if no bit is seen by too many players then these sets should be
large. Using the averaging principle for partitions (a prototype of Markov’s
inequality), we have shown in Exercise 2.8 that this is true if no bit is seen
by too many players. Using the second moment method, Beame, Saks, and
Thathachar (1998) have shown that we may relax this condition, and only
require that on average, no bit is seen by too many players.
The degree dx of a point x in F is the number of members of F that contain

x. The average degree of F is

d = 1
|X |

∑
x∈X

dx .

Theorem 21.4 (Beame–Saks–Thathachar 1998). Let F be a family of non-
empty sets of an n-element set, each containing at most r points. Let d be the
average degree of F . Then, F has a separator of size at least (1 − δ)2−dn,
where

δ =
√
dr2d+1

n
.

In particular, if 4rd2d+1 ≤ n, then F contains a separator of size at least
n/2d+1.

Proof. Let X =
⋃
F∈F F and n = |X |. Color each set F ∈ F red or blue

uniformly and independently with probability 1/2. Define S (respectively, T )
to be the set of points x such that every set that contains x is colored red
(respectively, blue). Since every element of X occurs in at least one set, it
follows that S and T are disjoint. Moreover, for each F ∈ F , either F ∩S or
F ∩T is empty. To complete the proof, we show that with positive probability
both S and T have at least (1− δ)2−dn elements.
Let Zx be the indicator random variable for the event “x ∈ S.” By the

definition of S, this event occurs with probability 2−dx , implying that
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21 The Second Moment Method

E [Zx] = Pr [Zx = 1] = 2−dx .

Let Z =
∑

x Zx and observe that Z = |S|. Using the arithmetic-geometric
mean inequality (1.16), we obtain

E [Z] =
∑
x

E [Zx] =
∑
x

2−dx ≥ n · 2−
∑
x
dx/n = n2−d. (21.6)

Using the second moment argument, we show below that Z is close to its
expected value with high probability. By Chebyshev’s inequality (21.1) we
need only to upper-bound the variance

Var [Z] =
∑
x

Var [Zx] +
∑
x �=y
Cov (Zx, Zy) , (21.7)

where Cov (Zx, Zy) = E [ZxZy]−E [Zx] E [Zy] is the covariance of Zx and Zy.
Consider the first term in the right-hand side of (21.7). For any x, Zx is a
Bernoulli random variable, so Var [Zx] = E [Zx]− E [Zx]2 ≤ E [Zx], implying
that ∑

x

Var [Zx] ≤ E [Z] . (21.8)

To bound the second term in the right-hand side of (21.7), observe that if
no member of F contains both x and y, then Zx and Zy are independent,
implying that Cov (Zx, Zy) = 0. Thus, we are only interested in those pairs
(x, y) such that some member of F contains both x and y. For any fixed x,
the number of such pairs (x, y) is at most (r − 1)dx. For each such pair,

Cov (Zx, Zy) ≤ E [ZxZy] ≤ E [Zx] ≤ 2−dx .

Therefore, ∑
x �=y
Cov (Zx, Zy) ≤ (r − 1)

∑
x

dx2−dx .

The last term above can be bounded as follows. Order the x’s so that the se-
quence {dx} is non-decreasing. Now the second Chebyshev inequality (Propo-
sition 21.1) can be applied to the sequences {dx} and {2−dx}. We obtain

∑
x �=y
Cov (Zx, Zy) ≤ r − 1

n

(∑
x

2−dx
)(∑

x

dx

)
= d(r − 1)E [Z] (21.9)

because (
∑

x dx)/n = d, and
∑

x 2−dx = E [Z]. Substitute the bounds (21.8)
and (21.9) into (21.7). We obtain

Var [Z] ≤ (d(r − 1) + 1)E [Z] ≤ drE [Z] ,

where the last inequality holds because each x ∈ X occurs in at least one
set, implying that d =

∑
x dx/n ≥ 1. Using Chebyshev’s inequality (21.1),
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we have
Pr [Z < (1− δ) · E [Z]] < Var [Z]

δ2 · E [Z]2 ≤ dr

δ2E [Z] .

Substituting for δ its value as given by the statement of the theorem, and
using the inequality (21.6), we obtain

Pr [Z < (1− δ) · E [Z]] < drn

dr2d+1E [Z] =
n

2d+1E [Z] ≤ n

2d+12−dn =
1
2 .

In a similar fashion, we obtain Pr [|T | < (1− δ) · E [Z]] < 1/2. Thus, with
positive probability, both S and T have size at least

(1− δ) · E [Z] ≥ (1 − δ)2−dn.

We conclude that there is a coloring of the sets in F such that the induced
S and T satisfy the theorem. 	


21.5 Threshold for cliques

The second moment method is a useful tool for determining the threshold
function of an event, i.e., a threshold such that below it, the probability of
the event tends to 0, and above it, the probability tends to 1.
A k-clique is a complete graph on k vertices. We write ω(G) ≥ k if the

graph G contains a k-clique. A random graph G(n, p) is a graph on n vertices
where each edge appears independently with probability p.
How large does p have to be before a random graph G is very likely to con-

tain a 4-clique? The answer is remarkable: there is a sharply defined threshold
value of p such that, if p is above this value then G is almost certain to con-
tain a 4-clique, and if p is below it then G is almost certain not to contain
such a clique.

Theorem 21.5. The threshold for a random graph G(n, p) to contain a 4-
clique is p = n−2/3.

Proof. For a subset of four vertices S, let AS be the event that S induces
a clique in G(n, p), and let XS be the indicator variable of AS . Clearly,
Pr [XS = 1] = p6 for every S (every 4-clique has six edges). We define X =∑

XS. Our goal is to show that Pr [X ≥ 1] tends to 0 if p � n−2/3, and to 1
if p � n−2/3.
The first claim follows from Markov’s inequality:

Pr [X ≥ 1] ≤ E [X ] =
(
n

4

)
· p6 ∼ n4p6

24 → 0, if p � n−2/3.
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21 The Second Moment Method

To prove the second claim, suppose p � n−2/3. We must show that Pr [X = 0]
tends to 0. By the second moment method,

Pr [X = 0] ≤ Var [X ]
E [X ]2

,

so all what we need is to estimate the variance. As we have already mentioned
above, the variance can be written in the form

Var [X ] =
∑
S

Var [XS ] +
∑
S �=T
Cov (XS , XT ) . (21.10)

Since XS is an indicator random variable, its variance Var [XS] = E [XS ] −
E [XS ]2 ≤ E [XS] = p6 as six different edges must lie in G(n, p). Since there
are

(
n
4
)
= O(n4) sets S, the total contribution of the first sum in (21.10) is

O(n4p6). Let us now estimate the contribution of pairs S �= T .
If the events AS and AT are independent, then Cov (XS , XT ) = 0, and

these pairs contribute nothing. Now, since S �= T , the events AS and AT can
be dependent if and only if the cliques S and T have common edges – that
is, if and only if |S ∩ T | = 2 or |S ∩ T | = 3.
There are O(n6) pairs S, T with |S ∩ T | = 2 and for each of these

Cov (XS , XT ) ≤ E [XSXT ] = p11 as S ∪ T has 11 different edges. So, the
total contribution of these pairs is O(n6p11).
Similarly, there are O(n5) pairs S, T with |S∩T | = 3 and for each of these

E [XSXT ] = p9, since in this case S ∪ T has 9 different edges; and the total
contribution of these pairs is O(n5p9).
Putting all this together in (21.10) gives

Var [X ] = O
(
n4p6 + n6p11 + n5p9) = o(n8p12) = o(E [X ]2),

since p � n−2/3. Therefore, Pr [X = 0] = o(1) and hence G(n, p) is almost
certain to contain a 4-clique. 	

Let us consider a more general question: given a graph G, what is the

threshold function for the property that a random graph G(n, p) contains
a copy of G as an induced subgraph? (Recall that induced subgraphs are
obtained by deleting vertices together with all the edges incident to them.)
In the previous section we have solved this question for the case when G is
a complete graph on 4 vertices. What about other graphs? Using the second
moment method, a surprisingly general answer to this question was found.
The density of a graph G = (V,E) is the fraction d(G) := |E|/|V |. The

subgraph density m(G) of a graph is the maximum density d(H) of its sub-
graph H = (V ′, E′). A graph G is balanced if d(H) ≤ d(G) for all subgraphs
H of G.
It turns out that n−1/m(G) is the right threshold for an arbitrary (!) bal-

anced graph G. This fundamental result was proved by Erdős and Rényi
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Exercises

(1960). Bollobás (1981) and Ruciński and Vince (1986) extended it by remov-
ing this restriction on G (of being balanced).

Theorem 21.6 (Erdős–Rényi 1960). Let G be a balanced graph on k ver-
tices. The threshold for the property that a random graph G(n, p) contains a
subgraph isomorphic to G is n−1/m(G).

This theorem can be proved in a similar way to Theorem 21.5. But the
computations are more involved, and we omit the proof – the interested reader
can find it in the book of Alon and Spencer (1992) or in the survey paper of
Karoński (1995).

Exercises

21.1 (Chebyshev’s Inequality). If X is a non-negative random variable with
mean μ = E [X ] and a a real number, then Markov’s inequality gives an
upper bound Pr [X ≥ a] ≤ μ/a (see Theorem 18.21). Use this inequality to
prove the following Chebyshev’s Inequality. Let X be a random variable with
mean μ = E [X ] and variance σ2 = Var [X ]. Then for any real a > 0,

Pr [|X − μ| ≥ aσ] ≤ 1
a2 .

Hint: Apply Markov’s inequality to a random variable Y := (X − μ)2.

21.2. Show that Chebyshev’s inequality cannot be improved. Hint: Consider
a random variable X taking its values in {−1, 0,+1} with probabilities Pr [X = −1] =
1/2a2, Pr [X = 0] = 1− 1/a2 and Pr [X = +1] = 1/2a2.

21.3 (Cantelli’s Inequality). Prove the following one-sided Chebyshev’s in-
equality:

Pr [X ≥ μ+ aσ] ≤ 1
1 + a2 .

Hint: Let t ≥ −μ be a parameter, consider the random variable Y := (X + t)2, compute
its expectation, apply Markov’s inequality and show that the probability Pr [X ≥ μ+ aσ]
is minimized when t = σ2/a− μ.

21.4. Let A1, . . . , An be arbitrary events. Define a =
∑n

i=1 Pr[Ai] and b =∑
i<j Pr[Ai ∩ Aj ]. Prove that

Pr[A1 · · ·An] ≤ a+ 2b
a2 − 1

and
Pr[A1 ∪ · · · ∪ An] ≥ a2

a+ b .
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21 The Second Moment Method

Hint: Let X be the number of Ai’s that occur. For the first inequality, use Chebyshev’s
inequality to show that Pr [X = 0] ≤ a−2E[(X−a)2], and use the linearity of expectation
to expand the righthand expression. For the second inequality, rewrite (21.3) as Pr[X >

0] ≥ E [X ]2 /E [X ]2.

21.5. Let k > 0 be an integer, and let p = p(n) be a function of n such that
p ≥ (6k lnn)/n for large n. Prove that “almost surely” the random graph
G = G(n, p) has no large independent set of vertices. Namely, show that
Pr

[
α(G) ≥ n

2k
] → 0 as n → ∞.

21.6. Let ε > 0 and p = p(n) > 0, and let r ≥ (1 + ε)(2 lnn)/p be an integer-
valued function of n. Show that “almost surely” the random graph G(n, p)
does not contain r independent vertices.

21.7. A forest is a graph without non-trivial cycles (i.e., cycles of length ≥ 3).
Prove that, if np → 0 as n → ∞, then Pr [G(n, p) is a forest]→ 1. Hint: Count
the expected number of cycles and apply Markov’s inequality.

21.8. Let p be constant. Show that with a probability approaching 1 the
graph G(n, p) has the property that every pair of its vertices has a common
neighbor, i.e., a vertex, adjacent to both of them. Hint: Consider indicator random
variables Xij for the event that i and j do not have a common neighbor. Argue that
E [Xij ] = (1 − p2)n−2 and apply Markov’s inequality.

21.9. Prove that p = lnn/n is a threshold probability for the disappearance
of isolated vertices. Hint: Consider the random variable X = X1 + . . . + Xn where
Xi indicates whether vertex i is isolated in G(n, p). When estimating the variance of X ,
observe that XiXj = 1 iff both vertices are isolated. That requires forbidding 2(n−2)+1
edges, so E [XiXj ] = (1 − p)2n−3.
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22. The Entropy Function

Although the concept of entropy was originally a thermodynamic construct, it
has been adapted to other fields, including information theory. In this theory,
entropy is a measure of the uncertainty associated with a random variable. It
measures the average information content one is missing when one does not
know the value of the random variable. The concept was introduced by Claude
E. Shannon in his 1948 paper "A Mathematical Theory of Communication."
A fair coin has an entropy of one bit. However, if the coin is not fair, then

the uncertainty is lower (if asked to bet on the next outcome, we would bet
preferentially on the most frequent result), and thus the Shannon entropy is
lower.
In this chapter we will consider some applications of this concept—the

Shannon entropy—in combinatorics.

22.1 Quantifying information

The information size h0 (A) of a finite set A is the number of bits that is
necessary to encode each element of A separately, that is,

h0 (A) = log2 |A| .

If we have two sets A and B, then h0 (A × B) = h0 (A)+h0 (B). This justifies
the logarithm. The next notion, the information gain, is also intuitive.
Suppose we need to uncover a certain English word. We manage to obtain

one letter, say, an “e.” But this letter is common in English, so this provides
little information. If, on the other hand, the letter that we discover is “z” (the
least common in English), the search has been narrowed and we obtain more
information. The notion of “information gain” quantifies this situation.
Let (A, p) be a discrete probability space. That is, A is a finite set, and

each element a ∈ A has probability pa = Pr[a]. As before, the probability of
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an event B ⊆ A is p(B) =
∑

a∈B pa. The information gain

H(B|A) := log2
1

p(B) = − log2 p(B)

measures the gain obtained by the knowledge that the outcome belongs to
the set B. The information gain has the following additivity property. Let
B ⊂ C ⊂ A. The gain for knowing that the outcome is in C is H(C|A) =
− log2 p(C). The gain for knowing that it is in B, after knowing that it is
in C, is

H(B|C) = − log2 Pr[B |C] = − log2
p(B)
p(C) .

It follows that H(B|A) = H(C|A) +H(B|C), as it should be.

22.2 Limits to data compression

Let A = {a1, . . . , an} be a finite set of letters (or symbols). A (binary) code is
an assignment ai �→ c(ai) of binary strings (codewords) c(ai) to symbols. A
code is a prefix code if no codeword occurs as the beginning of another code-
word. Such codes are uniquely decodable codes where a sequence of binary
numbers can be decoded sequentially. That is, one reads the binary numbers
from the left, one by one, until one recognizes the code of a letter. One ex-
tracts the letter, and reads the next binary numbers until the next letter is
identified.
The folowing lemma tells us that we cannot have short codewords for all

letters: if some letters have short codewords, there must be letters with long
ones.

Lemma 22.1 (Kraft Inequality). For every prefix code with codeword lengths
�1 ≤ �2 ≤ . . . ≤ �n, we have that

n∑
i=1
2−�i ≤ 1 . (22.1)

Conversely, for a given set of natural numbers �1 ≤ �2 ≤ . . . ≤ �n, satisfying
the above inequality, there exists a prefix code with those codeword lengths.

By using Jensen’s inequality f(
∑

i λixi) ≤ ∑
i λif(xi) with λi = 1/n and

f(x) = 2−x, (22.1) implies that
∑n

i=1 �i ≥ n log2 n. That is, the average
length of a codeword is always at least log2 n.

Proof. Any given prefix code can be represented by a binary tree of depth �n
where the i-th codeword is represented by a path to a leaf at depth �i. This
guarantees that no codeword is a prefix of another. For each leaf in such a
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22.2 Limits to data compression

code tree, consider the set of descendants Ai ⊆ {0, 1}�n that each would have
at depth �n in a full tree. Then Ai ∩ Aj = ∅ for all i �= j, and |Ai| = 2�n−�i .
Thus, given that the total number of nodes at depth �n is 2�n ,

2�n
n∑
i=1
2−�i =

n∑
i=1

|Ai| =
∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ ≤ 2�n

from which (22.1) follows.
Conversely, given any ordered sequence of n natural numbers, �1 ≤ · · · ≤ �n

satisfying the Kraft inequality, one can construct a prefix code with codeword
lengths equal to �i by pruning subtrees from a full binary tree of depth �n.
First choose any node v1 from the full tree at depth �1 and remove all of its
descendents. This removes a 2−�1 fraction of the nodes from the full tree from
being considered for the rest of the remaining codewords. In the next iteration
choose any node v2 from the remaining tree at depth �2, not on the path to
v1, and remove all of its descendents. This removes a 2−�2 fraction of the full
tree for a total of 2−�1 +2−�2. After m iterations, a

∑m
i=1 2−�i fraction of the

full tree nodes are removed from consideration for any remaining codewords.
But, by the assumption, this sum is less than 1 for all m < n, thus a prefix
code with lengths �i can be constructed for all n letters in our alphabet. �

The following inequality turns out to be very useful when dealing with

sums involving logarithms.

Lemma 22.2 (Gibbs’ Inequality). Let x1, . . . , xn and y1, . . . , yn be positive
real numbers such that

∑
i yi ≤ ∑

i xi. Then

n∑
i=1

xi log2 xi ≥
n∑
i=1

xi log2 yi .

Proof. Multiplying both sides by ln 2 we may assume that all logarithms are
natural. Using the inequality ln x ≤ x − 1 (see 1.4), we get

∑
xi ln yi −

∑
xi ln xi =

∑
xi ln

(
yi
xi

)
≤

∑
xi

(
yi
xi

− 1
)

=
∑

yi −
∑

xi ≤ 0. �


An important special case of Shannon’s noiseless coding theorem gives
a limit for data compression for any probability distribution p1, . . . , pn on
A = {a1, . . . , an}.
Given a prefix code c, which encodes each letter ai by a string c(ai) ∈

{0, 1}�i, the average length of a codeword is

L(A, c) :=
n∑
i=1

pi�i .
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If p1 = . . . = pn = 1/n then the Kraft inequality implies that L(A, c) ≥ log2 n.
Shannon’s theorem extends this to arbitrary distributions p1, . . . , pn on A =
{a1, . . . , an}. To do this, define the entropy of the probability distribution
on A by:

H (A) =
n∑
i=1

pi log2
1
pi
. (22.2)

That is, H (A) is just the expectation of the random variable ai �→ log2(1/pi).
Note that H (A) = log2 n if all pi = 1/n.

Theorem 22.3 (Limits to compression). For any alphabet A, and any prob-
ability distribution p on A, the average length L(A, c) of an optimal prefix
code c satisfies

H(A) ≤ L(A, c) ≤ H(A) + 1 .
Thus, the expected length is minimized and is equal to H (A) only if the

code-lengths are equal to the Shannon information contents: �i = log2(1/pi).
That is, frequent letters should be coded with small length. This clearly comes
at the expense of other letters, that will need longer strings in order for the
code to be decodable.

Proof. For the lower bound, consider a prefix code c with lengths �i = |c(ai)|.
Define z :=

∑n
j=1 2−�j and qi := 2−�i/z. By the Kraft inequality, we have

that z ≤ 1, and hence, log2 z ≤ 0. Together with the Gibbs inequality, we
obtain

L(A, c) =
n∑
i=1

pi�i = −
n∑
i=1

pi log2 qi − log2 z ≥ −
n∑
i=1

pi log2 pi = H(A) .

For the upper bound, define �i = �− log2 pi�. Then
n∑
i=1
2−�i ≤

n∑
i=1

pi = 1 .

This shows that the Kraft inequality holds for the lengths �i, so there exists
a prefix code c with these lengths. The expected length is easy to estimate:

L(A, c) =
n∑
i=1

pi�− log2 pi� ≤
n∑
i=1

pi(− log2 pi + 1) = H (A) + 1 . �


A basic problem in information theory deals with encoding large quantities
of information. We start with a finite set A, which could for instance be the
26 letters from the Latin alphabet, or the 128 ASCII symbols. We consider
a message (a string) that contains n symbols from A with n large. How
many bits are required so that the message can be encoded without loss of
information? The answer is given by the information size: h0 (An) = n·h0 (A).

316



22.2 Limits to data compression

The question becomes more interesting, and the answer more surprising,
if we allow an error probability δ > 0. We now seek to encode only messages
that only use symbols in a subset B ⊆ A of “typical” characters, such that
p(B) = Pr[B] ≥ 1 − δ. If a message turns out to contain symbols in A \ B,
then we lose the information. The information size is given by

hδ (A) = inf
p(B)≥1−δ

log2 |B| .

Notice that hδ (A) → h0 (A) as δ → 0. We want to say something about
hδ (An) as n → ∞. That is, a string of n characters is selected at random
using some probability. One wants to encode this string, to send (or to store)
it, and to decode it. We assume that no error is committed during these
operations, except that the string may lie outside the set Bn of codable
strings. This modeling is behind all compression algorithms.
So, given an alphabet A with a probability distribution a �→ p(a), we want

to say something about hδ (An) as n → ∞. Notice that the probability of
each string a = (a1, . . . , an) in An is p(a) =

∏n
i=1 p(ai), that is, we assume

independence. Both hδ (A) and

H (A) =
∑
a∈A

p(a) log2
1

p(a)

are at most the information size h0 (A) = log2 |A| of the alphabet A. And we
also have that h0 (An) = n ·h0 (A), but hδ (An) can be smaller than n ·hδ (A)
in general. It turns out that hδ (An) ≈ n ·H(A) for any δ > 0. That is, if we
allow a tiny error, and if our message is long enough, the number of required
bits is roughly n · H(A).
Theorem 22.4 (Shannon’s source coding theorem). For any δ > 0,

lim
n→∞

1
n
hδ (An) = H (A) .

Proof. This is a consequence of the weak law of large numbers: If X is a ran-
dom variable with finite expectation E [X ], and if X1, X2, . . . are independent
copies of X , then

X1 + · · ·+Xn

n

tends to E [X ] with probability tending to 1, as n → ∞. If we define a random
variable X : A → R by X(a) := − log2 p(a), then

E [X ] =
∑
a∈A

−p(a) log2 p(a) = H (A) .

On the other hand, for a random string (a1, . . . , an) in An we have that
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22 The Entropy Function

− log2 p(a1, . . . , an) = − log2
n∏
i=1

p(ai) =
n∑
i=1

− log2 p(ai) =
n∑
i=1

Xi .

Thus, for an arbitrary small constant ε > 0, there exists a set An,ε ⊆ An such
that limn→∞ p(An,ε) = 1, and any (a1, . . . , an) ∈ An,ε satisfies

2−n(H(A)+ε) ≤ p(a1, . . . , an) ≤ 2−n(H(A)−ε) .

Since 1 ≥ p(An,ε) ≥ |An,ε|2−n(H(A)+ε), we have that |An,ε| ≤ 2n(H(A)+ε). For
any δ > 0, we can choose n large enough so that p(An,ε) > 1− δ. Then

hδ (An) ≤ log2 |An,ε| ≤ n(H (A) + ε) .

It follows that
lim sup
n→∞

1
n
hδ (An) = H (A) .

For the lower bound, letBn,δ ⊆ An be the minimizer forHδ, that is, p(Bn,δ) ≥
1− δ and

hδ (An) = log2 |Bn,δ| ≥ log2 |Bn,δ ∩An,ε| .
Since limn→∞ p(An,ε) = 1, we have that p(An,ε) ≤ δ for n large enough. So,

p(Bn,δ ∩An,ε) = p(Bn,δ)− p(Bn,δ ∩ An,ε) ≥ 1− 2δ ,

implying that
|Bn,δ ∩ An,ε| ≥ (1 − 2δ)2n(H(A)−ε) .

We obtain
1
n
hδ (An) ≥ 1

n
log2(1 − 2δ) + H (A)− ε .

This gives the desired lower bound for the lim sup, and Shannon’s theorem
follows. �


22.3 Shannon entropy

We now turn to a general notion of Shannon entropy and its properties.
Let X be a random variable taking values in some range B, and let pb

denote the probability that the value of X is b. The binary entropy of X ,
denoted by H (X), is just the expected information gain of X :

H (X) :=
∑
b∈B
= pb log2

1
pb
= −

∑
b∈B

pb log2 pb

where 0 log2 0 is interpreted as 0. For example, if X takes only two variables 0
and 1 with Pr [X = 1] = p, then H (X) = −p log2 p− (1−p) log2(1−p). Since
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Fig. 22.1 The binary entropy function H2(x) = −x log2 x− (1− x) log2(1 − x).

this quantity only depends on the probability distribution p, it is also often
written as H(p) or H2(p), and this is the binary entropy function, which we
already introduced earlier.
Given an alphabet A = {a1, . . . , an} together with a probability distribu-

tion p1, . . . , pn, we can consider A as a random variable with Pr[A = i] = pi.
Then H (A) is precisely the quantity (22.2) we considered above.
In general, entropy has the following basic properties:

(a) If |B| = 2t then H (X) ≤ t. Convexity arguments show that if the pb’s are
smaller then the entropy must be larger. The extreme case is pb = 2−t
for all b ∈ B, then H (X) = t. Moreover,

∑
b∈S

pb log2
1
pb

≤ log2 |S| (22.3)

for any subset S ⊆ B (see Exercise 22.1).
(b) Entropy has the concentration property. If H (X) ≤ t then there must be
some b for which

Pr [X = b] ≥ 2−t.
(c) Entropy is subadditive: if X = (X1, . . . , Xn) is a random variable taking
values in the set B = B1 × · · · ×Bn, where each Xi is a random variable
taking values in Bi, then

H (X) ≤
n∑
i=1
H(Xi) .

The first two properties follow directly from the definition. The last needs a
proof, and we give it in Sect. 22.4.

If E is some event, it is natural to define the conditional entropy of X
given E by

H(X |E) :=
∑
b∈B

−Pr [X = b |E ] · log2 Pr [X = b |E ] .
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22 The Entropy Function

In the same way, if Y is any other random variable taking values in some
range A, we define the conditional entropy of X given Y by

H(X |Y ) :=
∑
a∈A
H(X |Y = a) · Pr [Y = a] .

We think of H(X |Y ) as the uncertainty of X given a particular value of Y ,
averaged over the range of values that Y can take. Fairly direct consequences
of the definitions are:

(d) H(X |X) = 0;
(e) H(X |Y ) = 0 if and only if X = f(Y ) for some function f ;
(f) H(X |Y ) = H (X) if and only if X and Y are independent;
(g) H(X |Y, Z) ≤ H(X |Y ).
The main property of conditional entropy is the following:

H (X,Y ) = H (Y ) + H(X |Y ) . (22.4)

This equation also follows (though not so immediately) from definitions, and
we leave the proof as an exercise. Using this equality we can derive the fol-
lowing analogue of the equality Pr [A ∩ B] = Pr [A] + Pr [B]− Pr [A ∪ B] :

H (X,Y, Z) ≤ H(X,Y ) + H (Y, Z)−H(Y ) . (22.5)

Indeed

H (X,Y, Z) = H (X,Y ) + H(Z|X,Y ) ≤ H(X,Y ) + H(Z|Y )
= H (X,Y ) + H (Y, Z)−H(Y ) .

22.4 Subadditivity

Just like expectation has the additivity property for the sums X = X1 +
· · · + Xn, entropy has similar (though weaker) property for strings X =
(X1, . . . , Xn) of random variables.

Theorem 22.5. If X and Y are two random variables taking only finitely
many values, then H(X,Y ) ≤ H(X) + H (Y ), with equality only holding
when X and Y are independent.

Proof. Suppose X and Y take their values in A and B, respectively. Let pa,b
denote the probability that (X,Y ) = (a, b), pa denote the probability that
X = a and pb denote the probability that Y = b. Since

∑
b∈B pa,b = pa and∑

a∈A pa,b = pb, we have

320



22.4 Subadditivity

H(X) + H (Y ) =
∑
a∈A

−pa log pa +
∑
b∈B

−pb log pb

=
∑
a∈A

∑
b∈B

−pa,b log pa +
∑
b∈B

∑
a∈A

−pa,b log pb

=
∑

(a,b)∈A×B
−pa,b log(pa · pb) .

Since
∑

a,b pa · pb =
∑

a pa (
∑

b pb) = 1, we can apply Lemma 22.2 to get

H (X) + H (Y ) ≥
∑

(a,b)∈A×B
−pa,b log pa,b = H(X,Y ) .

Equality holds only when pa,b = papb for all a ∈ A and b ∈ B. But this is
exactly the condition that X and Y are independent. �

Theorem 22.5 generalizes readily to more than two variables (we leave the

proof as an exercise).

Theorem 22.6. Let X = (X1, . . . , Xn) be a random variable taking values in
the set B = B1 ×· · ·×Bn, where each of the coordinates Xi of X is a random
variable taking values in Bi. Then H(X) ≤ ∑n

i=1H(Xi) with equality only
holding when X1, . . . , Xn are mutually independent.

An interesting extension was proved by Chung, Frankl, Graham, and
Shearer (1986). As in Theorem 22.6, let X = (X1, . . . , Xn) be a random
variable taking values in the set B = B1 × · · · × Bn, where each Xi is a
random variable taking values in Bi. Also assume that all Bi = {0, 1}. For a
subset of coordinates S, let XS denote the random variable (Xi)i∈S .

Theorem 22.7 (Generalized Subadditivity). Let X = (X1, . . . , Xn) and B
be as above and let S1, . . . , Sm be subsets of [n] = {1, . . . , n} such that every
i ∈ [n] belongs to at least k of S1, . . . , Sm. Then

H(X) ≤ 1
k

m∑
i=1
H(XSi) . (22.6)

Proof. For k = 1 the assertion follows from Theorem 22.6. Now assume k > 1.
Let ν denote the minimum number of Si’s whose union is [n]. We will prove
(22.6) by induction on k and ν. If ν = 1 then, say S1 = [n], and every point
of [n] belongs to at least k− 1 of the sets S2, . . . , Sm. By induction (on k) we
have in this case that

(k − 1)H (X) ≤
m∑
i=2
H(XSi)

and consequently, k ·H(X) ≤ ∑m
i=1 H(XSi) since X = XS1 .
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22 The Entropy Function

Suppose ν > 1. We may assume w.l.o.g. that S1 ∪ S2 ∪ · · · ∪ Sν = [n]. Let
S′1 := S1 ∪ S2 and S′2 := S1 ∩ S2. Clearly, every element of [n] is in at least k
of the sets S′1, S′2, S3, . . . , Sm. Moreover, already ν − 1 of these sets cover [n]
because [n] = S′1 ∪ S3 ∪ · · · ∪ Sν . By induction (on ν),

k ·H(X) ≤
m∑
i=3
H(XSi) + H

(
XS′1

)
+H

(
XS′2

)
.

Since by (22.5) we have (we address this conclusion in the exercises) that

H (XS1∪S2) ≤ H(XS1) + H (XS2)−H(XS1∩S2) , (22.7)

the desired inequality (22.6) follows. �


22.5 Combinatorial applications

Theorem 22.6 was used by Kleitman, Shearer, and Sturtevant (1981) to derive
several interesting applications in extremal set theory. Their basic idea can
be illustrated by the following simple corollary of Theorem 22.6.

Corollary 22.8. Let F be a family of subsets of {1, 2, . . . , n} and let pi de-
note the fraction of sets in F that contain i. Then

log2 |F| ≤
n∑
i=1

H(pi) ,

where H(y) := −y log2 y − (1− y) log2(1− y).

Proof. Associate each set F ∈ F with its incidence vector vF , which is a
binary vector of length n. Let X = (X1, . . . , Xn) be the random variable
taking values in {0, 1}n, where Pr [X = vF ] = 1/|F| for all F ∈ F . Clearly,

H (X) = |F|
(

− 1
|F| log2

1
|F|

)
= log2 |F|,

and since here H (Xi) = H(pi) for all 1 ≤ i ≤ n, the result follows from
Theorem 22.6. �

This corollary supplies a quick proof for the following well-known estimate

for sums of binomial coefficients (cf. Exercise 1.17).

Corollary 22.9. For every integer n and for every real 0 < p ≤ 1/2,
∑
i≤np

(
n

i

)
≤ 2nH(p).
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Proof (due to P. Frankl). Let F be the family of all subsets of cardinality at
most pn of {1, 2, . . . , n}. If pi is the fraction of subsets of F that contain i
then p1 = . . . = pn. Counting in two ways we obtain that

∑n
i=1 pi ≤ pn, and

hence pi ≤ p for all i. Since the function H(p) is increasing for 0 ≤ p ≤ 1/2
this, together with Corollary 22.8, implies that

∑
i≤np

(
n

i

)
= |F| ≤ 2

∑n

i=1
H(pi) ≤ 2nH(p),

as needed. �

The following easy consequence of Theorem 22.7 tells us that a family

cannot have many members if its “projections” are small. For a family F ⊆
2[n] of subsets of [n] = {1, . . . , n}, the projection of F onto a subset S ⊆ [n]
is the family of all intersections S ∩ A with A ∈ F .
Theorem 22.10 (Product Theorem). Let S1, . . . Sm be subsets of [n] such
that each element of [n] is contained in at least k of them. Let F ⊆ 2[n] and
let Fi be the projection of F onto Si. Then

|F|k ≤
m∏
i=1

|Fi| .

Proof. Let B1 = . . . = Bn = {0, 1}, and let X = (X1, . . . , Xn) be the random
variable taking values in B1×· · ·×Bn, where for each F ∈ F ,X is equal to the
incidence vector of F with probability 1/|F|. By Theorem 22.7, k · H(X) ≤∑m

i=1H(XSi). But H (X) = log2 |F|, whereas H (XSi) ≤ log2 |Fi|, implying
the desired result. �

The generalized subadditivity of the entropy function can be used to prove

some non-trivial “intersection theorems” (cf. Chap. 7). The following three
results were obtained by Chung, Frankl, Graham, and Shearer (1986).
Recall that a family F ⊆ 2[n] is intersecting if A ∩B �= ∅ for all A,B ∈ F .

If F is intersecting then |F| ≤ 2n−1, since F cannot contain both a set and its
complement. Moreover, this is optimal (just take the family of all subsets of
[n] containing one fixed point). To make the question more interesting we can
require that the members of F not just intersect, but that these intersections
contain at least one of the given configurations. We first consider one easy
example.

Theorem 22.11. Let F ⊆ 2[n] a family, and suppose that the intersection of
any two of its members contains a pair of consecutive numbers. Then

|F| ≤ 2n−2 .

Note that this upper bound is optimal: just let F be the family of all
subsets containing the set {1, 2}

323



22 The Entropy Function

Proof. By our assumption, for every A,B ∈ F there must be an i such that
{i, i + 1} ⊆ A ∩ B. Let S0 and S1 be the set of all even and odd numbers
in [n], respectively. Consider the projections Fa = {A ∩ Sa : A ∈ F} of
our family F onto these two sets, a = 0, 1. Note that the intersection of any
two members of Fa has the form (A ∩ B) ∩ Sa for some A,B ∈ F . Since
|{i, i+1} ∩Sa| = 1 for every i and a, both of the families Fa are intersecting,
and hence, |Fa| ≤ 2|Sa|−1 for both a = 0, 1. Using Theorem 22.10 (with k = 1)
we conclude that

|F| ≤ |F0| · |F1| ≤ 2|S0|−1 · 2|S1|−1 = 2n−2 . �


Theorem 22.10 also has not so trivial consequences. For example, one may
take U to be the set of all

(
n
2
)
edges of a complete graph Kn. We can look

at the subsets A ⊆ U as (labeled) subgraphs of Kn. (Dealing with “labeled”
subgraphs means that we do not identify isomorphic ones.)

Theorem 22.12. Suppose that F is a family of (labeled) subgraphs of Kn

such that for all A,B ∈ F , the graph A ∩ B does not contain any isolated
vertices. Then

|F| ≤ 2(n2)−n2 .
Note that this requirement is rather severe: each of the n vertices must

be incident with at least one common edge in A ∩ B. Is this upper bound
optimal? (See Exercise 22.9.)

Proof. Choose Si to be the star at the i-th vertex, i.e., Si consists of all
n − 1 edges {i, j}, j �= i. Clearly, every edge is in exactly two of S1, . . . , Sn.
Consider the projections Fi := {A ∩ Si : A ∈ F} of F onto these stars,
i = 1, 2, . . . , n. Note that the intersection of any two members of Fi has the
form (A ∩ B) ∩ Si for some A,B ∈ F , and hence, is non-empty because the
vertex i cannot be isolated in the subgraph A∩B. Thus, each of the families
Fi is intersecting, and hence, |Fi| ≤ 2|Si|−1 = 2n−2 for all i = 1, 2, . . . , n.
Applying Theorem 22.10 (with k = 2) we conclude that

|F| ≤
( n∏
i=1

|Fi|
)1/2

≤ 2n(n−2)/2 = 2(
n
2)−n2 . �


Let us say that a family F of subgraphs of Kn is triangle-intersecting if
A ∩ B contains a triangle for all A,B ∈ F .
Theorem 22.13. Let n ≥ 4 be even and let F be a family of (labeled) sub-
graphs of Kn. If F is triangle-intersecting then

|F| ≤ 2(n2)−2 .

It is not known if this bound is optimal, i.e., if 2(
n
2)−2 can be replaced by

2(
n
2)−3, the number of subgraphs of Kn containing a fixed triangle.
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Exercises

Proof. We choose Si, 1 ≤ i ≤ m := 1
2

(
n
n/2

)
, to be all possible disjoint unions

of two complete (labeled) subgraphs on n/2 vertices each. That is, each Si has
the form KU ∪KU for some subset of vertices U ⊆ {1, . . . , n} with |U | = n/2.
Note that the intersection of any two members of Fi has the form (A∩B)∩Si
for some A,B ∈ F and Si = KU∪KU . By our assumption, A∩B must contain
three edges e1, e2, e3 forming a triangle. Since no triangle can lie entirely in a
bipartite graph, at least one of these three edges must belong to Si. So, each
projection Fi is an intersecting family, implying that |Fi| ≤ 2|Si|−1. Each of
the graphs Si has s := 2

(
n/2

2
)
edges, and each edge of Kn is in k :=

(
n−2
n/2

)
of

the Si’s. By Theorem 22.10,

|F| ≤
( m∏
i=1
2|Si|−1

)1/k
= 2(s−1)m/k.

Substituting the values of s,m and k, we conclude that

(s− 1)m
k

= 12

[
2
(
n/2
2

)
− 1

](
n

n/2

)(
n− 2
n/2

)−1

≤
(
n

2

)
− n(n− 1)
n(n/2− 1) ≤

(
n

2

)
− 2 . �


Exercises

22.1. Prove the properties (a), (b) and (d)—(g) of the entropy. Hint: To (22.3):
use Gibbs’ inequality with yb = 1/|S|.
22.2. Prove the equation (22.4).

22.3. Let X be a random variable taking its values in some set B, and let
Y = f(X) where f is some function on B. Prove that H (Y ) ≤ H(X). Show
that equality holds if and only if f is one-to-one on the set of all b ∈ B such
that Pr [X = b] > 0.

22.4. Show that for any random variables H (X,Y ) ≥ H(X).
22.5. Show that, for any random variable X , H(X2|X) = 0, but give an
example to show that H(X |X2) is not always zero. Hint: Let X take the values
+1 and −1 with equal probability.

22.6. The random variable Y takes the integer values 1, 2, . . . , 2n with equal
probability. The random variable X is defined by X = 0 if Y is even, and
X = 1 if Y is odd. Show that H(Y |X) = H (Y )− 1, but that H(X |Y ) = 0.
22.7. Prove the inequality (22.7). Hint: Take X = XS1\S2 , Y = XS1∩S2 , Z =
XS2\S1 and apply (22.5).
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22 The Entropy Function

22.8. Use Lemma 22.2 to prove that the entropy function is concave (or
convex down) in the following sense. Assume that X and Y are random
variables distributed over {1, . . . , n} (these two random variables may be
dependent). Let α ∈ [0, 1] be any real number. Define a new random variable
Z, also distributed over {1, . . . , n}, with probability distribution

Pr [Z = z] = αPr [X = z] + (1− α)Pr [Y = z] .

Prove that then
H (Z) ≥ αH(X) + (1− α)H (Y ) .

22.9. Show that for even n the bound of Theorem 22.12 is best possible. Hint:
Consider the family of all subgraphs of Kn containing a fixed matching.
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23. Random Walks

There are n rocks forming a circle in a river, and there is a frog on one of
these rocks. The frog remains stationary with probability 1/3, jumps to the
right rock with probability 1/3 and jumps to the left one with probability
1/3. The frog problem is: where will the frog be after time t?
This is, perhaps, the most popular illustration of what is known as a

random walk, a concept which arises in many models of mathematics and
physics. The reader can find such applications in any standard probability
book containing a chapter about random walks or Markov chains. Besides
these, random walks have found interesting applications in the theory of
computing as well. In this chapter we present some of them.

23.1 The satisfiability problem

A k-CNF (conjunctive normal form) is an And of an arbitrary number of
clauses, each being an Or of k literals; a literal is a variable xi or its negation
xi. Given such a CNF F , we seek an assignment of constants 0 and 1 to
variables such that all the clauses are satisfied. For example, if F = (x1 ∨
x2)(x2 ∨ x3)(x1 ∨ x3), then (1, 1, 0) is a satisfying assignment for this CNF.
A CNF is satisfiable if it has at least one satisfying assignment.
The k-SAT problem is: Given a k-CNF F , decide whether it is satisfiable.

It is well known that for any (even fixed) k ≥ 3, this problem is very hard—it
is a so-called “NP-complete” problem. It is therefore not very likely that the
problem can be solved in polynomial (in the number n of variables) time. In
contrast, the case k = 2 is much easier.
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23 Random Walks

23.1.1 Papadimitriou’s algorithm for 2-SAT

Let F be a 2-CNF, and suppose that we know that it is satisfiable. How
quickly can we find a satisfying assignment? Papadimitriou (1991) proposed
the following simple randomized procedure.
Suppose we start with an arbitrary assignment of values to the literals. As

long as there is a clause that is unsatisfied, we modify the current assignment
as follows: we choose an arbitrary unsatisfied clause and pick one of the (two)
literals in it uniformly at random; the new assignment is obtained by com-
plementing the value of the chosen literal. After each step we check whether
there is an unsatisfied clause; if not, the algorithm terminates successfully
with a satisfying assignment.

Theorem 23.1 (Papadimitriou 1991). Suppose that F is a satisfiable 2-CNF
in n variables. Then, with probability at least 1/2, the above algorithm will
find a satisfying assignment in 2n2 steps.

Proof. Fix an arbitrary satisfying assignment a ∈ {0, 1}n for F , and refer to
the values assigned by a to the literals as the “correct values.”
The progress of the above algorithm can be represented by a particle mov-

ing between the integers {0, 1, . . . , n} on the real line. The position of the
particle indicates how many variables in the current solution have “incorrect
values,” i.e., values different from those in a. At each iteration, we comple-
ment the current value of one of the literals of some unsatisfied clause, so
that the particle’s position changes by 1 at each step. In particular, a parti-
cle currently in position i, for 0 < i < n, can only move to positions i − 1 or
i+ 1:

- i 11i i+ n0 1 .  .  . .  .  .

Let t(i) denote the expected number of steps which a particle, starting in
position i, makes until it reaches position 0. Our goal is to show that t(i) ≤ n2

for all i.
A particle at location n can only move to n−1, and the process terminates

when the particle reaches position 0 (although it may terminate earlier at
some other position with a satisfying assignment other than a). Hence, t(n) ≤
t(n − 1) + 1 and t(0) = 0. In general, we have that

t(i) = pi,i−1 · (1 + t(i − 1)) + pi,i+1 · (1 + t(i+ 1)) ,

where pi,j is the probability that the particle moves from position i to position
j ∈ {i − 1, i+ 1}.
The crucial observation is the following: in an unsatisfied clause at least

one of the literals has an incorrect value. Thus, with probability at least
1/2 we decrease the number of variables having false values. The motion of
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23.1 The satisfiability problem

the particle thus resembles a random walk on the line where the particle
moves from the i-th position (0 < i < n) to position i − 1 with probability
pi,i−1 ≥ 1/2. This implies that

t(i) ≤ t(i − 1) + t(i+ 1)
2 + 1.

Replace the obtained inequalities by equations

x(0) = 0,

x(i) = x(i − 1) + x(i+ 1)
2 + 1,

x(n) = x(n − 1) + 1.

This resolves to x(1) = 2n− 1, x(2) = 4n− 4 and in general x(i) = 2in− i2.
Therefore, t(i) ≤ x(i) ≤ x(n) = n2, as desired.
By Markov’s inequality, a random variable can take a value 2 times larger

than its expectation with probability at most 1/2. Thus, the probability that
the particle will make more than 2·t(i) steps to reach position 0 from position
i, is smaller than 1/2. Hence, with probability at least 1/2 the process will
terminate in at most 2n2 steps, as claimed. ��

23.1.2 Schöning’s algorithm for 3-SAT

Can one design a similar algorithm also for 3-SAT? In the algorithm for
2-SAT above the randomness was only used to flip the bits—the initial as-
signment can be chosen arbitrarily: one could always start, say, with a fixed
assignment (1, 1, . . . , 1). But what if we choose this initial assignment at ran-
dom? If a formula is satisfiable, then we will “catch” a satisfying assignment
with probability at least 2−n. Interestingly, the success probability can be
substantially increased to about (3/4)n via the following simple algorithm
proposed by Schöning (1999):

1. Pick an initial assignment a ∈ {0, 1}n uniformly at random. The assign-
ment a can be obtained as a result of n independent experiments, where
at the i-th experiment we flip a coin to determine the i-th bit of a.

2. If a satisfies all clauses of F , then stop with the answer “F is satisfiable.”
3. If F is not satisfied by a, then pick any of its unsatisfied clauses C, choose
one of C’s literals uniformly at random, flip its value, and go to step (2).

4. Repeat (3) n times.

For a satisfiable 3-CNF F , let p(F ) be the probability that Schöning’s
algorithm finds a satisfying assignment, and let p(n) = min p(F ) where the
minimum is over all satisfiable 3-CNFs in n variables. So, p(n) lower bounds
the success probability of the above algorithm.
It is clear that p(n) ≥ (1/2)n: any fixed satisfying assignment a∗ will be

“caught” in Step (1) with probability 2−n. It turns out that p(n) is much
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23 Random Walks

larger—it is at least about p = (3/4)n. Thus, the probability that after, say,
t = 30(4/3)n re-starts we will not have found a satisfying assignment is at
most (1− p)t ≤ e−pt = e−30, an error probability with which everybody can
live quite well.

Theorem 23.2 (Schöning 1999). There is an absolute constant c > 0 such
that

p(n) ≥ c

n

(
3
4

)n
.

Proof. Let F be a satisfiable 3-CNF in n variables, and fix some (unknown
for us) assignment a∗ satisfying F . Let dist(a, a∗) = |{i : ai �= a∗i }| be the
Hamming distance between a and a∗. Since we choose our initial assignment
a at random,

Pr [dist(a, a∗) = j] =
(
n

j

)
2−n for each j = 0, 1, . . . , n.

Hence, if qj is the probability that the algorithm finds a∗ when started with
an assignment a of Hamming distance j from a∗, then the probability q that
the algorithm finds a∗ is

q =
n∑
j=0

(
n

j

)
2−nqj .

To lower bound this sum, we concentrate on the value j = n/3. As in the
case of 2-CNFs, the progress of the above algorithm can be represented by a
particle moving between the integers 0, 1, . . . , n on the real line. The position
of the particle indicates how many variables in the current solution have
“incorrect values,” i.e., values different from those in a∗. If C is a clause not
satisfied by a current assignment, then C(a∗) = 1 implies that in Step (3) a
“right” variable of C (that is, one on which a differs from a∗) will be picked
with probability at least 1/3. That is, the particle will move from position i
to position i− 1 with probability at least 1/3, and will move to position i+1
with probability at most 2/3. We have to estimate the probability qn/3 that
the particle reaches position 0, if started in position n/3.
Let A be the event that, during n steps, the particle moves n/3 times to

the right and 2n/3 times to the left. Then

qn/3 ≥ Pr [A] =
(

n

n/3

)(
1
3

)2n/3(2
3

)n/3
.

Now we use the estimate(
n

αn

)
≥ 1
O(

√
n)2

n·H(α) = 1
Θ(

√
n)

[( 1
α

)α( 1
1− α

)1−α]n
,
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23.2 Random walks in linear spaces

where H(α) = −α log2 α− (1− α) log2(1− α) is the binary entropy function
(see Exercise 1.16). Therefore, setting α = 1/3,

q ≥
(

n

n/3

)
qn/32−n

≥
(

n

n/3

)2(1
3

)2n/3(2
3

)n/3
2−n

≥ 1
Θ(n)

[
32/3

(3
2

)4/3(1
3

)2/3(2
3

)1/3
2−1

]n
= 1
Θ(n)

(3
4

)n
. ��

23.2 Random walks in linear spaces

Let V be a linear space over F2 of dimension d, and let v be a random vector
in V . Starting with v, let us “walk” over V by adding independent copies of
v. (Being an independent copy of v does not mean being identical to v, but
rather having the same distribution.) What is the probability that we will
reach a particular vector v ∈ V ? More formally, define

v(r) = v1 ⊕ v2 ⊕ · · · ⊕ vr,

where v1,v2, . . . ,vr are independent copies of v. What can be said about the
distribution of v(r) as r → ∞? It turns out that, if Pr [v = 0] > 0 and v is
not concentrated in some proper subspace of V , then the distribution of v(r)

converges to a uniform distribution, as r → ∞. That is, we will reach each
vector of V with almost the same probability!

Lemma 23.3 (Razborov 1988). Let V be a d-dimensional linear space over
F2. Let b1, . . . , bd be a basis of V and

p = min {Pr [v = 0] ,Pr [v = b1] , . . . ,Pr [v = bd]} .

Then, for every vector u ∈ V and for all r ≥ 1,∣∣∣Pr [v(r) = u
]

− 2−d
∣∣∣ ≤ e−2pr.

Proof. Let 〈x, y〉 = x1y1 ⊕· · ·⊕xnyn be the scalar product of vectors x, y over
F2; hence 〈x, y〉 = 1 if and only if the vectors x and y have an odd number
of 1s in common. For a vector w ∈ V , let pw = Pr [v = w] and set

Δv :=
∑
w∈V

pw(−1)〈w,v〉. (23.1)
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23 Random Walks

Then, for every u ∈ V ,∑
v∈V

Δv(−1)〈u,v〉 =
∑
v∈V

∑
w∈V

pw(−1)〈u⊕w,v〉

=
∑
w∈V

pw
∑
v∈V
(−1)〈u⊕w,v〉 = 2dpu,

since ∑
v∈V
(−1)〈x,v〉 =

{
0 if x �= 0;
2d if x = 0. (23.2)

Therefore,
pu = 2−d

∑
v∈V

Δv(−1)〈u,v〉. (23.3)

Fix an arbitrary vector u ∈ V . We claim that

Pr
[
v(r) = u

]
= 2−d

∑
v∈V

Δr
v(−1)〈u,v〉. (23.4)

We show this by induction on r. If r = 1 then equation (23.4) is just
equation(23.3).
Suppose now that equation (23.4) holds for v(r−1), and prove it for v(r).

We have

Pr
[
v(r) = u

]
= Pr

[
v(r−1) ⊕ vr = u

]
=

∑
w∈V
Pr

[
v(r−1) = w

]
· Pr [vr = u ⊕ w]

=
∑
w

(
2−d

∑
v

Δr−1
v (−1)〈w,v〉

)(
2−d

∑
v′

Δv′(−1)〈u⊕w,v′〉
)

= 2−2d
∑
w

∑
v

∑
v′

Δr−1
v Δv′(−1)〈w,v〉⊕〈u,v′〉⊕〈w,v′〉

= 2−2d
∑
v

∑
v′

Δr−1
v Δv′ (−1)〈u,v′〉

∑
w

(−1)〈w,v⊕v′〉

= 2−d
∑
v

Δr
v(−1)〈u,v〉.

Here, the last equality follows from (23.2), because the last sum is 2d if v′ = v,
and is 0 otherwise.
By (23.1), Δ0 = 1. For each other vector v �= 0, there exist vectors w1, w2

in {0, b1, . . . , bd} such that 〈w1, v〉 �= 〈w2, v〉, implying that

|Δv| ≤ 1− 2p
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23.2 Random walks in linear spaces

(if A + x = 1 then A − x = 1 − 2x). This together with (23.4) yields the
desired estimate:∣∣∣Pr [v(r) = u

]
− 2−d

∣∣∣ ≤ max
v∈V
v �=0

|Δr
v| ≤ (1 − 2p)r ≤ e−2pr.

��

23.2.1 Small formulas for complicated functions

Razborov (1988) used Lemma 23.3 to establish the following (counterintu-
itive) phenomenon: some combinatorialy complicated graphs may be repre-
sented by small boolean circuits.
Boolean circuits compute boolean functions. So, our first goal is to asso-

ciate graphs with boolean functions. For this, fix an arbitrary linear order �
on {0, 1}n; for example, we can take � to be the lexicographic order: given
two vectors a �= b, look for the smallest index i on which these vectors dif-
fer, and set a ≺ b if and only if ai < bi. After we fix such an order on the
n-cube, every boolean function f(x1, . . . , xn, . . . , x2n) on 2n variables defines
the following undirected graph G(f) on N = 2n vertices:

- the vertices of G(f) are vectors in {0, 1}n, and
- two vertices a �= b are joined by an edge if and only if a ≺ b and f(a, b) = 1.

Intuitively, if the graph G(f) has a “complicated” combinatorial structure
then the function f should be “hard” to compute (require large circuits or
formulas). It turns out that this intuition is sometimes false!
Consider, for example, Ramsey graphs. Recall that a clique in a graph is

a subset of vertices, each pair of which is joined by an edge. Similarly, an
independent set is a set of vertices with no edge between them. Say that a
graph is K-Ramsey graph if it contains no clique or independent set of size K.
Ramsey’s theorem implies that no graph onN = 2n vertices is n/2-Ramsey.

On the other hand, using the probabilistic argument we have already proved
(see Theorem 4.17) that most graphs on N = 2n vertices are 2n-Ramsey; let
us call these graphs strongly Ramsey. However, no explicit construction of
strongly Ramsey graphs is known. Explicit graphs that are 2

√
n logn-Ramsey

were constructed by Frankl and Wilson (1981) using a powerful linear algebra
method (see Theorem 13.15 for the construction).
In the bipartite case the situation was even worse. Say that a bipartite

graph on two sets of N vertices is a K-Ramsey bipartite graph if it has no
K × K complete or empty bipartite subgraph. While Erdős’ result on the
abundance of 2n-Ramsey graphs holds as is for bipartite graphs, until recently
the best explicit construction of bipartite Ramsey graphs was 2n/2-Ramsey,
using the Hadamard matrix (see Exercise 23.2). This was recently improved,
first to o(2n/2) by Pudlak and Rödl (2004), then to 2o(n) by Barak et al.
(2005), and to 2no(1) by Barak et al. (2006).
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23 Random Walks

This—the difficulty to explicitly construct strongly Ramsey graphs—
serves as a serious indication that these graphs have a rather “complicated”
combinatorial structure.
It is therefore surprising that boolean functions corresponding to these

graphs can be computed by very small boolean formulas of depth-3 with
And and Parity gates. These formulas have the form:

F = F1 ⊕ F2 ⊕ · · · ⊕ Fr ,

where each Fi has the form

Fi =
m∧
j=1

n⊕
k=1

λijkxk ⊕ λij , with λijk, λij ∈ {0, 1}.

The size of such a formula F is the number rmn of literals in it. Let L(f)
denote the minimum size of such a formula computing f .

Theorem 23.4 (Razborov 1988). There exists a sequence fn of boolean func-
tions in 2n variables such that the graph G(fn) is strongly Ramsey and
L(fn) = O(n5 logn).

This result is even more surprising because Razborov (1987) had proved
earlier that the model of constant depth formulae is rather weak: some seem-
ingly “simple” boolean functions, like the majority function (which outputs
1 if and only if the input vector contains more 1s than 0s) require constant
depth formulas of size exponential in n (cf. Sect. 18.7).
The proof of Theorem 23.4 is based on the following lemma about the distri-

bution of a random depth-3 formula, which may be derived from Lemma 23.3.
Let h be a random boolean formula in n variables given by:

h = λ0 ⊕ λ1x1 ⊕ λ2x2 ⊕ · · · ⊕ λnxn,

where all λi’s are independent random variables taking their values from
{0, 1} with probability 1/2. Let

g = h1 ∧ h2 ∧ · · · ∧ hm,

where h1,h2, . . . ,hm are independent copies of h. Finally, let f = fn,m,r be
a random boolean function given by

f = g1 ⊕ g2 ⊕ · · · ⊕ gr,

where g1, g2, . . . , gr are independent copies of g.
If f : {0, 1}n → {0, 1} is a boolean function and E ⊆ {0, 1}n, then fE

denotes the function f restricted to E.

Lemma 23.5. Let E ⊆ {0, 1}n and φ : E → {0, 1} be a boolean function
defined on E. If |E| ≤ 2m−1, then
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23.2 Random walks in linear spaces∣∣∣Pr [fE = φ]− 2−|E|
∣∣∣ ≤ e−r/2m .

Proof. Recall that f is a sum modulo 2 of r independent copies of g. We are
going to apply Lemma 23.3 in the situation when V = {0, 1}E is the linear
space of all boolean functions defined on E, and v = gE .
As the basis of our space V we take all d = |E| boolean functions χa,

a ∈ E, such that χa(b) = 1 if and only if a = b.
It is clear that for every a ∈ {0, 1}n, Pr [h(a) = 1] = 1/2. Moreover, for

a �= b, h(a) and h(b) are two different linear forms �= 0 of independent
parameters λ0,λ1, . . . ,λn that are uniformly distributed on {0, 1}. Therefore,
h(a) and h(b) are independent, implying that Pr [h(a) = 1 |h(b) = 1 ] = 1/2,
for any a �= b. Since g is an And of m independent copies of h, we obtain

Pr [g(a) = 1 | g(b) = 1] = Pr [g(a) = 1] = 2−m.

Using this and the condition d ≤ 2m−1 we obtain that

Pr [gE ≡ 0] = 1− Pr [∃a ∈ E : g(a) = 1] ≥ 1− |E| · 2−m ≥ 1/2

and

Pr [gE = χa] = Pr [g(a) = 1 and g(b) = 0 for all b ∈ E, b �= a]
= Pr [g(a) = 1] · Pr [∀b �= a : g(b) = 0 | g(a) = 1]
≥ 2−m

[
1−

∑
b∈E,b�=a

Pr [g(b) = 1 | g(a) = 1]
]

≥ 2−m (
1− d · 2−m) ≥ 2−m−1.

Thus, the minimum of Pr [gE ≡ 0] and Pr [gE = χa] (a ∈ E) is at least 2−m−1,
and we can apply Lemma 23.3 with p = 2−m−1. This completes the proof of
Lemma 23.5. ��
Proof of Theorem 23.4. Set m := �2 log2 n+3�, r := �40n4� and consider the
random boolean function f = f2n,m,r. Then the graph G(f ) is not strongly
Ramsey if and only if there is a subset of vertices S ⊆ {0, 1}n of size |S| =
2n + 1 which either forms a clique or is an independent set in G(f ). This
event happens only if fE ≡ 1 or fE ≡ 0, where E is the set of all pairs (a, b)
such that a, b ∈ S and a ≺ b. As |S| = 2n+ 1, we have

|E| ≤ 1 + 2 + · · ·+ 2n = n(2n+ 1),

and hence, the condition d ≤ 2m−1 of Lemma 23.5 is satisfied (with d =
n(2n+ 1)). Applying this lemma, we obtain that

Pr [fE ≡ 1 ∨ fE ≡ 0] = O(e−r/2m) = O(2−n(2n+1)) ,

and hence,
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Pr [G(f ) is not strongly Ramsey] ≤
(
2n

2n+ 1

)
· Pr [fE ≡ 1 ∨ fE ≡ 0]

= O

((
2n

2n+ 1

)
· 2−n(2n+1)

)
= o(1) .

This means that there exists a depth-3 formula f = f2n,m,r of size 2nmr =
O(n5 logn) whose graph G(f) is strogly Ramsey. ��

23.3 Random walks and derandomization

Let G = (V,E) be a d-regular graph on n vertices. A random walk starting
in a vertex v0 ∈ V is a sequence v0, v1, . . . , vt of vertices, where each vi+1 is
a random neighbor of vi chosen uniformly at random with probability 1/d
among all its d neighbors. Note that one and the same vertex may appear
in this sequence several times. In a random t-walk we first choose the start
vertex v0 uniformly at random, and then run a random walk of length t
starting in v0.
Given a subset of vertices S ⊆ V , what is the probability that a random

t-walk v0, v1, . . . , vt will never leave S? Small-degree graphs, where this prob-
ability is small, play an important role in many applications, one of them
being “derandomization” of probabilistic algorithms, that is, reduction of the
number of random bits used by algorithm.
We now give an upper bound on this probability in terms of the second

eigenvalue of the graph G.

Theorem 23.6 (Hitting property of expander walks). Let G = (V,E) be a d-
regular n-vertex graph, and λ2 the second-largest eigenvalue of its adjacency
matrix A. Then for every subset S ⊆ V ,

Pr [random t-walk will stay inside S] ≤
(
λ2
d
+ |S|

n

)t
.

Thus, if both λ2/d and |S|/n are less than 1/2, then with exponentially
large probability 1− 2Ω(−t) a random t-walk will hit a vertex outside S.

Proof. For technical reasons it will be convenient to consider not the adja-
cency matrix of G itself, but its normalized adjacency matrix A = (aij) with
aij = 1/d if i and j are adjacent, and aij = 0 otherwise. The reason to con-
sider this matrix (and not the adjacency matrix) is only technical: the matrix
A is doubly-stochastic, that is, the entries in each row and each column sum
up to 1. Note that λ := λ2/d is then the second-largest eigenvalue of A.
At the beginning, each of the vertices 1, 2, . . . , n could be chosen as the

start vector v0 with the same probability 1/n. So, the probability distribution
for the start vertex v0 is given by the vector
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u = (1/n, 1/n . . . , 1/n) .

Then Au is the probability distribution of the first reached vertex v1, and
Aiu is the probability distribution for the i-th reached vertex vi. Fix now a
subset of vertices S ⊆ V . Let D be the “characteristic matrix” of S. This is
a diagonal 0-1 matrix whose i-th diagonal entry is 1 iff i ∈ S.

Lemma 23.7. The probability that the random t-walk does not leave S is
precisely the sum of entries of the vector (DA)tDu = (DAD)tu.

Proof. Induction on t. The base case is t = 0. The i-th entry of (DA)0Du =
Du is 1/n if i ∈ S, and is 0 if i �∈ S. Hence, the sum |S|/n of entries of Du
is exactly the probability that the start vertex v0 will belong to S.
Now assume the hypothesis holds up to some t− 1. Then the i-th entry of

(DA)tDu is the probability that the random walk is at vertex i after t steps,
and never leaves S until possibly the last step. Multiplying by D, we zero out
all components for vertices not in S and leave the others unchanged. Thus,
we obtain the probability that the random walk is at vertex i after t steps,
and never leaves S. ��
Lemma 23.8. Let μ := |S|/n, and let D be the characteristic matrix of S.
Then for every vector w,

‖DADw‖ ≤ (λ+ μ)‖w‖ .

Proof. First note that there is no loss in assuming that w is supported by
D, that is, Dw = w. Otherwise we may replace w by Dw. This leaves the
left-hand side unchanged (since D · D = D) and does not increase the right-
hand side, since D is a contraction (that is, ‖Dw‖ ≤ ‖w‖). Similarly, we
may assume that w is non-negative. Also, by linearity of both sides we may
assume that

∑n
i=1 wi = 1 and so w can be expressed as:

Dw = w = u+ z where z is orthogonal to u.

Since A is doubly-stochastic and all entries of u are the same (equal to 1/n),
it follows that

DADw = DAu+DAz = Du+DAz

and hence
‖DADw‖ ≤ ‖Du‖+ ‖DAz‖ .

We now prove that ‖Du‖ ≤ μ · ‖w‖ and ‖DAz‖ ≤ λ · ‖w‖, which together
imply the claim.
Since

∑
iwi = 1, and w has at most |S| = μn nonzero coordinates, the

Cauchy–Schwarz inequality yields 1 =
∑

i wi ≤ √
μn · ‖w‖. Since ‖Du‖ =√

μ/n, we obtain ‖Du‖ = μ/
√
μn ≤ μ · ‖w‖.

As for the second term, we have ‖Az‖ ≤ λ · ‖z‖, since z is orthogonal to
1 and therefore is a linear combination of eigenvectors of A with eigenvalues
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of absolute values ≤ λ. But ‖DAz‖ ≤ ‖Az‖, since D is a contraction. Also
w = u+ z with u ⊥ z implies that

‖z‖2 =
∑
i

z2
i ≤

∑
i

(u2
i + z2

i ) =
∑
i

(ui + zi)2 = ‖w‖2 ,

where the second equality holds because
∑

i uizi = 0. Hence,

‖DAz‖ ≤ ‖Az‖ ≤ λ · ‖z‖ ≤ λ · ‖w‖ ,

as needed. ��
Now we turn to the actual proof of Theorem 23.6. Let p be the prob-

ability that the random t-walk will not leave the set S. By Lemma 23.7,
we known that p is the sum of entries in the vector x := (DA)tDu, where
u = (1/n, 1/n . . . , 1/n). By the Cauchy–Schwarz inequality 〈x, y〉 ≤ ‖x‖ · ‖y‖,
we have that x1+ · · ·+xn ≤ √

n · ‖x‖. Hence, since ‖u‖ = 1/√
n, Lemma 23.8

implies that

p ≤ √
n · ‖(DA)tDu‖ = √

n · ‖(DAD)tu‖

≤ √
n · (λ+ μ)t‖u‖ = (λ+ μ)t =

(
λ2
d
+ |S|

n

)t
,

as claimed. ��
To explain how Theorem 23.6 can be used to drastically reduce the number

of random bits used by probabilistic algorithms, let us consider the following
simplified scenario. We have a set S ⊆ [n] of “good” elements in some large
set [n]. We know nothing about S except that, say |S| ≥ n/2. A probabilistic
algorithm tries to find a good element with some large probability, at least
1− 1/K.
A trivial algorithm is to take t independent, uniformly distributed elements

of [n]. Since |S| ≥ n/2, the probability of missing S is at most 2−t, so it is
enough to take t = log2 K random points. But to generate a random point we
needm = log2 n random 0-1 bits. Thus, our algorithm uses about O(m·logK)
random bits in total.
Using expanders we can reduce the number of random bits in our algorithm

from O(m · logK) to O(m+ logK) as follows. Take an explicitly constructed
expander G of constant degree d on [n]. Take a random t-walk, where t is cho-
sen such that the probability of missing S is at most 1/K. By Theorem 23.6,
taking t = O(logK) suffices, provided λ < (1 − ε)d for some constant ε > 0.
We need about m = logn random bits to generate an initial vertex of a walk
and a constant number log2 d random bits in each step. Thus, the required
number of random bits is at most O(log n+ logK).
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Exercises

Exercises

23.1. Let P = (pi,j) be a transition matrix of a random walk on an undirected
connected graph G = (V,E) with n vertices V = {1, . . . , n}. That is, pi,j =
1/d(i) if {i, j} ∈ E, and pi,j = 0 otherwise. Let Hij be the expected number
of steps needed to visit state j for the first time, when starting from state i.
Define the vector π = (π1, . . . , πn) by

πi :=
d(i)
2|E| for i = 1, . . . , n.

Show that
∑n

i=1 πi = 1; π · P = π, and Hii = 1/πi for all i = 1, . . . , n.

23.2. Let N = 2n. The bipartite N ×N Sylvester graph G = (U ∪V,E) with
U = V = F

n
2 contains vectors in F

n
2 as vertices, and two vectors x ∈ U and

y ∈ V are adjacent iff their scalar product over F2 is equal to 1. Show that
this graph is 2n/2-Ramsey. Hint: Use Lindsey’s Lemma (Lemma 14.5).

23.3. (Razborov 1988). Let V = {1, . . . , N} be a set of players, N = 2n. A
tournament is an oriented graph T = (V,E) such that (i, i) �∈ E for all i ∈ V ,
and for any two players i �= j exactly one of (i, j) and (j, i) belongs to E. A
tournament is transitive if there exists a permutation σ of the players so that
(i, j) ∈ E if and only if σ(i) < σ(j). Let v(T ) be the largest number of players
in a transitive subtournament of T . It is known that: (a) v(T ) ≥ n + 1 for
every tournament T , and (b) tournaments T with v(T ) ≤ 2n+ 1 exist.
Every boolean function f(x, y) on 2n variables defines a tournament T (f)

with N = 2n players in a natural way: players are vectors in {0, 1}n, and
player a beats player b iff either a ≺ b and f(a, b) = 1, or b ≺ a and
f(b, a) = 0. Prove that there exists a sequence of boolean functions fn(x, y)
such that L(fn) = O(n5 logn) and v(T (f)) ≤ 2n + 1. Hint: Argue as in the
proof of Theorem 23.4. Instead of sets V of size 2n + 1 take sets of size 2n + 2, and
instead of the event “fE = 1 or fE = 0” consider the event “fE induces a transitive
subtournament of T (f).”
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24. Derandomization

Probabilistic thinking turns out to be uncannily effective for proving the
existence of combinatorial objects. Such proofs can often be converted into
randomized algorithms. There exist efficient randomized algorithms for prob-
lems that are not known to have efficient deterministic solutions. Even when
both deterministic as well as randomized algorithms are available for a prob-
lem, the randomized algorithm is usually simpler. This fact may be enough
to favor the randomized algorithm in practice. Sometimes, the route to deter-
ministic solution is via a randomized one: after a randomized algorithm has
been discovered, we may be able to remove the use of randomness. We will
illustrate such “derandomization” techniques.

24.1 The method of conditional probabilities

The aim of this method is to convert probabilistic proofs of existence of com-
binatorial structures into efficient deterministic algorithms for their actual
construction. The idea is to perform a binary search of the sample space Ω
for a good point. At each step, the current sample space is split into two equal
halves and the conditional probability of obtaining a good point is computed
for each half. The search is then restricted to the half where the conditional
probability is higher. The search terminates when only one sample point
(which must be good) remains. This method is applicable to large sample
spaces Ω since it requires only log2 |Ω| steps. In situations where the corre-
sponding conditional probabilities can be effectively computed (or at least
approximated) this approach works pretty well. To explain the idea, let us
consider the following problem.
Given a 3-CNF formula F (x1, . . . , xn), we want to find an assignment of

values 0 or 1 to x1, . . . , xn satisfying as many clauses as possible. If we assign
to each variable the value 0 or 1 at random independently and with equal
probability, then we may expect that at least 7/8 fraction of clauses will be
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24 Derandomization

satisfied, just because each clause is satisfied with probability 1− 2−3 = 7/8
(see Proposition 24.2).
But where is the assignment? The argument above guarantees only the

existence of such an assignment and gives no idea about how to find it. An
exhaustive search will always lead us to the desired assignment. But this
dummy strategy will require exponential (in n) number of steps. Can we do
better? It turns out that we can “derandomize” the probabilistic proof of ex-
istence so that it leads to a deterministic algorithm which is only polynomial
in the length of the input formula.
Before we turn to a formal description of the method, let us first try

to solve our special problem with the help of a chimpanzee (this beautiful
explanation is due to Maurice Cochand).
We build a binary tree whose 2n leaves correspond to the 2n possible

assignments. Leaves are close to the sky, as they should be. Going up to the
left branch at level i corresponds to choosing the value 0 for xi, going up to
the right gives xi the value 1.
In order to motivate the chimpanzee for this fascinating problem, we attach

at every leaf of the tree a black box containing a number of bananas equal to
the number of clauses satisfied by the assignment corresponding to that leaf.
We do then invite the chimpanzee to go up in order to bring down one of the
black boxes, making him most clearly the potential benefit of the operation.
We repeat this experiment many times, with many different trees corre-

sponding to as many formulas F , having different number of variables and
clauses. The chimpanzee never looked at the list of clauses (although he was
allowed to do it), did not even care about the number of variables. He moved
up quickly along the tree, and always brought back a box having a number
of bananas at least equal to 7/8 times the number of clauses!
We asked him for his secret (he definitely had one, this was more than

luck!). For a number of bananas we do not dare to mention here, he gave the
following answer:
“Embarrassingly simple,” he said. “At every junction I do the same: be-

cause of the weight, the branch supporting the subtree having the biggest
number of bananas is not as steep as the other one, there I go!”

24.1.1 A general frame

Suppose we have a sample space Ω, and assume, for simplicity, that it is
symmetric (i.e., each point has probability 1/|Ω|) and that Ω = {0, 1}n.
Let A1, . . . , Am be a collection of events, and consider the random variable
X = X1+ · · ·+Xm where Xi is the indicator random variable for Ai. Hence,
E[X ] =

∑m
i=1 Pr[Ai]. Also suppose that we have a proof that E[X ] ≥ k. So,

there is a point (a1, . . . , an) in the sample space in which at least k of the
events hold. Our objective is to find such a point deterministically.
Introduce n random variables Y1, . . . , Yn where each Yi takes value 0 or 1

independently with equal probability. We find the bits a1, a2, . . . sequentially
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24.1 The method of conditional probabilities

as follows. Assume a1, . . . , aj have already been fixed. Our goal is to choose
aj+1. We make this choice based on the value of “conditional” expectation

E[X |a1, . . . , aj ] :=
m∑
i=1
Pr[Ai | a1, . . . , aj],

where here and in what follows “a1, . . . , aj” stands for the event that
Y1 = a1, . . . , Yj = aj . By Adam’s Theorem (Exercise 3.1), for each choice
of a1, . . . , aj and for each event Ai, the conditional probability

Pr[Ai | a1, . . . , aj ]

of the event Ai given the values Y1 = a1, . . . , Yj = aj is the average

Pr[Ai | a1, . . . , aj , 0] + Pr[Ai | a1, . . . , aj , 1]
2 .

of the two conditional probabilities corresponding to the two possible choices
for Yj+1. Consequently,

E[X |a1, . . . , aj ] =
E[X |a1, . . . , aj, 0] + E[X |a1, . . . , aj , 1]

2
≤ max {E[X |a1, . . . , aj , 0], E[X |a1, . . . , aj , 1]} .

Therefore, if the values aj+1 are chosen, each one in its turn, so as to maximize
the value of E[X |a1, . . . , aj+1], then this value cannot decrease. Since this
value is k at the beginning, it follows that it is at least k at the end. But at
the end, each ai is fixed, and hence the value of E[X |a1, . . . , an] is precisely
the number of events that hold at the point (a1, . . . , an), showing that our
procedure works.
Note that the procedure above is efficient provided n is not too large (as is

usually the case in combinatorial examples) and, more importantly, provided
the conditional probabilities Pr[Ai | a1, . . . , aj] can be computed efficiently.
To see how the “chimpanzee algorithm” from the previous section fits in

this general frame, just observe that the total weight of the bananas in the
subtree reached by the chimpanzee after j moves a1, . . . , aj is the number of
clauses X in F , times the conditional expectation E[X |a1, . . . , aj ].

24.1.2 Splitting graphs

A widely applied remark of Paul Erdős is that a graph with m edges always
contains a bipartite subgraph of at least m/2 edges. This fact has a quick
probabilistic proof.

Theorem 24.1 (Erdős 1965c). Every graph with m edges always contains a
bipartite subgraph of at least m/2 edges.
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Proof. Let G = (V,E) with the vertex set V = {1, . . . , n}. Take a random
subset U ⊆ V given by Pr[i ∈ U ] = 1/2, these probabilities being mutually
independent. Call an edge e = {i, j} crossing if exactly one of i, j is in U . Let
X be the number of crossing edges. Then X =

∑
e∈E Xe, where Xe is the

indicator random variable for the edge e being crossing. For a given edge e,
E[Xe] = 1/2 as two fair coin flips have probability 1/2 of being different. By
linearity of expectation,

E[X ] =
∑
e∈E
E[Xe] =

|E|
2 .

Thus, X ≥ |E|/2 for some choice of U , and the set of those (corresponding
to this particular U) edges forms the desired bipartite subgraph. ��
The proof of this theorem gives us a randomized algorithm to find a bipar-

tite subgraph whose expected number of edges is at least |E|/2. Moreover,
Luby (1986) has shown how it can be converted to a linear time deterministic
algorithm.
We use the conditional expectations to derandomize the algorithm. Intro-

duce n random variables Y1, . . . , Yn where Yi = 1 if i ∈ U , and Yi = 0,
otherwise. Select an a1 ∈ {0, 1} such that E[X |Y1 = a1] ≥ E[X |Y1 = a1 ⊕ 1],
and set Y1 = a1. Repeat this process for all Yi’s. At the end we have an
assignment for all Yi’s such that E[X |Y1 = a1, . . . , Yn = an] ≥ |E|/2. But X
is no longer a random variable at this point (since U is completely defined),
so X ≥ |E|/2.
What is the running time? To determine each ai, we need to count the

number of edges between vertices in the current U and vertex i, the number
of edges between vertices in the current V \ U and vertex i. If the former is
smaller than the latter, we set ai = 1; otherwise, we set ai = 0. This means
that we only need to check the edges incident to vertex i to determine ai. So
the running time of this algorithm is O(n+ |E|).

24.1.3 Maximum satisfiability: the algorithmic aspect

Recall that a k-CNF formula (or conjunctive normal form) over a set of
variables x1, . . . , xn is an And of an arbitrary number of clauses, where a
clause is an Or of k literals, each literal being either a variable xi or a negated
variable xi. An assignment is a mapping which assigns each variable one of
the values 0 or 1. An assignment satisfies a clause if it satisfies at least one
of its literals.

Proposition 24.2. For any k-CNF formula there is an assignment that sat-
isfies at least (1− 2−k) fraction of its clauses.

Proof. Let F be a k-CNF formula on n variables x1, . . . , xn with m clauses.
Assign each variable xi the value 0 or 1 independently at random with prob-
ability 1/2. Since each clause will be satisfied with probability 1 − 2−k, the
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expected number of satisfied clauses is m(1 − 2−k). By the pigeonhole prin-
ciple of expectation, there must exist an assignment satisfying this many of
clauses. ��
Using conditional expectations, this proof can be transformed to a deter-

ministic algorithm. If Z = Z(x1, . . . , xn) is the number of satisfied by our
random assignment clauses, then (as before)

E[Z|(x1, . . . , xi) = (a1, . . . , ai)] =
1
2E[Z|(x1, . . . , xi+1) = (a1, . . . , ai, 0)]

+ 12E[Z|(x1, . . . , xi+1) = (a1, . . . , ai, 1)] ,

for i = 0, . . . , n−1. We iteratively choose a1, a2, . . . , an to maximize the condi-
tional expectation. The above equality implies that in doing so the conditional
expectation never goes below the starting point m(1 − 2−k) guaranteed by
Proposition 24.2.

24.2 The method of small sample spaces

The problem with randomized algorithms is that usually their sample spaces
are of exponential size, so that an exhaustive search is impossible. It turns
out however, that a (uniform) sample space Ω associated with a randomized
algorithm always contains a polynomial-sized subspace S ⊆ Ω which still has
a good point for each possible input, i.e., for every input x there is a point
r ∈ S such that A(x, r) = f(x).

Theorem 24.3 (Adleman 1978). There exists a set S ⊆ Ω of size |S| ≤ n
such that for every input x ∈ {0, 1}n there is at least one good point in S.

Proof. Let M = (mx,r) be a 2n × |Ω| 0-1 matrix whose rows are labeled by
inputs and columns by points in the sample space, such that mx,r = 1 if r is
a good point for x, and mx,r = 0, otherwise.
The desired set S ⊆ Ω is constructed iteratively. Initially, S is empty. Since

Pr[A(x, r) = f(x)] ≥ 1/2, each row of M has at least |Ω|/2 ones. Thus, for
at least one column r in M , at least half of its entries must be 1s, and hence,
there exists a point r ∈ Ω that is good for at least half of the inputs x. We
add this point r to S, delete all the rows in M corresponding to inputs for
which r is good, and repeat the argument for the resulting submatrix. After
at most log2 2n = n iterations there will be no rows, and the obtained set S
of points has the desired properties. ��
Unfortunately, the above result is highly non-constructive and it cannot

be used to actually derandomize algorithms. This difficulty was overcome in
certain cases by constructing a (different) polynomial-sized sample spaces.
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24.2.1 Reducing the number of random bits

Let f(x) be some function; for simplicity assume that its domain is the n-
cube {0, 1}n. A randomized algorithm A for f works as follows. For a given
input x, the algorithm first performs a sequence of coin flips to produce a
random string r ∈ {0, 1}m, and then computes the value A(x, r). Hence, for
each input x, the output of the algorithm is a random value. The algorithm
computes f with error probability ε ≤ 1/2 if for each input x ∈ {0, 1}n,

Prr [A(x, r) 	= f(x)] ≤ ε .

For various reasons it is important to keep the number m of random bits
as small as possible. If m 
 log2 n, then the number of random bits can be
reduced to about log2 n.

Theorem 24.4 (Newman 1991). For every δ > 0 there is a randomized al-
gorithm B of error probability ε+ δ and the same run-time for f which uses
only about log(n/δ2) random bits.

Proof. Let Z(x, r) be the indicator random variable for the event that
A(x, r) 	= f(x). Because A computes f with ε error, we have Er [Z(x, r)] ≤ ε,
for all x. We will build a new algorithm B, which uses fewer random bits,
using the probabilistic method.
Let t be a parameter (to be fixed) and r1, . . . , rt be strings in {0, 1}m.

For such strings, define an algorithm Br1,...,rt as follows: For each input
x, choose i ∈ [t] uniformly at random (using log2 t random bits) and then
compute A(x, ri). We now show that there exist strings r1, . . . , rt such that
Ei [Z(x, ri)] ≤ ε+ δ, for all inputs x.
To do this, we choose the t strings r1, . . . , rt independently at random.

Consider a particular input x and compute the probability that Ei [Z(x, ri)] >
ε+δ, where i in this expectation is uniformly distributed in [t]. This probabil-
ity is exactly the probability that the sum X :=

∑t
j=1 Z(x, rj) is larger than

(ε+ δ)t. Since Er [Z(x, r)] ≤ ε, we have that E [X ] ≤ εt. Chernoff’s inequality
(see Theorem 18.22) implies that

Pr[X ≥ εt+ δt] ≤ e−δ2t2/2t = e−δ
2t/2 .

By choosing t = Θ(n/δ2), this is smaller than 2−n. Thus, for a random
choice of r1, . . . , rt the probability that Ei [Z(x, ri)] > ε+ δ for some input
x is smaller than 2n · 2−n = 1. This implies that there exists a choice of
r1, . . . , rt, where for every x the error of the algorithm Br1,...,rt is at most
ε+ δ. Finally note that the number of random bits used by this algorithm is
log2 t = O(log(n/δ2)). ��
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24.2.2 k-wise independence

Another way of constructing a small sample space is by showing that the
probabilistic choices of the randomized algorithm are only required to be k-
wise independent; then a sample space of size O(nk) suffices. Another way is
to consider “small bias” probability spaces, i.e., to construct small probability
spaces that “behave similarly” to larger probability spaces in certain senses.
Let X1, . . . , Xn be random variables taking their values in a finite set

S. These variables are k-wise independent if any k of them are mutually
independent, i.e., if for every sequence (si1 , . . . , sik) of k values sij ∈ S,

Pr[Xi1 = si1 , . . . , Xik = sik ] =
k∏
j=1
Pr[Xij = sij ].

To illustrate how k-wise independence can help us to derandomize proba-
bilistic proofs, let us look more carefully at the proof of Theorem 24.1. This
theorem states that every graph G = (V,E) contains a bipartite subgraph
of at least |E|/2 edges. That is, there is a subset U ⊆ V of vertices such
that at least one half of the edges in E join vertices from U with those from
V \U . We used random variables to produce the desired (random) subset U .
Namely, for each vertex i ∈ V , we flip a coin to decide whether to include
this vertex into the set U or not. This requires n = |V | coin flips, and hence,
the whole sample space is huge – it has 2n points.
A closer look at this proof shows that the independence is used only to

conclude that, for any two vertices i 	= j, the events i ∈ U and j ∈ U are
independent. We need this independence to show that

Pr[i ∈ U , j 	∈ U ] = Pr[i ∈ U ] · Pr[j /∈ U ] = 1/4.

So, in this proof 2-wise independence of the indicator random variables Xi

for the events “i ∈ U” suffices. This observation allows us to substantially
reduce the size of a sample space as follows (see Exercise 24.3 for more direct
construction).
Look at our random set of vertices U ⊆ V as a sequence of random

colorings X1, . . . , Xn : V → {0, 1}, where Xi = 1 iff i ∈ U . Our goal is to
construct as small as possible sample space for these colorings, in which they
are pairwise independent.
Suppose for simplicity that n = 2d for some d, and identify the vertices

with the elements of the field Fn. Choose two elements a and b of this field ran-
domly and independently, and define for each element i the random variable
Zi = a · i+ b.
Claim 24.5. Z1, . . . , Zn are 2-wise independent.

Proof.
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Pr[Zi = x, Zj = y] = Pr[ai+ b = x, aj + b = y]

= Pr
[
a = x − y

i− j
, b = yi − xj

i − j

]
= 1
n2

= Pr[Zi = x] · Pr[Zj = y]. ��

Encode the elements of Fn by binary strings of length d, and let Xi be
the first bit of the code of i-th element. By the claim, the random variables
Xi are also 2-wise independent and uniform on {0, 1}. Now color the vertex
i by the color Xi. Each coloring so obtained is defined by the pair (a, b) of
elements from our field Fn. Thus, the whole sample space has size only n2,
and we can perform an exhaustive search of it to find the desired coloring.
Another example is Theorem 4.17 from Sect. 4.9 saying that the edges of

Kn can be colored in two colors so that we get no monochromatic K2 logn. In
this proof, a variable Xi gives the color of the i-th edge. Their independence
is used only to estimate the probability that all the edges of some fixed
clique on 2 logn vertices, receive the same color. Hence, once again, the k-
wise independence with k =

(2 logn
2

)
= O((log n)2) is sufficient. The reader

is encouraged to convince himself/herself that in most of the previous proofs
k-wise independence with k � n works.
Now suppose that for some probabilistic proof, k-wise independence is

enough. One may expect that then a sample space Ω of a size much smaller
than 2n would suffice. How much?
In combinatorial terms, we are looking for a set Ω ⊆ {0, 1}n with the

following property: for every set of k coordinates, each vector from {0, 1}k is
a projection (onto these k coordinates) of one and the same number of vectors
in Ω. Thus, if we let X = (X1, . . . , Xn) be a string chosen uniformly from Ω
then, for any k indices i1 < i2 < · · · < ik and any k-bit string α ∈ {0, 1}k,

Pr[(Xi1 , Xi2 , . . . , Xik) = α] = 2−k,

i.e., the coordinates Xi are k-wise independent.
Taking the duals of binary BCH codes, it is possible, for every fixed k, to

construct a k-wise independent sample space Ω of size |Ω| = O(n�k/2�). The
construction can be found, for example, in the book of Alon and Spencer
(1992); see also Exercise 17.1. The idea is to show that the dual code is not
only (n, k)-universal (as we have proved in Sect. 17.4) but is such in a very
strong sense: for every set of k coordinates, every 0-1 vector of length k is a
projection of one and the same number of code words onto these coordinates.
It is natural to ask if this construction is optimal. It turns out that, indeed,

the bound n�k/2� cannot be improved, up to a constant factor (depending on
k). Say that a random variable is almost constant if it takes a single value with
probability 1. Let m(n, k) denote the following sum of binomial coefficients:

m(n, k) :=
k/2∑
i=0

(
n

i

)
if k is even,
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and

m(n, k) :=
(k−1)/2∑
i=0

(
n

i

)
+

(
n − 1
(k + 1)/2

)
if k is odd.

Observe that for every fixed k, m(n, k) = Ω(n�k/2�).

Theorem 24.6 (Alon–Babai–Itai 1986). Assume that the random variables
X1, . . . , Xn over a sample space Ω are k-wise independent and none of them
is almost constant. Then |Ω| ≥ m(n, k).

Note that we assume neither that the variables Xi are (0, 1)-variables nor
that Ω is a symmetric space.

Proof. We can assume that the expected value of eachXi is 0 (since otherwise
we can replace Xi by Xi − E[Xi]). For a subset S ⊆ {1, . . . , n}, define

αS :=
∏
i∈S

Xi.

Since no Xi is almost constant and since the variables are k-wise independent,

E[αSαS ] =
∏
i∈S
E[X2

i ] > 0 (24.1)

for all S satisfying |S| ≤ k. Similarly (and since E[Xi] = 0), for all S 	= T
satisfying |S ∪ T | ≤ k, we have

E[αS · αT ] =
∏

i∈S∩T
E[X2

i ] ·
∏

i∈(S∪T )\(S∩T )

E[Xi] = 0. (24.2)

Now let S1, . . . , Sm be all the subsets of {1, . . . , n} such that the union of
each two is of size at most k. Then m = m(n, k). (Take all sets of size at
most k/2, and if k is odd add all the subsets of size (k + 1)/2 containing 1.)
To complete the proof, we show that the functions αS1 , . . . , αSm (consid-

ered as real vectors of length |Ω|) are linearly independent. Since their number
m cannot then exceed the dimension |Ω|, this will imply the result.
To prove the linear independence, take a linear combination

∑m
i=1 λiαSi .

Then for every j, multiplying by αSj and computing expected values we
obtain, by (24.2),

0 =
m∑
i=1

λiE[αSi · αSj ] = λjE[αSj · αSj ].

By (24.1), this implies that λj = 0 for all j, and the required linear indepen-
dence follows. ��
Finally, let us mention one recent result in computational complexity con-

cerning the k-independence. Let f : {0, 1}n → {0, 1} be boolean function. Let
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24 Derandomization

x be a random vector in {0, 1}n with some probability distribution. Say that
x ε-fools the function f if |Ex [f(x)] − Ey [f(y)] | < ε, where y is a random
vector uniformly distributed in {0, 1}n. That is, the function f cannot distin-
guish x from a uniformly distributed random vector. Let F (n, s) be the set
of all boolean functions in n variables computable by constant-depth circuits
using at most s Not and unbounded fanin And, Or gates.
Braverman (2009) proved that, if k is poly-logarithmic in s/ε, then every

function in F (n, s) is ε-fooled by a k-independent random vector x. That is,
shallow circuits of constant depth cannot distinguish k-independent random
vectors from truly random ones.

24.3 Sum-free sets: the algorithmic aspect

In previous sections we considered two general approaches toward derandom-
izing of probabilistic proofs. In this section we will give one example to demon-
strate that sometimes the desired polynomial-time algorithm is hidden in the
existence proof itself.
A subset B of an additive group is called sum-free if x + y 	∈ B for all

x, y ∈ B. Erdős (1965a) and Alon and Kleitman (1990) have proved that
every finite set A of integers has a sum-free subset B, with |B| ≥ |A|/3.
The proof is probabilistic (see Theorem 18.2) and the question was whether
there exists a deterministic algorithm for the selection of such a subset B,
which runs in time polynomial in the (binary) size of the problem, that is in∑

a∈A log2 |ai|.
Kolountzakis (1994) has shown that, with a slight modification, the proof

of Theorem 18.2 can be transformed to such an algorithm.
For a prime p let (as before) Zp = {0, 1, . . . , p−1} be the field of the integers

mod p, and let Z
∗
p = {1, 2, . . . , p − 1} be the corresponding multiplicative

group in Zp.

Lemma 24.7. Let p be a prime number of the form p = 3k + 2. Then, for
every nonnegative weight function on Z

∗
p, there is a sum-free subset E ⊆ Z

∗
p

whose weight is at least one third of the total weight.

Proof. Let w(x) be a nonnegative weight function defined on Z
∗
p. Write S =

{k+ 1, k+ 2, . . . , k+ (k + 1)}, and observe that S is a sum-free subset in Zp

and |S| = k + 1 ≥ (p − 1)/3. Let W =
∑

x∈Z∗p
w(x) be the total weight of

all elements, and let the random variable t be uniformly distributed in Z
∗
p.

Write f(t) :=
∑

w(x), where the sum is over all x for which x ·t ∈ S, and the
product x·t is computed in Zp. If ξx denotes the indicator random variable for
the event x · t ∈ S, then Pr[ξx = 1] = |S|/(p− 1) and f(t) =∑

x∈Z∗p
w(x) · ξx.

Hence,
E[f(t)] =

∑
x∈Z∗p

w(x)E[ξx] =W · (|S|/(p − 1)) ≥ W/3
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By the pigeonhole property of the expectation, there is some t ∈ Z
∗
p for which

f(t) ≥ W/3. Define E := t−1S. This set is sum-free and, since x · t ∈ S iff
x ∈ t−1S, has weight∑

x∈E
w(x) =

∑
x:x·∈S

w(x) = f(t) ≥ W/3 . ��

We now turn this proof into an algorithm. Given a set A of integers of
(binary) size 	 :=

∑
a∈A log2 |a|, our goal is to find a sum-free subset B, with

|B| ≥ |A|/3, in time polynomial in 	. We assume that 	 is large.
First, observe that the number of prime factors of an integer x is at most

log2 x. This means that the number of prime factors which appear in the
factorization of any element of A is at most 	. The Prime Number Theorem
(see, for example Zagier (1997)) says that for every pair b, c of relatively
prime positive integers, the number of primes p ≤ x such that p is of the
form p = bk + c, asymptotically equals to χ(x) = x/(ϕ(b) · ln x), where ϕ(b)
is the Euler totient function (the number of numbers in Zp relatively prime
to b). In our case b = 3 and c = 2; hence, ϕ(b) = 2. Recall that the numbers
in A have at most 	 prime factors in total. So, if we take x = c	 log2 	 for a
large enough constant c (independent on 	), then χ(x) is strictly larger than
	, implying that there must be a prime p ≤ c	 log2 	 of the form p = 3k + 2
which does not divide any member of A.
Define now the weight w(x) of a number x ∈ Z

∗
p as the number of elements

a ∈ A such that a mod p = x. Since p does not divide any member of A, all
residues x = a mod p of numbers a ∈ A belong to Z

∗
p (none of them is equal

to 0), implying that the sets Ax = {a ∈ A : a mod p = x} with x ∈ Z
∗
p form a

partition of A. Thus,W =
∑

x∈Z∗p
w(x) = |A| and, using Lemma 24.7, we can

find a sum-free subset E ⊆ Z
∗
p for which the set B = {a ∈ A : a mod p ∈ E}

has at least W/3 = |A|/3 elements. This set B is sum-free since x+ y = z for
some x, y, z ∈ B would imply x+ y = z mod p and E would not be sum-free.
In summary, the steps of our algorithm are the following.

1. Compute all primes up to c	 log2 	.
2. Find a prime p = 3k + 2 which divides no element of A.
3. Compute the values w(x) for all x ∈ Z

∗
p.

4. Find by exhaustive search a t ∈ Z
∗
p for which f(t) > |A|/3 (Lemma 24.7

guarantees that such t exists) and compute the set E = t−1S.
5. Construct the set B = {a ∈ A : a mod p ∈ E}.
It is easy to verify (do this!) that all these steps can be carried out in time
polynomial in 	.
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Exercises

24.1. Use the method of conditional probabilities to derandomize the proof
of Theorem 4.17 and Theorem 25.3.

24.2. Let G = (V,E) be a graph with n = 2m vertices. Improve the lower
bound |E|/2 on the size of a cut in G (proved in Theorem 24.1) to |E| times
m/(2m − 1). Hint: Follow the argument of Theorem 24.1 with another probability
space: choose U ⊆ V uniformly from among all m-element subsets of V . Observe that
then any edge has probability m/(2m− 1) of being crossing.

24.3. Let r be a random vector uniformly distributed in F
d
2. With each vector

a ∈ F
d
2 associate a random variable Xa = 〈a, r〉 whose value is the scalar

product over F2 of this vector with r. Show that these random variables are
2-wise independent. Hint: Exercise 18.11.

24.4. Let X1, . . . , Xn be pairwise independent random variables with the
identical expectation, denoted μ, and identical variance, denoted σ2. Let Z =
(
∑

Xi)/n. Use Chebyshev’s inequality to prove that

Pr [|Z − μ| ≥ λ] ≤ σ2

λ2n
.

Hint: Consider the random variables Yi := Xi−E [Xi]. Note that the Yi’s are pairwise in-
dependent, and each has zero expectation. Apply Chebyshev’s inequality to the random
variable Z = (

∑
Xi)/n, and use the linearity of expectation to show that

Pr [|Z − μ| ≥ λ] ≤ E[(
∑

Yi)2]/(λ2 · n2) .

Then (again using the linearity of expectation) show that E[(
∑
Yi)2] = n · σ2.

24.5. Letm > 4, and letH be anm×n 0-1 matrix, the average density of (i.e.,
the average number of 1s in) each row of which does not exceed p, 0 ≤ p < 1.
Show that then, for every constant δ > 0, there is an m × t submatrix H ′
of H such that t = O(log(m/δ2)) and each row of H ′ has average density
at most p + δ. Hint: Let ξ be a random variable uniformly distributed in {1, . . . , n}
and let ξ1, . . . , ξt be its independent copies, t = �4p log(m/δ2)�. First, observe that with
probability strictly larger than 1/2 all the selected columns ξ1, . . . , ξt are distinct. Next,
fix a row x1, . . . , xn ofH, and consider the 0-1 random variables Xi = xξi , for i = 1, . . . , t.
Observe that Pr[Xi = 1] ≤ p and apply the Chernoff inequality (Theorem 18.22) to
show that the average density (

∑
Xi)/t of 1s in the selected columns can exceed p+ δ

with probability at most 1/m2. Since we have only m rows, with probability at least
1− 1/m > 1/2, all the rows of the selected submatrix will have average density at most
p+ δ.

24.6. Let f(x) be a boolean function on n variables x = (x1, . . . , xn).
Let F (x, y) be a formula with an additional set of boolean variables y =
(y1, . . . , ym). The size |F | of the formula F is the number of leaves in it. Let
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y be a random vector taking its values in {0, 1}m independently and with
equal probability 2−m. Suppose that F (x, y) computes f with (one-sided)
failure probability p. That is, for every input a ∈ {0, 1}n, Pr[F (a,y) 	= f(a)]
is zero if f(a) = 0, and is at most p if f(a) = 1.

(a) Use Adleman’s theorem to show that, if p ≤ 1/2, then f can be computed
by a usual (deterministic) formula of size O(n · |F |).

(b) The formula F (a,y) can be written in the form

F (a,y) =
∑

F (x, b) · Xb,

where the sum is over all b ∈ {0, 1}m and Xb is the indicator random
variable for the event “y = b.” This formula uses m random bits (to
chose a particular formula F (x, b)). Use Exercise 24.5 to essentially reduce
this number of random bits until O

(
log(m/δ2)

)
at the cost of a slight

increase of failure probability by δ. Namely, prove that there is a subset
B = {b1, . . . , bt} of t = O(m/δ2) vectors such that the formula

F ′(x, z) =
t∑
i=1

F (x, bi) · Yi

computes the same boolean function f with failure probability at most
p + 1/4; here z is a random variable taking its values in {1, . . . , t} in-
dependently and with equal probability, and Yi is the indicator random
variable for the event “z = i.”
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25. Ramseyan Theorems for Numbers

In 1930 Frank Plumpton Ramsey wrote a paper On a problem in formal logic
which initiated a part of discrete mathematics nowadays known as Ramsey
Theory. At about the same time B.L. van der Waerden (1927) proved his
famous Ramsey-type result on arithmetical progressions. A few years later
Ramsey’s theorem was rediscovered by P. Erdős and G. Szekeres (1935) while
working on a problem in geometry. In 1963 A.W. Hales and R.I. Jewett
revealed the combinatorial core of van der Waerden’s theorem and proved a
general result which turned this collection of separate ingenious results into
Ramsey Theory.
In this chapter we discuss several Ramsey-type problems in additive num-

ber theory.

25.1 Arithmetic progressions

Let W (r, k) be the least number n such that any coloring of {1, 2, . . . , n} in
r colors gives a monochromatic arithmetic progression with k terms, i.e., for
any such coloring there exist integers a, b such that all the points

a, a+ b, a+ 2b, . . . , a+ (k − 1)b

get the same color. In other words, a sequence a1, a2, . . . , ak of numbers is
an arithmetic progression if and only if each its element ai (1 < i < k) is the
arithmetic mean ai = (ai−1 + ai+1)/2 of its two neighbors. The existence of
W (r, k) for any r and k is the celebrated theorem of van der Waerden (1927).

Theorem 25.1 (Van der Waerden 1927). For every choice of positive inte-
gers r and k, there exists a positive integer n = W (r, k) such that for every
coloring of the set of integers {1, . . . , n} in r colors at least one arithmetic
progression with k terms will be monochromatic.
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25 Ramseyan Theorems for Numbers

In Sect. 26.1 we will show how this theorem can be derived using a very
powerful Ramsey-type result due to Hales and Jewett (1963).
Using much more involved techniques, Szemerédi (1975) obtained the fol-

lowing improvement of Van der Waerden’s theorem.
Theorem 25.2 (Szemerédi 1975). For any c > 0 and k ≥ 3, there is n0 such
that for any n ≥ n0 and any set S ⊆ [n] of size |S| ≥ cn, S contains an
arithmetic progression of length k.
It can be seen that this implies Van der Waerden’s theorem, since we can

set c = 1/r and for any r-coloring of [n], one color class contains at least cn
elements. Szemerédi’s theorem is a “density type” statement: any sufficiently
large subset must contain a long arithmetic progression.
Using this fundamental result, Green and Tao (2008) were able to prove

that, for every k, there exists a length-k arithmetic progression consisting
entirely of prime numbers.
How fast does the number W (r, k) in Van der Waerden’s theorem grow?

Easy probabilistic argument shows that the growth is exponential, even for
r = 2.
Theorem 25.3. W (2, k) > 2k/2. That is, the set {1, . . . , n} may be two-
colored so that no 2 logn-term arithmetic progression is monochromatic.
Proof. Color {1, . . . , n} randomly. That is, we flip a coin n times to determine
a color of each point. For each arithmetic progression S with k terms, let AS
be the event that S is monochromatic. Then Pr[AS ] = 2 · 2−|S| = 2−k+1.
There are no more than

(
n
2
)
progressions (since each is uniquely determined

by its first and second elements); so if
(
n
2
)
2−k+1 < 1, we have that Pr [

⋃
AS ] ≤∑

Pr [AS ] < 1, and the desired coloring exists. Therefore W (2, k) must be
larger than any n for which

(
n
2
)
2−k+1 < 1, e.g., for which n2 ≤ 2k. ��

Using the Lovász Local Lemma this lower bound can be improved to
W (2, k) > 2k/(2ek) (see Exercise 19.3). However, even this lower bound is
very far from the best known upper bound due to Timothy Growers:

log2 log2 W (r, k) ≤ r22k+9

.

Ron Graham conjectures that W (2, k) ≤ 2k2 .
Let us ask a slightly different question: What is the smallest number r =

rk(n) of colors needed to color 1, 2, . . . , n such that no length-k arithmetic
progression is colored monochromatically? That is, r = rk(n) is the minimal
number for which W (r, k) > n.
Determining the true rate of growth of rk(n) is a difficult problem. It is

known that rk(n) is unbounded for fixed k, however, for k ≥ 4 it can only be
shown to grow extremely slowly.
We now relate rk(n) to another Ramsey-like function. Let Ak(n) be the size

|S| of a largest subset S ⊆ {1, . . . , n} that contains no arithmetic progression
of length k.

358



25.1 Arithmetic progressions

Theorem 25.4.
n

Ak(n)
≤ rk(n) ≤ (4n+ 2) lnn

Ak(n)
.

Proof. Lower bound. Let r = rk(n). The set {1, . . . , n} can be r-colored in
such a way that there are no length-k monochromatic arithmetic progressions.
By the pigeonhole principle, some color must be used at least n/r times, and
hence, some color class S has size |S| ≥ n/r and has no arithmetic progression
of length k. Therefore, Ak(n) ≥ |S| ≥ n/r, implying that r ≥ n/Ak(n).

Upper bound. Assume that S is a subset of [n] = {1, . . . , n} that con-
tains no arithmetic progressions of length k, and set � := (4n + 2) lnn/|S|.
We demonstrate that the upper bound on rk(n) holds by proving that it is
possible to color the set [n] with cn lnn/|S| colors so that none of length-k
monochromatic progressions are left monochromatic. Since the set S has no
arithmetic progression of length k, it is enough to show that we can cover the
set {1, . . . , n} by at most � translates S + t1, . . . , S + t� of S; here, as before,
S + t = {a+ t : a ∈ S}. Having such a covering, we can define the coloring
χ : [n]→ [�] by setting χ(x) = min{i : x ∈ S + ti}. So, it is enough to prove
the following

Claim 25.5. Let S ⊆ [n]. No more than O(n log n/|S|) translates of S are
needed to cover [n].

We use a probabilistic argument. Pick the number t in the interval −n
to n at random independently and uniformly; hence, each number t in this
interval is picked with the same probability p = 1/(2n + 1). Note that a
number x ∈ [n] belongs to a translate S + t iff t = x − a for some a ∈ S. So,
Pr [x ∈ S + t] = p|S|.
Now let t1, . . . , t� be � independent copies of t. The probability that a fixed

number x ∈ [n] is covered by none of the � translates S + ti, i = 1, . . . , � is
(1− p|S|)�. Since we have only n numbers x in [n], the probability that some
of the numbers remains uncovered is at most

n(1 − p|S|)� = n

(
1− |S|
2n+ 1

)�
≤ exp

(
lnn− �|S|

2n+ 1

)
= 1
n
< 1 . ��

In the case k = 3 we have the following lower bound on Ak(n). Recall that
a length-3 arithmetic progression a, a+ d, a+2d is just a set of three distinct
numbers x = a, y = a+ 2d and z = a+ d such that x+ y = 2z.

Theorem 25.6 (Behrend 1949). If n is a large enough, then A3(n) ≥
ne−O(

√
lnn).

Proof. The proof relies on the geometrical observation that a straight line
can intersect a sphere in Z

m in at most two points. In other words, the set
{x ∈ Z

m : ‖x‖ = r} with r > 0 and m ≥ 1 cannot contain an arithmetic
progression of length three, that is, three vectors x, y, z in Z

m such that
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x + y = 2z. So, we only need to map this example back to [n] = {1, . . . , n}.
Let m,M be large integers which we shall determine later, and consider the
spheres

S(r) = {x ∈ [M ]m : x2
1 + · · ·+ x2

m = r2} .
Note that as r2 ranges from m to mM2, these sets cover the cube [M ]m,
which is of cardinality Mm. By the pigeonhole principle, there must exist
a radius

√
m ≤ r0 ≤ √

mM such that the sphere S = S(r0) in [M ]m has
cardinality

|S| ≥ Mm

mM2 − m
>
Mm−2

m
.

Now we map S to {1, . . . , n} via a mapping

P (x) = P (x1, . . . , xm) :=
1
2M

m∑
i=1

xi(2M)i .

It is then not difficult to check that: (i) P is injective, (ii) x+y = 2z whenever
P (x) + P (y) = 2P (z), and (iii) maxx∈S P (x) ≤ (2M)m. Therefore, if we set
M := �n1/m/2�, it follows that the set P (S) lies in {1, . . . , n} and contains
no arithmetic progression of length three. Setting m :=

√
log2 n we see that

P (S) has cardinality

|P (S)| = |S| ≥ n1−2/m

m2m ≥ n exp(−c
√
lnn) . ��

Theorems 25.4 and 25.6 yield the following upper bound on r3(n).

Corollary 25.7. At most eO(
√

lnn) colors are enough to color {1, 2, . . . , n} so
that no length-3 arithmetic progression is colored monochromatically.

25.2 Szemerédi’s cube lemma

A collection C of integers is called an affine d-cube if there exist d+1 positive
integers x0, x1, . . . , xd so that

C =
{
x0 +

∑
i∈I

xi : I ⊆ {1, 2, . . . , d}
}
.

If an affine cube is generated by x0, x1, . . . , xd then we write

C = C(x0, x1, . . . , xd).
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For example, C(1, 1, 1) = {1, 2, 3},C(1, 3, 9) = {1, 4, 10, 13} andC(1, 2, 2, 2) =
{1, 3, 5, 7}. In particular, every arithmetic progression a, a+b, a+2b, . . . , a+db
is an affine d-cube C(a, b, b, . . . , b).
The following result is a version of Van der Waerden’s theorem for affine

cubes.

Lemma 25.8. For every d, r ≥ 1 there exists an n = S(d, r) with the follow-
ing property. If we color the set {1, . . . , n} in r colors then all the elements
of at least one affine d-cube lying in this set will receive the same color.

Proof. We argue by induction on d. The case d = 1 is obvious, so assume
that n = S(r, d − 1) exists and take S(r, d) := rn + n.
Suppose N ≥ S(r, d) and {1, . . . , N} is colored in r colors. Consider the

colors of the strings of n consecutive numbers

i, i+ 1, . . . , i+ n− 1 for 1 ≤ i ≤ rn + 1.

We have rn + 1 such strings of numbers but only rn possible strings of their
colors (we have only r colors in our disposal). By the pigeonhole principle,
some two strings

i, i+ 1, . . . , i+ n − 1;
j, j + 1, . . . , j + n− 1,

with i < j, will receive the same sequence of colors. That is, for each x in
{i, i+1, . . . , i+ n− 1}, the numbers x and x+ (j − i) receive the same color.
By the choice of n = S(r, d − 1), the set {i, i+ 1, . . . , i + n − 1} contains

a monochromatic affine (d − 1)-cube C(x0, x1, . . . , xd−1). But then all the
numbers of the affine d-cube C(x0, x1, . . . , xd−1, j − i) have the same color.
Since j − i ≤ rn, this cube lies in {1, . . . , N}, and we are done. ��
The following important result of Szemerédi (1960) implies that in every

coloring of {1, . . . , n} by r ≤ (4n)1/2d−1
/4 colors, at least one color class will

contain an affine d-cube.

Lemma 25.9 (Szemerédi’s Cube Lemma). Let d ≥ 2 be given. Then, for
every sufficiently large n, every subset A of {1, . . . , n} of size

|A| ≥ (4n)1−1/2d−1

contains an affine d-cube.

Proof. We will iteratively use the following fact: if B ⊆ {1, . . . , n}, |B| ≥ 2,
then there is a i ≥ 1 such that the set Bi := {b ∈ B : b+ i ∈ B} has size

|Bi| > |B|2
4n . (25.1)

This immediately follows from the equality (see Exercise 25.9):
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n−1∑
i=1

|Bi| =
(|B|
2

)
. (25.2)

Applying this fact to the set A, we will find i1 ≥ 1 such that

|Ai1 | > |A|2
4n ≥ (4n)

2−2/2d−1

4n = (4n)1−1/2d−2
.

Similarly, applying the fact to the set Ai1 , we will find i2 ≥ 1 such that

|Ai1,i2 | = |(Ai1 )i2 | > |Ai1 |2
4n ≥ (4n)

2−2/2d−2

4n = (4n)1−1/2d−3
.

Continuing this process, we will find i1, i2, . . . , id−1 such that

|Ai1,i2,...,id−1 | > (4n)1−1/2d−d = 1.

Since this set still has at least 2 elements, we can apply the fact once more
and conclude that the set Ai1,i2,...,id contains at least one element b0. Observe
that

Ai1 = {b : b ∈ A, b+ i1 ∈ A},
Ai1,i2 = {b : b ∈ A, b+ i1 ∈ A, b+ i2 ∈ A, b+ i1 + i2 ∈ A}

determines an affine 2-cube C(b, i1, i1) ⊆ A, and so on. Hence, the last set
Ai1,i2,...,id determines an affine d-cube C(b0, i1, . . . , id), and this cube lies
entirely in A. ��
In the proof above no attempt was made to get the best constant. In

particular, we were very generous when deriving (25.1) from (25.2). Using
more precise estimate at this step, Gunderson and Rödl (1998) improved the
bound to

|A| ≥ 21−1/2d−1
(
√
n+ 1)2−1/2d−1

.

25.3 Sum-free sets

Recall that one of the earliest result in Ramsey theory—the Schur theorem
(Theorem 4.14)—states that for any r ≥ 2 there is n > 3 such that for any
r-coloring of {1, 2, . . . , n}, there are three integers of the same color and such
that x+ y = z.
In the wake of Schur’s theorem, many people have studied so-called sum-

free sets, i.e., subsets A of the positive integers such that x, y ∈ A implies
x + y 
∈ A. In particular, people have examined the question of how large a
sum-free set can be.
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25.3 Sum-free sets

This question has a natural generalization to arbitrary Abelian groups. An
Abelian group is a nonempty set G together with an operation (x, y) �→ x+ y,
called addition, which is associative (x+y)+z = x+(y+z) and commutative
x+ y = y+x. Moreover, there must be an element 0 ∈ G (called a zero) such
that x+ 0 = x for all x ∈ G, and every x ∈ G must have an inverse −x such
that (−x) + x = 0. Standard examples of Abelian groups are: the set Z of
integers and the set Zn of residues modulo n.
For a subset S of an Abelian group G, let α(S) denote the cardinality of

the largest sum-free subset of S. The following upper bound is immediate
(see Exercise 25.3): for any finite Abelian group G,

α(G) ≤ |G|/2 .

If we take G = Zn for an even n, then the set

A = {1, 3, . . . , n− 1}

is clearly sum-free, and hence, in this case α(G) = |G|/2.
In the case of odd n we may derive a better upper bound using a beautiful

theorem of Kneser about sums of finite subsets of an Abelian group. Here we
will prove a special case of this result which still has many applications in
additive number theory and the proof of which is particularly simple.

25.3.1 Kneser’s theorem

If A,B ⊆ G are subsets of an Abelian group G, then by A+B we denote the
set of all its elements of the form a+ b with a ∈ A and b ∈ B. A subgroup of
G is a subset H ⊆ G which itself forms a group; it is proper if H 
= G.
The following theorem has many applications in additive number theory.

Theorem 25.10 (Kneser 1955). Let G be an Abelian group, G 
= {0}, and
let A,B be nonempty finite subsets of G. If |A|+ |B| ≤ |G|, then there exists
a proper subgroup H of G such that |A+B| ≥ |A|+ |B| − |H |.
Proof. We proceed by induction on |B|. If |B| = 1, then

|A+B| = |A| = |A|+ |B| − 1 ≥ |A|+ |B| − |H |

for every subgroup H .
Let |B| > 1, and suppose that the theorem holds for all pairs A′, B′ of

finite nonempty subsets of G such that |B′| < |B|. We distinguish two cases.
Case 1: a+ b − c ∈ A for all a ∈ A and b, c ∈ B.
In this case A + b − c = A for all b, c ∈ B. Let H be the subgroup of G

generated by all elements of the form b − c, where b, c ∈ B. Then |B| ≤ |H |
and A+H = A 
= G. Therefore, H is a proper subgroup of G, and

|A+B| ≥ |A| ≥ |A|+ |B| − |H |.
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Case 2: a+ b − c 
∈ A for some a ∈ A and b, c ∈ B.
Let e := a− c and define the subsets

A′ = A ∪ (B + e), B′ = B ∩ (A − e).

Note that b 
∈ B′, and hence, B′ is a proper subset of B, because otherwise
b would have a form x − a+ c for some x ∈ A, and hence,

a+ b − c = a+ (x − a+ c)− c = x ∈ A,

a contradiction. Also, c ∈ B′ (because 0 ∈ A−a), and hence, B′ is nonempty.
Therefore, we can apply the induction hypothesis to A′ and B′, and deduce
that there exists a proper subgroup H of G such that

|A′ +B′| ≥ |A′|+ |B′| − |H |. (25.3)

It remains to observe that

A′ +B′ = [A ∪ (B + e)] + [B ∩ (A − e)]
⊆ (A+B) ∪ [(B + e) + (A − e)] = A+B

and

|A′|+ |B′| = |A ∪ (B + e)|+ |B ∩ (A − e)|
= |A ∪ (B + e)|+ |(B + e) ∩ A|
= |A|+ |B + e| = |A|+ |B|.

��
The following fact is a special version of Kneser’s theorem (we leave the

proof as Exercise 25.7; an alternative proof is given in Sect. 16.3.4):

Theorem 25.11 (Cauchy–Davenport). If p is a prime, and A, B are two
non-empty subsets of Zp, then |A+B| ≥ min{p, |A|+ |B| − 1} .
Kneser’s theorem immediately yields the following upper bound on the

size of sum-free subset in Abelian groups.

Corollary 25.12. Let G be a finite Abelian group and let p be the smallest
prime divisor of |G|. Then α(G) ≤ (p+ 1)|G|/(3p).
Proof. If A ⊆ G is a sum-free set, then |A + A| ≤ |G| − |A| because A +
A and A are disjoint. Since |A| ≤ |G|/2 (see Exercise 25.3), we can apply
Theorem 25.10 and deduce

|G| − |A| ≥ |A+A| ≥ 2|A| − |H |
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25.4 Sum-product sets

for some proper subgroup H of G. Since, by Lagrange’s theorem, the order
|H | of any subgroup H of G divides the order |G| of the group G, we have
|H | ≤ |G|/p. Therefore,

3|A| ≤ |G|+ |H | ≤ (1 + 1/p)|G|,

and the desired result follows. ��
What about the lower bounds for α(G)?
We have already seen that for G = Zn with even n, we have an equality

α(G) = |G|/2. If G = Z is the group of integers, then

α(S) > |S|/3

for any finite subset S ⊆ Z \ {0} (we have proved this fact in Sect. 18.2 using
the probabilistic argument). For other Abelian groups the situation is not so
clear.
The following naive argument shows that in this case also

α(G) ≥
√

|G| − 1.

To show this, let A be a maximal sum-free subset. If a 
∈ A, then A∪{a} is not
sum-free by the assumption, so we can write a = s1 + s2 for some s1, s2 ∈ A.
Therefore |G \ A| ≤ |A|2, from which the desired inequality |A| ≥ √|G| − 1
follows.
Better lower bounds can be derived using an improvement of Theo-

rem 25.10, also due to Kneser, which states that with the same hypotheses,
either |A+B| ≥ |A|+ |B| or |A+B| ≥ |A|+ |B| − |H | for some proper sub-
group H such that H +A+B = A+H (see, for example, Street (1972) for
the proof). Here we only mention that the best know lower bound for an ar-
bitrary finite Abelian group G is α(G) ≥ 2|G|/7. More information about the
properties of sum-free sets can be found, for example, in Nathanson (1996).

25.4 Sum-product sets

For every A ⊂ R we let A+A = {a+b : a, b ∈ A} and A·A = {ab : a, b ∈ A}.
An old conjecture of Erdős states that, for every ε > 0, every sufficiently large
finite set A ⊂ R satisfies

max{|A+A|, |A · A|} ≥ |A|2−ε .

That is, this conjecture asserts that every set of numbers A must have either
a large sum-set A+A or a large product set A ·A. The conjecture is central
to our understanding of the interplay between the additive and multiplicative
properties of a set of numbers.
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Erdős and Szemerédi (1983) were the first to prove that there exists δ >
0 so that max{|A + A|, |A · A|} ≥ |A|1+δ for all sufficiently large sets A.
This parameter δ has been steadily improved by a number of authors. One
highlight in this sequence is a proof by Elekes (1997) that δ may be taken
arbitrarily close to 1/4. His argument utilizes a clever application of the
Szemerédi–Trotter theorem on point-line incidences (see Theorem 18.7).
Recall that the Szemerédi–Trotter theorem asserts the following: If 2 ≤

k ≤ √
N and if we take any set of N points in the plane, then it is not

possible to draw more than O(N2/k3) lines so that each of them contains at
least k of the points.

Theorem 25.13 (Elekes 1997). There is an absolute constant ε > 0 such
that, for every set A of non-negative real numbers,

max{|A+A|, |A ·A|} ≥ ε|A|5/4 .

Proof. Let n = |A|, and consider the following n2 straight lines

fa,b(x) := a(x − b) = ax − ab for a, b ∈ A.

Observe that, for every a, b ∈ A, the function maps at least n elements
b + c with c ∈ A to some elements fa,b(b + c) = a · c of A · A. From a
geometric point of view, this means that the graph of each of these m = n2

lines fa,b(x) contains k = n or more points of P := (A + A) × (A · A). By
applying the Szemerédi–Trotter theorem to P with k = n and N = |P |, we
get n2 = O(|P |2/n3), that is

|A+A| · |A · A| = |P | = Ω(n5/2) . ��

In the case of finite fields we have the following result.

Theorem 25.14 (Garaev 2007). Let p be a prime number, and A ⊆ Fp \{0}.
Then the number of elements in at least one of the sets A+A or A ·A is at
least an absolute constant times

min
{√

p|A|, |A|2√
p

}
.

In particular, if |A| ≈ p2/3 then this minimum is about |A|5/4.

Proof (due to Solymosi 2009). His idea is a very clever application of the
expander mixing lemma (Lemma 15.5). As in Sect. 15.2.1, consider a graph
G whose vertices are n = p(p − 1) pairs (a, b) of elements of a finite field
Zp with a 
= 0, and two vertices (a, b) and (c, d) are joined by an edge iff
ac = b + d (all operations modulo p). We already know that this graph is
(p−1)-regular and that the second largest eigenvalue λ of its incidence matrix
is smaller than

√
3p (see Lemma 15.6). So, if we define S, T ⊆ V by
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S = (A ·A)× (−A) and T = (A−1)× (A+A)

then the expander mixing lemma (Lemma 15.2) tells us that

e(S, T ) ≤ (p − 1)|S||T |
p(p − 1) + λ

√
|S||T | = |S||T |

p
+ λ

√
|S||T |

<
|A ·A||A+A||A|2

p
+

√
3p|A ·A||A +A||A|2 ,

where the second inequality used λ <
√
3p. But for every a, b, c ∈ A there is an

edge between vertices (ab,−c) ∈ S and (b−1, a+c) ∈ T , so that e(S, T ) ≥ |A|3.
Thus, if we set N := |A+A||A ·A|, then rearranging the resulting inequality

|A|3 ≤ e(S, T ) ≤ N |A|2
p
+ |A|

√
3pN

=
√
N

(√
N |A|2
p

+ |A|
√
3p

)
gives

√
N >

(√
N

p|A| +
√
3p

|A|2
)−1

.

Now, since (x+ y)−1 ≥ 1
2 min{x−1, y−1} for positive x and y, we find that
√
N ≥ ε ·min

{
p|A|√
N
,

|A|2
p1/2

}

with ε = 1/2
√
3, which in turn implies

√
N ≥ ε ·min

{√
p|A|, |A|2√

p

}
.

To finish the proof, we need only use the two-term arithmetic-geometric mean
inequality:

max{|A+A|, |A ·A|} ≥ |A ·A|+ |A+A|
2 ≥

√
|A ·A||A+A| =

√
N .

��
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Exercises

25.1. Prove a lower bound for the general van der Waerden’s functionW (r, k).
Hint: Modify the proof of Theorem 25.3 to the case of more than two colors.

25.2. Prove the following general version of Schur’s theorem. For every r
and l ≥ 2, there exists a positive integer n such that for every partition
A1, . . . , Ar of the set {1, . . . , n} into r classes one of the classes contains l
(not necessarily distinct) numbers x1, . . . , xl such that x1 + . . . + xl−1 = xl.
Hint: Take n = Rr(2; l) and assign every pair {x, y} the color i if |x− y| ∈ Ai.

25.3. Show that for any finite Abelian group G, α(G) ≤ |G|/2. Hint: If S is a
sum-free set then S + S and S are disjoint.

25.4. Give a detailed proof of the last two statements in the proof of Kneser’s
theorem that A′ +B′ ⊆ A+B and |A′|+ |B′| = |A|+ |B|.
25.5. Let G be a finite Abelian group, and let A and B be subsets of G such
that |A|+ |B| > |G|. Show that then A+B = G. Hint: For every x ∈ G, the set
A ∩ (x− B) has at least |A| + |B| − |G| ≥ 1 elements.

25.6. Let A and B be finite subsets of an Abelian group G. For x ∈ G, let
r(x) be the number of representations of x as the sum of elements from A
and B, that is, r(x) is the number of ordered pairs (a, b) ∈ A × B such that
x = a+ b. Prove the following: if |A|+ |B| ≥ |G|+ t then r(x) ≥ t. Hint: Take
an x ∈ G and show that |A ∩ (x−B)| ≥ |A| + |B| − |G| ≥ t.

25.7. Show that Kneser’s theorem (Theorem 25.10) implies the Cauchy–
Davenport theorem. Hint: For a prime p, the only proper subgroup of Zp is the
trivial group H = {0}.

25.8. If A be a nonempty subset of an Abelian group G, then its stabilizer
is the set H(A) := {x ∈ G : x + A = A}. Show that A is a subgroup if and
only if H(A) = A.

25.9. Prove (25.2). Hint: Consider a complete graph whose vertices are elements of
B; label the edge, joining two elements a < b, by their difference b− a, and observe that
|Bi| is precisely the number of edges labeled by i.

25.10. Let A be a finite set of non-zero numbers. Show that then both |A+A|
and |A · A| are at least 2|A| − 1. Give examples of arbitrary large sets A
matching these bounds. Hint: For the second part, consider arithmetic progressions
a, 2a, 3a, . . . , na and geometric progressions ar, ar2, ar3, . . . , arn.

25.11. Show that the number of sum-free subsets of {1, . . . , n} is at least
c2n/2 for some constant c > 0. Hint: We can take any set of odd numbers, or any
set of numbers greater than n/2.
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Exercises

25.12. (Cameron–Erdős 1999). A sum-free subset S of X = {1, . . . , n} is
maximal if none of the sets S ∪ {x} with x ∈ X \ S is sum-free. Show that
the number of maximal sum-free subsets of X is at least 2�n/4�.

Hint: Let m be either n or n− 1, whichever is even. Let S consist of m together with
one of each pair of numbers x,m − x for odd x < m/2. Show that every such set S is
sum-free, and distinct sets S lie in distinct maximal sum-free sets.
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26. The Hales–Jewett Theorem

In 1963 A. W. Hales and R. I. Jewett proved a very general result from which
most of Ramsey-like theorems may be easily derived. Hales–Jewett theorem
is presently one of the most useful techniques in Ramsey theory. Without this
result, Ramsey theory would more properly be called Ramseyan theorems.

26.1 The theorem and its consequences

Let [t] = {1, . . . , t}. Points in the cube [t]n are strings x = (x1, . . . , xn) with
all xi ∈ [t]. A subset L ⊆ [t]n is a line (or combinatorial line) if there exists
a non-empty subset I = {i1, . . . , ik} ⊂ [n] and numbers ai for i �∈ I (the fixed
positions of L) such that

L = {x ∈ [t]n : xi = ai for i �∈ I and xi1 = xi2 = . . . = xik} .

If we introduce a new symbol ∗ to denote the “moving coordinates,” then
each line is defined by its root τ = (τ1, . . . , τn) with τi = ai for i �∈ I and
τi = ∗ for i ∈ I. If we define τ(a) to be the string τ with all ∗-positions set
to a, then

L = {τ(1), τ(2), . . . , τ(t)} .
Here is an example of a line rooted in τ = (1, 3, ∗, 2, ∗, 1) with active set

I = {3, 5} in [5]6 with fixed positions a1 = 1, a2 = 3, a4 = 2 and a6 = 1:

L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 3 1 2 1 1 τ(1) first point of L
1 3 2 2 2 1 τ(2)
1 3 3 2 3 1 τ(3)
1 3 4 2 4 1 τ(4)
1 3 5 2 5 1 τ(5) last point of L

S. Jukna,                                         , Texts in Theoretical Computer Science.
An EATCS Series, DOI
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26 The Hales–Jewett Theorem

Note that every line in [t]n consists of exactly t points, and we have (t+1)n−tn
lines in [t]n (every root defines its own line).
We are using the alphabet [t] = {1, . . . , t} just for definiteness: one may

take an arbitrary alphabet A with |A| = t symbols. Say, if A = {0, 1} then
a combinatorial line in An is just a pair of two binary strings, one of which
can be obtained from the other by changing some 0s to 1s. Viewing binary
strings as characteristic vectors of subsets of [n], each combinatorial line in
{0, 1}n corresponds to a pair of subsets S, T such that S ⊂ T .

x1

x3

Fig. 26.1 A line L = {(0, 0, 0), (1, 0, 1), (2, 0, 2)} rooted in τ = (∗, 0, ∗)

To match the classical parametric representation x = a + λb of a line in
R
n, observe that it corresponds to a combinatorial line rooted in τ , where

ai = 0, bi = 1 if τi = ∗, and ai = τi, bi = 0 if τi �= ∗. Figure 26.1 shows
a line x = a + λb with a = (0, 0, 0) and b = (1, 0, 1). Thus, the symbol ∗
indicates the moving coordinate. Note, however, that not every line in R

n is
a combinatorial line.

Theorem 26.1 (Hales–Jewett 1963). For every natural numbers t and r
there exists a dimension n = HJ(r, t) such that whenever [t]n is r-colored,
there exists a monochromatic line.

In fact, Hales and Jewett have proved this result for more general config-
urations, known as combinatorial spaces. Each combinatorial line has only
one set of moving coordinates, determined by the occurrences of the special
symbol ∗. A natural generalization is to allow several (disjoint) sets of moving
coordinates.
A combinatorial m-space Sτ ⊆ An is given by a word (a generalized root)

τ ∈ (A ∪ {∗1, . . . , ∗m})n, where ∗1, . . . , ∗m are distinct symbols not in the
alphabet A. These symbols represent m mutually disjoint sets of moving co-
ordinates. We require that each of these symbols occurs at least once in τ .
Then Sτ is the set of all tm words in An which can be obtained by simulta-
neously replacing each occurrence of these new symbols by symbols from A.
Thus, combinatorial line is a just a combinatorial 1-space.
In the case of two-letter alphabet A = {0, 1} there is a 1-1 correspondence

between combinatorial spaces and subcubes of {0, 1}n. For example, if Sτ ⊆
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{0, 1}6 is a combinatorial 3-space given by τ = (1, ∗1, 0, ∗2, ∗3, 1), then Sτ is
exactly the set of all vectors in {0, 1}6 on which the monomial x1x3x6 takes
value 1.

Theorem 26.2. Let A be a finite alphabet of t symbols and let m, r be positive
integers. Then there exists an integer n = HJ(m, r, t) such that for every
coloring of the cube An in r colors there exists a combinatorial m-space,
which is monochromatic.

This result can be derived from Theorem 26.1 (see Exercise 26.4). We will
prove Theorem 26.1 itself in Sect. 26.2. Let us first show how Hales–Jewett
theorem implies some classical results of Ramsey Theory.

26.1.1 Van der Waerden’s theorem

Recall that an arithmetic progression of length t is a sequence of t natural
numbers a, a + d, a + 2d, . . . , a + (t − 1)d, each at the same distance d ≥ 1
from the previous one. Thus, each arithmetic progression is a very regular
configuration of numbers, just like cliques are in graphs.
In 1927 B.L. van der Waerden published a proof of the following Ramsey-

type result for arithmetic progressions.

Theorem 26.3 (Van der Waerden 1927). For every choice of positive inte-
gers r and t, there exists a positive integer N = W (r, t) such that for every
coloring of the set of integers {1, . . . , N} in r colors at least one arithmetic
progression with t terms will be monochromatic.

Proof. Take N := n(t − 1) + 1 where n = HJ(r, t) is from the Hales–Jewett
theorem. Define a mapping f : [t]n → {1, . . . , N} which takes a word x =
(x1, . . . , xn) to the sum f(x) = x1 + . . . + xn of its letters. The mapping f
induces a coloring of [t]n in a natural manner: the color of a point x ∈ [t]n is
the color of the number f(x). It is not difficult to see that every combinatorial
line Lτ = {τ(1), τ(2), . . . , τ(t)} is mapped by f to an arithmetic progression
of length t: the difference between the integers corresponding to strings τ(i+1)
and τ(i) is the same (and is equal to the number of ∗’s in τ). By the Hales–
Jewett theorem, there is a monochromatic line that, in turn, translates back
to a monochromatic arithmetical progression of length t, as desired. 
�

26.1.2 Gallai–Witt’s Theorem

A multidimensional version of van der Waerden’s theorem was proved inde-
pendently by Gallai (= Grünwald), cf. Rado (1943), and Witt (1951).
A subset of vectors U ⊆ Z

m is a homothetic copy of a subset V ⊆ Z
m if

there exists a vector u ∈ Z
m and a constant λ ∈ Z, λ > 0 such that

U = u+ λV := {u+ λv : v ∈ V } .
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Note that an arithmetic progression a, a + b, a + 2b, . . . , a + kb in Z is a
homothetic copy of V = {0, 1, . . . , k} with u = a and λ = b.

Theorem 26.4 (Gallai–Witt). Let the vectors of Z
m be finitely colored. Then

every finite subset of Z
m has a homothetic copy which is monochromatic.

Proof. Fix the number of colors r and a finite set of vectors V = {v1, . . . , vt}
in Z

m. We will consider these vectors as symbols of our alphabet A = V .
Set n = HJ(r, t) and consider the cube An; its elements are vectors x =
(x1, . . . , xn), each of whose coordinates xi is one of the vectors v1, . . . , vt. As
in the previous theorem, define a map f : An → Z

m by f(x) = x1 + . . .+ xn.
By the Hales–Jewett theorem, there is a monochromatic combinatorial line
L = {τ(v1), τ(v2), . . . , τ(vt)} ⊆ An. Let I = {i : τi = ∗} be the set of
moving coordinates of L. Then f(L) is the set of t vectors of the form λvj+u,
j = 1, . . . , t, where λ = |I| > 0 and u =∑t

i=1 aivi with ai ∈ N is the sum of
fixed coordinates of the line L (the same vector vi may appear several times
in such coordinates). Hence, f(L) is a homothetic copy of V = {v1, . . . , vt},
as desired. 
�

26.2 Shelah’s proof of HJT

Various proofs of Theorem 26.1 are known. The original proof of Hales and
Jewett is relatively short but provides an upper bound for the function
HJ(r, t) which grows extremely fast. Shelah (1988) found a fundamentally
new proof which yields a much smaller (in particular, a primitive recursive)
upper bound for HJ(r, t). Here we will follow the compact version of Shelah’s
proof from A. Nilli (1990) (c/o Noga Alon).
For each fixed number of colors r, we apply an induction on the number

of symbols t in our alphabet A. For t = 1 the theorem is trivial. Assuming it
holds for t − 1 (and r) prove it for t. Set

n := HJ(r, t− 1),

and define the following increasing sequence of dimensions N1, . . . , Nn by

N1 := rt
n
and Ni := rt

n+
∑
i−1
j=1

Nj

.

Put N := N1+ · · ·+Nn.We will prove that the dimension N has the desired
property, i.e., that HJ(r, t) ≤ N . (This particular choice of the dimensions
Ni will be important only in the proof of Claim 26.5 below).
To show this, let A = {0, 1, . . . , t − 1} be an alphabet of t symbols, and

let χ : AN → {1, . . . , r} be a coloring of the N -cube AN in r colors. Our
goal is to prove that at least one combinatorial line will be monochromatic.
The key to the whole proof is the following technical claim about the colors
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of neighboring words. We say that two words a, b ∈ An are neighbors if they
differ in exactly one coordinate, say, the i-th in which ai = 0 and bi = 1 :

a = a1 . . . ai−1 0 ai+1 . . . an

b = a1 . . . ai−1 1 ai+1 . . . an

For a word a = a1a2 . . . an over A of length n and a sequence of n roots

τ = τ1τ2 . . . τn,

the i-th of which has length Ni, let τ(a) denote the corresponding word of
length N :

τ(a) = τ1(a1)τ2(a2) . . . τn(an).

That is, we replace each occurrence of ∗ in τ1 by a1, each occurrence of ∗ in
τ2 by a2, and so on.

Claim 26.5. There exists a sequence of n roots τ = τ1τ2 . . . τn as above, such
that χ

(
τ(a)

)
= χ

(
τ(b)

)
for any two neighbors a, b ∈ An.

Before proving the claim, let us look at how it implies the theorem. Using
the coloring χ of the N -cube AN , we define a coloring χ′ of the n-cube
(A \ {0})n by:

χ′(a) := χ
(
τ(a)

)
,

where τ is from the claim. Since the alphabet A \ {0} has only t− 1 symbols
and n = HJ(r, t− 1), we can apply the induction to this coloring χ′. By the
induction hypothesis there exists a root

ν = ν1ν2 . . . νn ∈ (
(A \ {0}) ∪ {∗})n

such that the combinatorial line

Lν = {ν(1), ν(2), . . . , ν(t − 1)}

is monochromatic (with respect to χ′). Consider the string

τ(ν) = τ1(ν1)τ2(ν2) . . . τn(νn).

This string has length N and is a root since ν is a root (and hence, has at
least one ∗). We claim that the corresponding line

Lτ(ν) =
{
τ
(
ν(0)

)
, τ

(
ν(1)

)
, . . . , τ

(
ν(t − 1))}

is monochromatic with respect to the original coloring χ. Indeed, the color-
ing χ′ assigns the same color to all the words ν(1), . . . , ν(t − 1). Hence, by
the definition of χ′, the coloring χ assigns the same color to all the words
τ
(
ν(1)

)
, . . . , τ

(
ν(t− 1)). If ν contains only one ∗, then τ(ν(0)) is a neighbor

of τ
(
ν(1)

)
and, by the claim, receives the same color (under χ). If ν has
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26 The Hales–Jewett Theorem

more ∗’s, then we can still reach the word τ(ν(0)) from the word τ(ν(1)) by
passing through a sequence of neighbors

τ
(
ν(1)

)
= . . . 1 . . . 1 . . . 1 . . .
. . . 0 . . . 1 . . . 1 . . .
. . . 0 . . . 0 . . . 1 . . .

τ
(
ν(0)

)
= . . . 0 . . . 0 . . . 0 . . .

and, by the claim, the word τ
(
ν(0)

)
will receive the color of τ

(
ν(1)

)
. So, the

whole line Lτ(ν) is monochromatic, as desired.
It remains to prove Claim 26.5.
Recall that we want to find a sequence of n roots τ = τ1τ2 . . . τn, the i-th of

which has length Ni, and such that χ(τ(a)) = χ(τ(b)) for any two neighbors
a, b ∈ An.
We prove the existence of required roots τi by backward induction on i.

Suppose we have already defined the roots τi+1, . . . , τn. Our goal is to define
the root τi.
Let Li−1 :=

∑i−1
j=1 Nj be the length of the initial segment τ1τ2 . . . τi−1 of

the sequence of roots we are looking for. The length of the i-th segment τi is
Ni. For k = 0, 1, . . . , Ni, let Wk denote the following word of length Ni:

Wk = 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
Ni−k

.

For each k = 0, 1, . . . , Ni, define the r-coloring χk of all words in ALi−1+n−i

as follows: let χk
(
x1 x2 . . . xLi−1 yi+1 . . . yn

)
be equal to

χ
(
x1 x2 . . . xLi−1 Wk τi+1(yi+1) . . . τn(yn)

)
.

We have Ni + 1 colorings χ0, χ1, . . . , χNi , each being chosen from the set of
at most

r#{of words} = rt
Li−1+n−i ≤ rt

Li−1+n
= Ni

such colorings. By the pigeonhole principle, at least two of these colorings
must coincide, i.e., χs = χk for some s < k. Now define the desired root τi
by

τi := 0 . . . 0︸ ︷︷ ︸
s

∗ . . . ∗︸ ︷︷ ︸
k−s

1 . . . 1︸ ︷︷ ︸
Ni−k

.

One can easily check that the roots τ1, . . . , τn defined by this procedure satisfy
the assertion of the claim. Indeed, observe that τi(0) = Wk and τi(1) = Ws.
Hence, if we take any two neighbors in the i-th coordinate

a = a1 . . . ai−1 0 ai+1 . . . an

b = a1 . . . ai−1 1 ai+1 . . . an

then
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τ(a) = τ1(a1) . . . τi−1(ai−1) τi(0) τi+1(ai+1) . . . τn(an),
τ(b) = τ1(a1) . . . τi−1(ai−1) τi(1) τi+1(ai+1) . . . τn(an),

and since χs = χk,

χ
(
τ(a)

)
= χ

(
τ1(a1) . . . τi−1(ai−1)Wk τi+1(ai+1) . . . τn(an)

)
= χk

(
τ1(a1) . . . τi−1(ai−1) ai+1 . . . an

)
= χs

(
τ1(a1) . . . τi−1(ai−1) ai+1 . . . an

)
= χ

(
τ1(a1) . . . τi−1(ai−1)Ws τi+1(ai+1) . . . τn(an)

)
= χ

(
τ(b)

)
.

This completes the proof of the claim, and thus, the proof of the Hales–
Jewett theorem.

Exercises

26.1. Show that HJ(r, 2) ≤ r. That is, for every coloring of the cube {0, 1}r
in r colors at least one combinatorial line is monochromatic. Hint: Consider the
words 0i1r−i for i = 0, 1, . . . , r.

26.2. Let N =W (2, t2+1), where W (r, t) is the van der Waerden’s function,
and let χ be a coloring of {1, . . . , N} in two colors. Show that there exists a
t-term arithmetic progression {a+ i · d : i = 0, 1, . . . , t − 1} which together
with its difference d is monochromatic, i.e., χ(d) = χ(a + i · d) for every
i < t. Hint: Van der Waerden’s theorem gives a monochromatic arithmetical progression
{a+ j · d : j ≤ t2} with t2 terms. Then either some j · d, with 1 ≤ j ≤ t, gets the same
color or all the numbers d, 2d, . . . , td get the opposite color.

26.3. Say that a family A ⊆ 2X of subsets of a finite set X is r-regular in
X if for every coloring χ : X → [r] = {1, . . . , r} of underlying elements in r
colors, at least one member A ∈ A must be monochromatic, that is, χ(x) = c
for some color c ∈ [r] and all elements x ∈ A. For two families A ⊆ 2X and
B ⊆ 2Y , let A⊗B be the collection of all sets A×B, where A ∈ A and B ∈ B.
Prove the following:

If A is r-regular in X , and B is r|X|-regular in Y , then A ⊗ B is r-regular
in X × Y .

26.4. Use Theorem 26.1 to derive the Hales–Jewett theorem for combinatorial
m-spaces (Theorem 26.2). Hint: Consider a new alphabet B of size |B| = tm whose
symbols are all possible strings in Am. If n := HJ(r, tm) then every r-coloring of Bn gives
a combinatorial line L over the alphabet B. Argue that this line in Bn is a combinatorial
m-space in Amn.
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27. Applications in Communication
Complexity

Communication complexity is a basic part of the theory of computational
complexity. We have k players who wish to collaboratively evaluate a given
function f(x1, . . . , xn). The players have unlimited computational power but
none of them has access to all inputs x1, . . . , xn: each player can only see
a part of them. The function f itself is known to all players. The players
communicate by sending some bits of information about the inputs they can
see. The communication complexity of f is then the minimal number of bits
communicated on the worst-case input.
The case of two players (k = 2) is relatively well understood. In this case

two players, Alice and Bob, wish to compute f(x1, x2). Alice can only see
x1, and Bob only x2. There is a rich literature concerning this two-party
communication model—see the book by Kushilevitz and Nisan (1997) for an
excellent survey. The case of three and more players is much less understood.
The twist is that in this case the players share some inputs, and (at least
potentially) can use this overlap to encode the information in some clever
and non-trivial way. In this chapter we are mainly interested in this case of
more than two players.

27.1 Multi-party communication

A general framework for multi-party communication complexity is as follows.
Let X = X1 ×X2×· · ·×Xk be a Cartesian product of k n-element sets. There
are k players P1, . . . , Pk who wish to collaboratively evaluate a given function
f : X → R on every input x ∈ X . Each player has unlimited computational
power and full knowledge of the function. However, each player has only
partial information about the input x = (x1, . . . , xk): the i-th player Pi has
access to all the xj ’s except xi. We can imagine the situation as k poker players
sitting around the table, and each one is holding a number to his/her forehead
for the others to see. Thus, all players know the function f but their access
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27 Applications in Communication Complexity

to the input vector is restricted: the first player sees the string (∗, x2, . . . , xk),
the second sees (x1, ∗, x3, . . . , xk), . . ., the k-th player sees (x1, . . . , xk−1, ∗).
Players can communicate by writing bits 0 and 1 on a blackboard. The

blackboard is seen by all players. The game starts with the blackboard empty.
For each string on the blackboard, the protocol either gives the value of the
output (in that case the protocol is over), or specifies which player writes the
next bit and what that bit should be as a function of the inputs this player
knows (and the string on the board). During the computation on one input
the blackboard is never erased, players simply append their messages. The ob-
jective is to compute the function with as small an amount of communication
as possible.
The communication complexity of a k-party game for f is the minimal

number Ck(f) such that on every input x ∈ X the players can decide whether
f(x) = 1 or not, by writing at most Ck(f) bits on the blackboard. Put
otherwise, Ck(f) is the minimal number of bits written on the blackboard on
the worst-case input.
It is clear that Ck(f) ≤ log2 n+ 1 for any f : X → {0, 1}: the first player

writes the binary code of x2, and the second player announces the result. But
what about the lower bounds? The twist is that (for k ≥ 3) the players share
some inputs, and (at least potentially) can use this overlap to encode the
information in some clever and non-trivial way (see Exercises 27.8, 27.9).
Still, we know that the access of each player is restricted: the i-th player

cannot distinguish inputs differing only in the i-th coordinate. This leads to
the following concept.
A star around a vector x ∈ X is a set S = {x1, . . . , xk} of k vectors in

X , where xi differs from x in exactly the i-th component. The vector x is a
center of this star, and is not a part of the star!

Proposition 27.1. If a k-party communication protocol gives the same an-
swer on all k points of some star, then the protocol must give that same
answer on its center.

Proof. Take an arbitrary k-party communication protocol, and let S =
{x1, . . . , xk} be a star around some vector x. Assume that the protocol gives
the same answer on all points of S. An important fact is that given the first
l bits communicated by the players, the (l + 1)-th bit communicated (trans-
mitted, say, by the i-th player) must be defined by a function which does
not depend on the i-th coordinate of the input: the i-th player cannot see
it. Therefore, for every l, there is an i (1 ≤ i ≤ k) such that the (l + 1)-th
communicated bit is the same for both inputs x and xi. Since on all inputs
x1, . . . , xk the players behave in the same way (i.e., write the same string on
the blackboard), it follows that they will also behave in the same way on the
input x. ��
Using Proposition 27.1 we can express the communication complexity in

purely combinatorial terms.
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27.2 The hyperplane problem

A coloring c : X → {1, . . . , r} of X is legal if it does not separate a star
from its center: For every star S around some vector x, if all k points of S
receive the same color, then x must also receive that color. In particular, a
coloring is legal if it leaves no star monochromatic. A coloring respects a given
function f : X → R, if f(x) 	= f(y) implies c(x) 	= c(y), that is, the function
f must be constant in each color-class.
Define the chromatic number χk(f) of f : X → R to be the minimum

number of colors in a legal coloring of X respecting f .

Example 27.2. If we have only k = 2 players, then a function f : X1 × X2 →
{0, 1} can be viewed as a 0-1 matrix, and χ2(f) in this case is exactly the
smallest number of mutually disjoint monochromatic submatrices covering
the whole matrix.

Proposition 27.3. Ck(f) ≥ log2 χk(f).

Proof. Take an optimal protocol for the communication game for f . Color
each vector x ∈ X by the string which is written on the blackboard at the
end of communication between the players on the input x. Since the protocol
computes f , the coloring must respect f . We have 2Ck(f) colors and, by
Proposition 27.1, the coloring is legal. ��

27.2 The hyperplane problem

To illustrate how the connection between communication complexity and
colorings works in concrete situations, let us consider the k-dimensional hy-
perplane problem. Inputs to this problem are vectors x = (x1, . . . , xn) of
integers xi ∈ [n]. Given such an input, the players must decide whether
x1 + · · ·+ xn = n. That is, they must compute the function h : [n]k → {0, 1}
such that h(x) = 1 if and only if x belongs to the hyperplane

H = {x ∈ [n]k : x1 + · · ·+ xk = n} .

For this special function h the lower bound given by Proposition 27.3 is almost
optimal (see Exercise 27.6 for a more general result).
Let rH be the minimal number of colors needed to color the hyperplane

H so that no star in H remains monochromatic.

Proposition 27.4. Ck(h) ≤ k + log2 rH .

Proof. Assume that all k players agree in advance on a coloring of H with
r colors such that no star S ⊆ H remains monochromatic. Given an input
vector x = (x1, . . . , xk), xi is the only component that the i-th player does
not know. Let xi denote the only vector in H that is consistent with the infor-
mation available to the player i, that is, xi = (x1, . . . , xi−1, x

∗
i , xi+1, . . . , xk)

where x∗i := n − ∑
j �=i xj . (If x∗i < 1, then xi is undefined.)
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The protocol now works as follows. If, for some i, the i-th coordinate x∗i
does not belong to [n], the i-th player immediately announces the result:
h(x) = 0. Otherwise they proceed as follows.
Using log2 r bits, the first player broadcasts the color of x1. Then the i-th

player (i = 2, . . . , k) transmits a 1 if and only if the color of xi matches the
color of x1. The process halts and accepts the input x if and only if all players
agree, that is, broadcast 1s in the last phase.
If the actual input x is in H , then xi = x for all i, and all players will agree.

Otherwise, the vectors x1, . . . , xk form a star (around x 	∈ H) lying entirely
in the hyperplane H , and hence, cannot receive the same color. Thus, in this
case the players correctly reject that input. ��
We can upper bound rH by a Ramsey-type function we have already con-

sidered in Sect. 25.1. Recall that rk(N) is the minimum number of colors
needed to color 1, 2, . . . , N so that no length-k arithmetic progression is col-
ored monochromatically.

Proposition 27.5. For N = k2n, we have rH ≤ rk(N).

Proof. Define a mapping f from the hyperplane H to {1, . . . , N} by

f(x1, x2, . . . , xk) := x1 + 2x2 + · · ·+ kxk.

Color 1, . . . , N with r = rk(N) colors, avoiding monochromatic length-k arith-
metic progressions. Color each point x ∈ H with the color of f(x). We prove
by contradiction that this coloring leaves no star in H monochromatic, im-
plying that rH ≤ r, as desired.
Assume x1, . . . , xk is a monochromatic star in H around some vector y.

By the definition, xi = y + λiei for some λi 	= 0 (i = 1, . . . , k). Since each xi
is in the hyperplane H , it follows that λ1 = λ2 = . . . = λk = λ. Consider the
points f(x1), f(x2), . . . , f(xk). The map f is linear, so f(xi) = f(y)+λf(ei).
By the definition of f , f(ei) = i; hence, the numbers f(xi) = f(y) + λ · i
(i = 1, . . . , k) form a monochromatic arithmetic progression of length k, which
is a contradiction. ��
It is not difficult to show that the two-dimensional hyperplane problem can-

not be solved by communicating fewer than Ω(log n) bits (see Exercise 27.3).
Interestingly, already three players can do the job much better!
We already know (see Corollary 25.7) that r3(N) ≤ 2O(

√
lnN). Together

with Propositions 27.4 and 27.5, this gives the following surprising upper
bound on the communication complexity of the three-dimensional hyperplane
problem.

Theorem 27.6. For any triple of numbers in [n], three players can decide
whether these numbers sum up to n by communicating only O(

√
logn) bits.
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27.3 The partition problem

We now will use Ramsey-type arguments to show that the communication
complexity of the k-dimensional hyperplane problem is non-constant, for any
k ≥ 2.
Theorem 27.7 (Chandra–Furst–Lipton 1983). For any fixed k ≥ 2, the com-
munication complexity of the k-dimensional hyperplane problem goes to in-
finity as n goes to infinity.
Proof. To get a contradiction, suppose there exists a constant r such that,
for any n, there is a legal coloring c : [n]k → [r] of the grid [n]k with r colors
that respects the function h. Define the projection p from H to [n]k−1 by

p(x1, . . . , xk) = (x1, . . . , xk−1) .

The mapping p is an injection. So c and p induce, in a natural way, an r-
coloring of the points in p(H). Let m = �n/k
, and consider the grid [m]k−1.
Since (k − 1)m ≤ n, this grid is a subset of p(H) and so is also r-colored
via p.
Take the set of k vectors V = {0, e1, . . . , ek−1}, where ei is the unit vector

ei = (0, . . . , 1, 0, . . . , 0) with 1 in the i-th coordinate. If n (and hence, also
m) is large enough, the Gallai–Witt theorem (Theorem 26.4) implies the
existence of a homothetic copy u+λV = {u, u+ λe1, . . . , x+ λek−1} in [m]k
with λ > 0, which is monochromatic. Consider the vector

y := (u1, . . . , uk−1, n− s− λ),

where s = u1 + u2 + · · ·+ uk−1. Since 0 < s ≤ (k − 1)m and 0 < λ ≤ m, the
vector y belongs to [n]k. We now have a contradiction since the vectors

p−1(u) = (u1, u2, . . . , uk−1, n− s)
p−1(u + λe1) = (u1 + λ, u2, . . . , uk−1, n− s− λ)

...
p−1(u+ λek−1) = (u1, u2, . . . , uk−1 + λ, n − s− λ)

belong to the hyperplane H and form a monochromatic (under the original
coloring c) star around the vector y. Since the coloring is legal, the center y
of this star must also receive the same color. But the vector y does not belong
to H because the sum of its components is n − λ < n. Thus, the coloring c
does not respect the function h, a contradiction. ��

27.3 The partition problem

The partition function is a boolean function Partn,k in nk variables arranged
into an n × k matrix, and Partn,k(A) = 1 iff each row of A contains exactly
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one 1. That is, if we think of the j-th column of A as representing a subset Sj
of [n], then Partn,k accepts a sequence (S1, . . . , Sk) of subsets of [n] iff these
subsets form a partition of [n].
We are interested in the k-party communication complexity of this function

in the case when the j-th player can see the entire matrix A, except for its
j-th column.
The case of two players (k = 2) is easy to analyze: in this case Ω(logn)

bits of communication are necessary (see Exercise 27.4).

Theorem 27.8 (Tesson 2003). For every k ≥ 2, the communication com-
plexity of any k-party game for Partn,k is greater than any constant.

Proof. Consider the input as a collection (S1, . . . , Sk) of subsets of [n]. Every
such input that is accepted by a communication protocol for Partn,k is such
that, for every i ∈ [n], the element i lies in exactly one of the Si. We can
therefore put these inputs into a one-to-one correspondence with n-tuples in
[k]n by:

(S1, . . . , Sk) �→ (x1, . . . , xn) with xi = j iff i ∈ Sj .

As an example for k = 3 and n = 4, an accepted input ({4}, {1, 3}, {2})
corresponds to the n-tuple (2, 3, 2, 1).
Suppose that the k-party communication complexity of Partn,k is bounded

by some constant c. To every input accepted by a protocol we assign one of 2c
colors corresponding to the communication history on this input. If n is large
enough (it suffices to take n = HJ(2c, k)), then the Hales–Jewett theorem
(Theorem 26.1) implies that there must be a monochromatic combinatorial
line L = {a1, . . . , ak} rooted in some string τ ∈ [k] ∪ {∗}.
Let T := {i : τi = ∗}; hence, T 	= ∅. Let Sj be the set of positions on

which all points of L have value j. For example, if L ⊆ [5]6 is a line rooted
in τ = (1, 3, ∗, 2, ∗, 1),

L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 3 1 2 1 1
1 3 2 2 2 1
1 3 3 2 3 1
1 3 4 2 4 1
1 3 5 2 5 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

then T = {3, 5}, S1 = {1, 6}, S2 = {4}, S3 = {2} and S4 = S5 = ∅.
By definition of the above one-to-one correspondence, we have that the

sets T, S1, . . . , Sk form a partition of [n], and all the inputs

(S1 ∪ T, S2, . . . , Sk), (S1, S2 ∪ T, . . . , Sk), . . . , (S1, S2, . . . , Sk ∪ T )

induce the same communication history. But these k inputs form a (combi-
natorial) star around (S1, S2, . . . , Sk) and, by Proposition 27.1, must also be
accepted by the protocol. However, S1 ∪ S2 ∪ · · · ∪ Sk = [n] \ T 	= [n] does
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not cover the whole set [n], so we get a contradiction: the protocol (wrongly)
accepts an input which should be rejected. ��

27.4 Lower bounds via discrepancy

As we have seen, Ramsey-type results can yield unexpectedly efficient commu-
nication protocols. However, the lower bounds on communication complexity
obtained via these arguments, are rather weak. The highest known lower
bounds were obtained using probabilistic arguments.
Recall that a coloring c : X → {1, . . . , r} is legal if for every star S with

center x either: (i) S is not monochromatic or (ii) all points of S receive the
same color, but then the center x also receives that color.
The next proposition describes a combinatorial structure of color classes.

Namely, each color class of a legal coloring must be a “cylinder intersection,”
a notion we already considered in Sect. 18.10. This notion generalizes that of
a “submatrix” (see Example 18.16).
Recall that a subset Ti ⊆ X is called a cylinder in the i-th dimension if

membership in Ti does not depend on the i-th coordinate:

(x1, . . . , xi, . . . , xk) ∈ Ti implies that (x1, . . . , x
′
i, . . . , xk) ∈ Ti for all x′i ∈ Xi.

A subset T ⊆ X is a cylinder intersection if it is an intersection T =
⋂k
i=1 Ti,

where Ti is a cylinder in the i-th dimension.

Proposition 27.9. A set T ⊆ X is a cylinder intersection if and only if, for
every star S ⊆ X around a vector x ∈ X, S ⊆ T implies x ∈ T .

Proof. The “only if” direction (⇒) is simple. Let T = ⋂k
i=1 Ti where Ti is

a cylinder in the i-th dimension. If S = {x1, . . . , xk} is a star around some
vector x ∈ X , and if S ⊆ T , then xi ∈ T ⊆ Ti and hence x ∈ Ti for all
i = 1, . . . , k, implying that x ∈ T , as desired.
For the “if” direction (⇐), take an arbitrary subset T ⊆ X and assume

that T contains the center of every star it contains. For every i = 1, . . . , k,
let Ti be the set of all strings x ∈ X such that x coincides with at least one
string xi ∈ T in all but perhaps the i-th coordinate. By its definition, the
set Ti is a cylinder in the i-th dimension. Hence, the set T ′ =

⋂k
i=1 Ti is a

cylinder intersection. If a vector x belongs to T , then it also belongs to all
the Ti, by their definition. This shows T ⊆ T ′. To show that T ′ ⊆ T , take a
vector x ∈ T ′, and assume that x 	∈ T . But then x ∈ Ti implies that there
must be a vector xi ∈ T from which x differs in exactly the i-th coordinate.
The vectors x1, . . . , xk form a star around x and are contained in T . Hence,
vector x must belong to T as well. ��
By Proposition 27.9, in every legal coloring ofX , each color class must be a

cylinder intersection. Together with Proposition 27.4, this implies that every
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c-bit communication protocol for f gives us a partition of X into at most 2c
f -monochromatic cylinder intersections. The next question is: how can one
show that any such partition must contain many cylinder intersections?
Recall (from Sect. 18.10) that the (normalized) discrepancy of a function

f : X → {−1, 1} on a set T is defined by:

discT (f) =
1

|X |
∣∣∣∑
x∈T

f(x)
∣∣∣ .

The discrepancy of f is the maximum disc(f) = maxT discT (f) over all cylin-
der intersections T .
The following lemma allows one to prove lower bounds on multiparty

communication complexity by proving upper bounds on the discrepancy.

Lemma 27.10. For every f : X → {−1, 1}, we have

Ck(f) ≥ log2
1

disc(f) .

Proof. By Proposition 27.3, it is enough to show that, if a coloring c : X →
{1, . . . , r} is legal and respects the function f , then it must use r ≥ 1/disc(f)
colors. By Proposition 27.9, each color class T = c−1(i) must be a cylinder
intersection. Since the coloring respects f , the function f must take the same
value on all vectors in T , implying that discT (f) = |T |/|X |. Thus, no color
class T can have more than |X | ·discT (f) ≤ |X | ·disc(f) vectors. Since all |X |
vectors must be colored, at least 1/disc(f) colors are necessary. The logarithm
of this number gives the desired lower bound on Ck(f). ��
In general, disc(f) is very hard to estimate. Fortunately, using probabilistic

arguments, we have already proved in Sect. 18.10 that the discrepancy can
be bounded from above using the following more tractable measure.
A k-dimensional cube is defined to be a multi-set D = {a1, b1} × · · · ×

{ak, bk}, where ai, bi ∈ Xi (not necessarily distinct) for all i. Being a multi-
set means that one element can occur several times. Thus, for example, the
cube D = {a1, a1} × · · · × {ak, ak} has 2k elements.
Given a function f : X → {−1, 1} and a cube D ⊆ X , define the sign of f

on D to be the value
f(D) =

∏
x∈D

f(x) .

Hence, f(D) = 1 if and only if f(x) = −1 for an even number of vectors
x ∈ D. We choose a cube D at random according to the uniform distribution.
This can be done by choosing ai, bi ∈ Xi for each i according to the uniform
distribution. Let

E(f) = E [f(D)] = E
[ ∏
x∈D

f(x)
]
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be the expected value of the sign of a random cube D. We have already
proved (see Theorem 18.17) that, for every function f : X → {−1, 1},

disc(f) ≤ E(f)1/2k .

Together with Proposition 27.10, this gives the following general lower bound
on the communication complexity.

Theorem 27.11. For every f : X → {−1, 1},

Ck(f) ≥ 1
2k log2

1
E(f) .

This is a very powerful result which allows us to show that, for any con-
stant number k of players, some explicit functions require an almost maximal
number of communicated bits. We demonstrate this by one function.
Say that a (0, 1) matrix is odd if the number of its all-1 rows is odd. Note

that, if the matrix has only two columns, then it is odd iff the scalar (or inner)
product of these columns over GF (2) is 1. By this reason, a boolean function,
detecting whether a given matrix is odd, is called “generalized inner product”
function. We will assume that input matrices have n rows and k columns.
That is, the generalized inner product function gip(x) is a boolean function

in kn variables, arranged in an n× k matrix x = (xij), and is defined by:

gip(x) =
n⊕
i=1

k∧
j=1

xij .

We consider k-party communication gates for gip(x), where the j-th player
can see all but the j-th column of the input matrix x. Hence, the value of
our function is determined by rows, whereas the players only have access to
columns.
It is clear that n + 1 bits of communication is enough to determine the

value of gip(x): the first player announces the entire second column, and the
second player announces the answer. In fact, O(kn/2k) bits of communication
are already enough (see Exercise 27.9). We are now going to show that this
last upper bound is almost optimal: Ω(n/4k) bits are also necessary.
We have already shown in Sect. 18.10 (see Theorem 18.20) that the ±1

version f(x) = (−1)gip(x) has

E(f) =
(
1− 1
2k

)n
≤ e−n/2k .

Together with Theorem 27.11 this impies that the generalized inner product
function has high multiparty communication complexity.
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Theorem 27.12. If the i-th player can see all but the i-th columns of a
given n × k matrix, then k players cannot detect whether the matrix is odd
by communicating fewer than Ω(n/4k) bits.

27.5 Making non-disjoint coverings disjoint

We have applied combinatorics (Ramsey theory and bounds on the discrep-
ancy) to prove lower and upper bounds in communication complexity. In this
section we give an example in the opposite direction: We show that commu-
nication games can be used to prove some purely combinatorial results.
Let X and Y be two finite sets. A rectangle is a subset R ⊆ X × Y of

the form R = R0 × R1 with R0 ⊆ X and R1 ⊆ Y . That is, a subset R is a
rectangle iff for every two points (x, y) and (x′, y′) of R, the combined points
(x, y′) and (x′, y) belong to R as well. Note that R is a rectangle if and only if
it is a cylinder intersection R = T0 ∩ T1 with T0 = R0 × Y and T1 = X ×R1.
Let f : X × Y → {0, 1} be a function. A rectangle R ⊆ X × Y is f -

monochromatic if f takes the same value on all points of R.

Theorem 27.13. If a rectangle can be covered by t not necessarily disjoint
f -monochromatic rectangles, then it can be decomposed into at most tO(log t)

pairwise disjoint f -monochromatic rectangles.

Proof. The function f : X × Y → {0, 1} can be viewed as a 0-1 matrix,
and χ2(f) in this case is exactly the smallest number of mutually disjoint
monochromatic matrices covering the whole matrix. Hence, our goal is to
show that χ2(f) ≤ tlog2 t. Since χ2(f) ≤ 2C2(f) (see Proposition 27.3), it is
enough to design a 2-party communication protocol for f that uses

C2(f) ≤ (log2 t)2

bits of communication. To design such a protocol, we first make one simple
observation. Say that a rectangle S = S0 × S1 intersects a rectangle R =
R0 ×R1 in rows, if S0 ∩R0 	= ∅, and intersects R in columns, if S1 ∩R1 	= ∅.
Note that, S ∩R 	= ∅ if and only if S intersects R in rows and in columns.

This immediately leads to the following observation about disjoint rectangles.

(∗) Let S be a rectangle and R a set of rectangles. If S∩R = ∅ for all R ∈ R,
then either S intersects at most half of rectangles R ∈ R in rows or S
intersects at most half of these rectangles in columns.

Now let R be a covering of X × Y by |R| = t f -monochromatic rectangles,
and set r := �log2 t�. On all points in each rectangle R ∈ R the function
f takes one and the same value 0 or 1; we call this value the label of the
rectangle R. Say that two rectangles in R are consistent if they have the
same label, and inconsistent otherwise. Note that rectangles with different
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Exercises

labels must be disjoint. A rectangle R = R0 ×R1 contains a row x if x ∈ R0,
and contains a column y if y ∈ R1.
The protocol consists of at most r rounds and in each round at most r bits

are communicated. After each round the current set of rectangles is updated.
Given an input (x, y), the goal is to decrease the number of rectangles in each
round by at least one half. Let us call the two players Alice and Bob.
1. Alice checks whether all rectangles inR containing her row x are consistent.
If yes, then the (unique) label i of all these rectangles is a correct answer,
and she announces it.

2. Otherwise, Alice tries to find a rectangle R ∈ R containing x such that R
intersects in rows at most half of the rectangles that are inconsistent with
R. If such a rectangle R exists, then Alice sends its name (using r bits) to
Bob and they both update R so that it only contains the rectangles that
intersect with R in rows (the other rectangles cannot contain (x, y)).

3. If Alice is unable to find such a rectangle then she communicates this to
Bob (using one bit).

4. Now is Bob’s turn. Since Alice failed, our observation (∗) ensures that
there must be a rectangle R ∈ R that contains y and intersects in columns
at most half of the rectangles that are inconsistent with R. Bob takes any
such rectangle R and sends its name (using r bits) to Alice and they both
update R so that it only contains the rectangles that intersect with R
in columns (the other rectangles cannot contain (x, y)). At this point the
round is definitely over since they successfully eliminated at least half of
the rectangles in R, and we can proceed by induction.

In each round, the number of rectangles is decreased by at least one half.
Hence, after at most r = log2 t rounds the players will agree on a rectangle
containing (x, y), and the label of this rectangle is the correct answer f(x, y).

��

Exercises

27.1. For a fixed vector x ∈ X , there are many (how many?) stars around it.
How many colors do we need to leave none of them monochromatic?

27.2. Consider the following equality function f : X1 × X2 → {0, 1} defined
by: f(x1, x2) = 1 if and only if x1 = x2. Show that χ2(f) = n. Hint: If χ2(f) < n
then some color class contains two distinct vectors (x1, x1) and (x2, x2). What about
the color of (x1, x2)?

27.3. Show that the two-dimensional hyperplane problem cannot be solved
by communicating fewer than Ω(logn) bits. Hint: Exercise 27.2.

27.4. Show that two players cannot solve the partition problem Partn,2 by
communicating fewer than Ω(logn) bits. Hint: Exercise 27.2.
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27.5. Three players want to compute the following boolean function f(x, y, z)
in 3n variables. Inputs x, y, z are vectors in {0, 1}n, and the function is defined
by:

f(x, y, z) =
n⊕
i=1
Maj(xi, yi, zi) ,

where Maj(xi, yi, zi) = 1 iff xi + yi + zi ≥ 2. Prove that C3(f) ≤ 3.
27.6. Prove the following extension of Proposition 27.4 to an arbitrary func-
tion f : X → {0, 1}. For a vector x ∈ X , its i-th neighbor is a vector
xi = (x1, . . . , x

′
i, . . . , xk), with x′i ∈ Xi, such that f(xi) = 1; if f(x) = 1,

then x is a neighbor of itself. Let c : X → {1, . . . , r} be a legal coloring (with
respect to f). Let also N(c) = max {N(c, x) : x ∈ X}, where N(c, x) is the
minimum, over all coordinates i, of the number of colors used by c to color
the i-th neighbors of x. Then Ck(f) ≤ log2 r+ k+N(c) log2 N(c). Hint: Given
an input vector x, the i-th player can privately compute the set Ri of colors used by c to
color the i-th neighbors of x. Show that f(x) = 1 if and only if R1 ∩R2 ∩ · · · ∩Rk �= ∅.

27.7. Show that three players can compute the partition function Partn,3
(introduced in Sect. 27.3) using O(

√
logn) bits of communication. Hint: Theo-

rem 27.6.

27.8. (Grolmusz 1994). Consider the following k-party communication game.
Input is an m × k 0-1 matrix A, and the i-th player can see all A except
its i-th column. Suppose that the players a priori know that some string
v = (0, . . . , 0, 1, . . . , 1) with the first 1 in position t + 1, does not appear
among the rows of A. Show that then the players can decide if the number of
all-1 rows is even or odd by communicating only t bits. Hint: Let yi denote the
number of rows of A of the form (0, . . . , 0, 1, . . . , 1), where the first 1 occurs in position
i. For every i = 1, . . . , t, the i-th player announces the parity of the number of rows
of the form (0, . . . , 0, ∗, 1, . . . , 1), where the ∗ is at place i. Observe that this number is
yi + yi+1. Subsequently, each player privately computes the mod 2 sum of all numbers
announced. The result is y1 + yt+1 mod 2, where yt+1 = 0.

27.9. Use the previous protocol to show that (without any assumption) the
players can decide if the number of all-1 rows is even or odd by communicating
only O(km/2k) bits. Hint: Divide the matrix A into blocks with at most 2k−1 − 1
rows in each. For each block there will be a string v′ of length k − 1 such that neither
(0, v′) nor (1, v′) occurs among the rows in that block. Using k bits the first player can
make the string (0, v′) known to all players, and we are in the situation of the previous
exercise.

27.10. (Due to Babai and Kimmel). Consider the following multiparty game
with the referee. As before, we have an m × k 0-1 matrix A, and the i-th
player can see all A except its i-th column. The restriction is that now the
players do not communicate with each other but simultaneously write their
messages on the blackboard. Using only this information (and without seeing
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the matrix A), an additional player (the referee) must compute the string
P (A) = (x1, . . . , xm), where xi is the sum modulo 2 of the number of 1′s in
the i-th row of A. Let N be the maximal number of bits which any player is
allowed to write on any input matrix. Prove that N ≥ m/k. Hint: For a matrix
A, let f(A) be the string (p1, . . . , pk), where pi ∈ {0, 1}N is the string written by the
i-th player on input A. For each possible answer x = (x1, . . . , xm) of the referee, fix a
matrix Ax for which P (Ax) = x. The correctness of the communication protocol ensures
that f(Ax) �= f(Ay) for all x �= y; hence, 2Nk ≥ 2m.
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Symbols

2-CNF 327
Δ-system see sunflower
k-CNF 126, 327

exact 126
k-DNF 126

exact 126
k-dimensional cube 269, 386
k-matroid 139
k-separated set 267
k-set xiii
t–(v, k, λ) design 203
t–(v, k, λ) design 165

partial 133

A

Abelian group 168, 363
stabilizer in 368

adjacency matrix 214
affine d-cube 298, 301, 360

replete 298, 299
affine hyperplane 231
affine plane 61, 174
angle 298

acute 296
obtuse 296

antichain 56, 81, 86, 107, 111, 153
approximator

in monotone circuits 128
left 128
right 128

arithmetic progression 290, 299, 357,
358, 382

Arrow’s theorem 161
assignment 265, 344

augmenting path 84
averaging argument 11–13
averaging principle 11, 61

for partitions 38

B

Behrend’s theorem 359
biclique covering 46

weight of 46
binomial distribution 300
binomial coefficient 3, 322
binomial theorem 3, 117
bipartite graph xiv, 29, 82
Birkhoff–Von Neumann Theorem 80
blocking number 92, 121
blocking set 92, 119, 172
Bollobás’s theorem 112–115, 123
Bondy’s theorem 137, 153, 155, 211
Bonferroni inequality 21, 50, 282
boolean function 93

0-term of 93
k-And-Or 94

boolean formula 334
boolean function

1-term of 93
t-simple 127
monotone 126, 205
negative input of 129
positive input of 129

Bruen’s theorem 172

C

Cantelli’s inequality 311
Cartesian product xiii
Cauchy–Davenport theorem 232, 364
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Cauchy–Schwarz inequality xiv, 50, 57,
72, 182, 194, 200, 207, 277

Cauchy–Vandermonde identity 16
chain 56, 81, 107

maximal 109, 112
symmetric 109

characteristic function xiii
Chebyshev’s inequality 303, 311
Chernoff inequality 263, 274
Chevalley–Warning theorem 229
Chinese remainder theorem 71
choice number 49
chromatic number 54, 120, 295
circuit 126
clause 93, 126, 265, 327, 344
clique xiv, 29, 58, 65, 191, 259, 309, 333
clique number 74
clique number 309
CNF 265
code 314
coin-weighing problem 70
coloring

balanced 51
2-coloring 284, 290
column rank 180
column space 181
common neighbor 31
common neighbor 208
common non-neighbor 148
common neighbor 148, 312
common non-neighbor 208
complete graph see clique
conditional expectation 343
conditional probability 42
connected component xiv, 11
convex function 12
covariance 304
covering design 36
cross-intersecting families 104
cube xiii

subcube of 372
cycle xiv, 25, 295, 312
cylinder 268, 385
cylinder intersection 268, 385

D

De Morgan formula 205
decision tree 124
degree 8, 53
degree sequence 235
deletion method 293–302
DeMillo–Lipton–Schwartz–Zippel lemma

224

dense set 135
dependency graph 279
derandomization 220, 341–353
derangement 15
design 106, 165–176, 203

parallel class in 173
resolution of 173
resolvable 173
symmetric 165, 203

determinant 22, 181
difference set 168
digraph 283
Dilworth’s Theorem 108
Dinitz problem 75
Dirichlet’s principle 53
Dirichlet’s theorem 59
discrepancy 269, 386

of a function 386
disjointness matrix 187, 209
distance

Euclidean 194
Hamming 194

s-distance set 195
dominating set 257, 277
double counting 8, 30, 78, 103, 166, 167,

323
downwards closed set 136

E

edge clique covering number 293
entropy 313–326

concentration of 319
conditional 320
generalized subadditivity of 321
subadditivity of 319

entropy function 18
Erdős–Ko–Rado theorem 100
Erdős–Szekeres theorem 55, 71
Euclidean distance 263
Euler’s theorem 9, 72
Evans conjecture 80
events
k-wise independent 282
independent 42

Expander Mixing Lemma 217
expectation 43

linearity of 43, 255–278
pigeonhole property of 255–278, 351

F

factor theorem 223
factorial 4
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family xv
2-colorable 120, 284
L-intersecting 190
τ -critical 123
k-balanced 140
k-independent 153
r-union-free 116
t-intersecting 106
colorable 47
common part of 91
convex 118
dual of 119
independence number of 132, 302
independent set in 302
intersecting 99, 120, 323
intersection free 118
maximal intersecting 102
rank of 121, 291
regular 166, 290
self-dual 120, 132
shadow of 19
triangle-intersecting 324
uniform xv, 47, 90, 100, 122, 203, 284

Fano plane 170
Fermat’s Last theorem 19
Fermat’s Last theorem 63
Fermat’s Little theorem 17
finite limit 95
Fisher’s inequality 101
flower 92

core of 92
forest 312
formula
k-satisfiable 265

G

Gallai–Witt’s theorem 373
general disjointness matrix 212
generalized inner product 272, 387
generator matrix 243
Gibbs’ inequality 315
Gilbert–Varshamov bound 240
graph xiv
K-Ramsey 333
k-critical 74
adjacency matrix of 214
balanced 310
chromatic number of xv
complement of 73
complete k-partite 71
connected xiv, 11, 54
density of 310
diameter of 54

disconnected 11
girth of 295
independence number of xiv, 74
independent set in 294
legal coloring of xv
maximum degree of 73, 86
minimal degree of 277
order of 151
strongly Ramsey 333
swell-colored 60

greedy algorithm 139
greedy covering 21

H

Hadamard code 202
Hadamard matrix 200

rigidity of 201
Hales–Jewett theorem 371
Hall’s condition 77
Hall’s marriage theorem 77
Hamiltonian path 255, 277
Hamming ball 237
Hamming bound 240
Hamming code 251
Hamming distance 194, 237
handshaking lemma 8
hash functions 267–268
Hasse diagram 107
Helly’s theorem 100, 122
hereditary set 136
hypergraph xv

I

incidence matrix 9
incidence graph xv
incidence matrix xv, 149
incidence vector xiii
independence number 54, 71, 132, 258,

294, 312
independent set xiv, 65, 191, 333
induced coloring argument 66
inner product see scalar product
intersection matrix 212
isolated neighbor condition 208
isolated neighbor condition 148

J

Jensen’s inequality 268
Jensen’s inequality 12, 48
Johnson bound 242
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K

König–Egerváry theorem 82, 86
Khrapchenko’s theorem 206
Kneser’s theorem 232

L

Latin rectangle 86
Latin rectangle 79
Latin square 75, 79
Latin transversal 37
Lindsey lemma 200
line at infinity 174
linear algebra bound 180
linear independence 180
linear code 243

covering radius of 246
linear combination 179, 245
linear independence 189
linear relation 180
linear space 179, 187

basis of 180
dimension of 180, 187
dual of 180
orthogonal complement of 180
subspace of 179

list chromatic number 74
list coloring 74
literal 93, 265, 327, 344
Lovász local lemma 280
Lovász’ sieve 279–291
Lovász–Stein theorem 34
LYM inequality 112

M

majority function 265
Mantel’s theorem 56, 63
Markov’s inequality 309
Markov’s inequality 273, 296
marriage problem 77
matching 82, 97, 121
matrix
α-dense 33
doubly stochastic 80
Frobenius norm of 184
rigidity of 201
symmetric 214
term rank of 82
trace of 185

matroid 139
maximum matching 83
maximum satisfiability 265–267

mean see expectation
memory allocation problem 110
min–max theorem 81
minterm 93
monomial 93, 126, 223

N

norm 182, 277, 298

O

Or-And-Or formula 51, 95
orthogonal vectors 180

P

Paley graph
bipartite 149

parallel lines 61
parity-check matrix 243
partial order 56
partition 7
path xiv
perfect matching 83
permutation xiii, 15, 101, 112, 255, 258
permutation matrix 80
pigeonhole principle 376
pigeonhole principle 53, 233
Plotkin bound 241
polynomial 264

degree of 223, 264
multivariate 223

prefix code 314
prime factor 305
prime number theorem 351
probability distribution 41, 42
probability space 41
projection 135, 155
projective plane 37, 96, 103, 157, 170,

301
Pythagoras’ theorem 193

Q

quadratic residue character 150
quadratic residue 150, 169

R

Ramanujan graphs 218
Ramsey graph 191
Ramsey’s theorem 68
random graph 309–312
random member 42
random subset 42
random variable 42
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k-wise independent 347
random walk 331, 336
rank 181
Rayleigh quotient 183
rectangle 205

monochromatic 206
Reed–Solomon codes 238
replication number 8, 166
root of polynomial 223
row rank 180

S

sample space
symmetric 42

sample space 42, 276, 345
scalar product 180
scalar product 277, 298, 331
Schur’s theorem 362
second moment method 303–312
set

differently colored 51
monotone decreasing 103
monotone increasing 103
totally ordered 56

set system see family
shifting argument 61–63
Singleton bound 238
slice function 134
span 179, 187, 245
spanning diameter 246
Sperner system 111
Sperner’s theorem 111
square 169
star 30, 97, 380

center of 380
Steiner system 165
Stirling formula 6
storage access function 133
subgraph xiv, 24

induced xiv, 26, 66, 73
spanning xiv

subgroup 363
subsequence 55

decreasing 55, 71
increasing 55

sum-free set 256, 350, 362
maximal 369

sum-set 232
sunflower 89

core of 89
sunflower lemma 89
surjection 20
switching lemma

monotone version of 126
symmetric difference xiii, 84

symmetric matrix 214
syndrome decoding 243
system of distinct representatives 77–86

strong 115
system of linear equations 181

homogeneous 181
Szemerédi’s cube lemma 299

T

threshold function 51, 94, 134, 186
of an event 309

tournament 44, 255, 276, 339
random 255
transitive 339

trail xiv, 62
translate 168, 246, 290, 359
transversal 119
tree xiv
triangle 56, 72
triangle matrix 222
Turán’s number 9
Turán’s theorem 58, 71, 72, 259, 277, 294

U

ultrafilter 99
uniform distribution 42
unit distance graph 196
unit sphere 263
unit vector 263
universal sequence 110
universal set 45, 135, 245
upwards closed set 153

V

Van der Waerden’s theorem 290, 298,
357, 373

Vapnik–Chervonenkis dimension 135
variance 50, 304
vertex

neighbor of 83
vertex cover 83

W

walk xiv
weak Δ-system 90
witness 155

Z

Zarankiewicz’s problem 29, 301
zero polynomial 223
zero-sum set 233
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